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Abstract

In this paper we motivate the use of second order stochastic di¤erential equations in economics and �nance.
We provide an empirical illustration and discuss a parametric second order stochastic di¤erential equation
for stock prices and exchange rates.
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1 Introduction

In this paper we motivate the use of second order stochastic di¤erential equations in economics

and �nance. We show that second order stochastic di¤erential equations are the right model in

continuous-time to account for integrated processes that can be made stationary by di¤erencing.

We provide an empirical illustration based on non-parametric estimators discussed in Nicolau

(2007). The estimation results suggest a parametric second order stochastic di¤erential equation

for stock prices and exchange rates, which we brie�y discussed.

If yt is an integrated discrete time process (yt � I (1)), then �yt is a stationary process.

But, what if Y is an integrated continuous-time di¤usion process? Can we make Y stationary

by di¤erencing? Seemingly the answer is negative since if Y is a di¤usion process driven by

a Brownian motion then the di¤erentiable process dYt=dt does not exist with probability one,

because all samples are of unbounded variation and nowhere di¤erentiable. The di¢ culties in

interpreting the �di¤erentiated�process is perhaps one reason why continuous-time di¤erentiated

processes are almost absent in applied econometrics. However, there is a simple way to explore

integrated and di¤erentiated di¤usion processes. It implies the use of second order stochastic

di¤erential equations (SDEs) d (dYt=dt) = a (Xt) dt+ b (Xt) dWt; or equivalently8>><>>:
dYt = Xtdt

dXt = a (Xt) dt+ b (Xt) dWt

(1)

where a and b are the in�nitesimal coe¢ cients (respectively, the drift and the di¤usion coe¢ cient),

W is a (standard) Wiener process (or Brownian motion) and X is (by hypothesis) a stationary

process. In this model, Y is a di¤erentiable process, by construction. It represents the integrated

process,

Yt = Y0 +

Z t

0

Xudu: (2)

Note that if y is a discrete-time integrated process, for example, yt = � + yt�1 + "t ("t �
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i:i:d:N (0; 1)) then yt can be written as yt = y0 + t�+
Pt

k=1 "k, or

yt = y0 +
tX

k=1

xk; (3)

where xt = � + "t: The analogy between the discrete and the continuous-time case is obvious if

we compare equations (2) and (3). On the other hand, the process Xt = dYt=dt can be considered

the equivalent concept to the �rst di¤erences sequence in discrete-time analysis (xt = yt � yt�1).

Model (1) can be useful in empirical �nance for at least two reasons. First, the model ac-

commodates nonstationary integrated stochastic processes (Y ) that can be made stationary by

di¤erencing. As we mentioned previously, such transformation cannot be undertaken in common

univariate di¤usion processes used in �nance because all sample paths from univariate di¤usion

processes are nowhere di¤erentiable with probability one. Yet, many processes in economics and

�nance (e.g. stock prices and nominal exchange rates) behave as the cumulation of all past pertur-

bations (basically in the same sense as unit root processes in a discrete framework). Second, in the

context of stock prices or exchange rates, the model suggests directly modeling the (instantaneous)

returns, in contrast to usual continuous-time models in �nance, which directly model the prices

(consider for example the elementary geometric Brownian motion and subsequent generalizations).

By directly modeling the returns, the proposed model suggests following the same strategy as in

a discrete time approach (�rst one obtains the returns from log prices and then a speci�c model

is proposed, for example an AR(1) with GARCH innovations). General properties for returns

(stylized facts) are well known and documented (for example, returns are generally stationary in

mean, the distribution is not normal, the autocorrelations are weak and the correlations between

the magnitude of returns are positive and statistically signi�cant, etc.). One advantage of directly

modeling the returns (X) is that these general properties are easier to specify in a model like (1)

than in a di¤usion univariate process for the prices. In fact, several interesting models can be

obtained by selecting a (x) and b2 (x) appropriately. We later suggest the choice a (x) = � (� � x)

and b (x) =
q
�0 + �1 (Xt � �)2 as this leads to an integrated process for the (log) prices Y whose

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

returns, X; have an asymmetric leptokurtic stationary distribution (note that if X represents the

continuously compounded return or log return of an asset, the �rst equation in system (1) should

be interpreted as d log Yt = Xtdt):

We observe that model (1), although not used in empirical �nance and in applied economics

in general, is common in engineering. For instance, it is usual for engineers to model mechanical

vibrations or charge on a capacitor or condenser submitted to white noise excitation through a sec-

ond order SDE. Integrated di¤usions like Y in equation (2) arise naturally when only observations

of a running integral of the process are available. For instance, this can occur when a realization

of the process is observed after passage through an electronic �lter. Another example is provided

by ice-core data on oxygen isotopes used to investigate paleo-temperatures (see Ditlevsen and

Sørensen, 2004).

Estimation of second order SDEs raises new challenges for two main reasons. On the one hand,

only the integrated process Y is observable at instants fti; i = 1; 2; :::g and thus X in model (1)

is a latent non-observable process. In fact, for a �xed sampling interval, it is impossible to obtain

the value of X at time ti from the observation Yti which represents the integral Y0 +
R ti
0
Xudu.

On the other hand, the estimation of model (1) cannot in principle be based on the observations

fYti ; i = 1; 2; :::g since the conditional distribution of Y is generally unknown, even if that of X is

known. An exception is the case where X follows an Orstein-Uhlenbeck process, which is analyzed

in Gloter (2001). Nevertheless, with discrete-time observations fYi�; i = 1; 2; :::g (to simplify we

use the notation ti = i�; where � = ti � ti�1), and given that

Yi� � Y(i�1)� =
Z i�

0

Xudu�
Z (i�1)�

0

Xudu =

Z i�

(i�1)�
Xudu;

we can obtain a measure of X at instant ti = i� using the formula:

~Xi� =
Yi� � Y(i�1)�

�
: (4)

Naturally, the accuracy of (4) as a proxy for Xi� depends on the magnitude of �:

3
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Non-parametric estimation of integrated di¤usions based on the observations
n
~Xi�

o
is ana-

lyzed in Nicolau (2007). Gloter (1999, 2006) and Ditlevsen and Sørensen (2004) analyze parametric

and semi-parametric estimation.

2 Examples

2.1 A Simulated Process

Figure 1 presents a numerical simulation of Y and X where Yt = 100+
R t
0
Xudu and X is governed

by the SDE

dXt = 20 (0:03�Xt) dt+
q
10 + 20 (Xt � 0:07)2dWt

de�ned in the interval t 2 [0; 50] : The numerical simulations were based on the Euler-Maruyama

approximation. It is interesting to observe that Y displays all the features of an integrated process:

absence of mean reversion, shocks are persistent, mean and variance depend on time, etc. On the

other hand, the unconditional distribution of X (return) is asymmetric and leptokurtic.

2.2 An Empirical Illustration

To illustrate second order SDE, we analyze daily closing stock prices of three major US companies

(Applied Materials, starting from September 84, Oracle and Microsoft, both starting from March

88), three stock indices (DAX, FTSE and NASDAQ, respectively, starting from November 90,

April 84 and February 71) and three US Dollar exchange rates (Euro, starting from January 99,

Pound Sterling and Yen, both starting January 71). In all cases samples end in March 2006.

We assume

(equation for log prices) d log Yt = Xtdt

(equation for returns) dXt = a (Xt) dt+ b (Xt) dWt:

In this application, we suppose that both in�nitesimal coe¢ cients, a and b; are unknown and our

aim is their non-parametric functional estimation. Under some conditions (including stationarity
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Figure 1: Numerical Simulation of Y and X:

of X; and that the step of discretization goes to zero at an appropriate rate) Nicolau (2007) has

shown that

ân (x) =

1
nhn

Pn
i=1K

�
x� ~X(i�1)�n

hn

�
( ~X(i+1)�n� ~Xi�n)

�n

1
nhn

Pn
i=1K

�
x� ~X(i�1)�n

hn

� p�! a (x)

p
hnn�n (ân (x)� a (x))

d�! N

�
0;K2

b2 (x)

�p (x)

�

where K2 =
R
RK

2 (u) du and K is the kernel function, and

b̂2n (x) =

1
nhn

Pn
i=1K

�
x� ~X(i�1)�n

hn

� 3
2 ( ~Xi�n� ~X(i�1)�n)

2

�n

1
nhn

Pn
i=1K

�
x� ~X(i�1)�n

hn

� p�! b2 (x)

p
nhn

�
b̂2n (x)� b2 (x)

�
d�! N

�
0;
4K2b

4 (x)

�p (x)

�
:
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Figure 2: Non-parametric estimates of a (x) and b2 (x).

However, Monte Carlo simulation experiments suggest that

�an (x) =

Pn
i=1K

�
x� ~X(i�1)�n

hn

�
( ~Xi�n� ~X(i�1)�n)

�nPn
i=1K

�
x� ~X(i�1)�n

hn

�
performs better than ân (x) for moderate/high values of � (see Nicolau, 2007). We use �an (x) and

b̂2n (x) to estimate the in�nitesimal coe¢ cients a (x) and b
2 (x) associated with these nine �nancial

time series ( ~Xi� is given by equation (4) and Y is the log of price). We �xed � = 1=20 so the

results have a monthly interpretation (t = 1 means one month). In �gure 2 we present the results.

As we expected they show that returns from exchange rates have the least variability and

individual stocks have the highest variability. It is interesting to observe a regularity pattern

in all estimates. In all cases the drift is clearly linear and the di¤usion is a convex function
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with a minimum in the neighborhood of zero. Several other stock prices and exchange rate time

series showed the same pattern. The speci�cation b2 (x) = �0 + �1 (x� �)2 seems to �t the non-

parametric estimates very well. The quadratic hypothesis for the di¤usion is interesting as we

show in next section.

3 A Second Order SDE

The previous section suggests that the second order SDE

(equation for log prices) d log Yt = Xtdt

(equation for returns) dXt = � (� �Xt) dt+
q
�0 + �1 (Xt � �)2dWt; � � 0; �0 > 0; �1 � 0

is a plausible model for prices and returns of exchange rates, stocks and stocks indices. This model

presents very interesting properties. It can be shown that X is ergodic and the invariant distribu-

tion P 0 has density �p (x) with respect to the Lebesgue measure. The density �p is given by �p (x) =

m (x) =
R
Rm (u) du where m (u) =

�
b2 (u) s (u)

��1
and s (z) = exp

n
�
R z
z0
2a (u) =b2 (u) du

o
. Thus,

(after some calculations) we have

�p (x) =
1

c
exp

8><>:
2� (� � �) arctan

�q
�1
�0
(x� �)

�
p
�0�

9>=>;
�
�0 + �1 (x� �)2

�� �
�1
�1

where c =
R
Rm (u) du is the normalizing constant,

c =
4�

�
�1 ��

�1=2��=�1
0

p
�1�

�
1 + 2�

�1

�
�
�
1 + �

�1
+ i�(���)p

�0�

�
�
�
1 + �

�1
+ i�(���)p

�0�

� 2 R; (i = p�1):
To the best of our knowledge, �p is a new probability density function (pdf). Since the function

exp farctan (x)g > 0 is bounded away from zero, the tails of �p are dominated by the expression�
�0 + �1 (x� �)2

�� �
�1
�1
: This means that �p has polynomial tails and thus heavy tails. Moreover,

�p generalizes the t-Student distribution since if � = �, �p is the t-Student distribution (in this case

centered in �). The component exp farctan (:)g can be seen as a weight function that gives more

weight to the right or left tails of �p according to the sign of � � �: If, for example, � > � the
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distribution is left-skewed. This tends to occur when � > 0 in the case of returns of stock prices

because positive returns normally present lower variability than negative returns (we notice that

the volatility is minimum at �). It can be shown that

E [X] = � ;

V ar [X] =
�1 (�� �)2 + �0

2� � �1
;

E
h
(X � �)3

i
=
2�1 (� � �)

�
�0 + �1 (�� �)2

�
(� � �1) (2� � �1)

;

E
h
(X � �)4

i
=
3
�
�1 (� � �)2 + �0

� �
�1
�
3�2�1 � 6�1�� � 2��� + 3�1�2 + �2� � �0 + ��2

�
+ �0�

�
(2� � �1) (� � �1) (2� � 3�1)

:

(the proofs are available from the author upon request). The pdf �p can even be explored in

discrete-time modeling. One of the di¢ culties in modeling autoregressive conditional skewness

and kurtosis is related with the choice of the conditional density. This pdf �p; after being properly

normalized, can permit that the �rst four conditional moments evolve separately.
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Figure Legends

Figure 1: Numerical Simulation of Y and X.

Figure 2: Non-parametric estimates of a (x) and b2 (x).
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