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In this paper we motivate the use of second order stochastic di¤erential equations in economics and …nance. We provide an empirical illustration and discuss a parametric second order stochastic di¤erential equation for stock prices and exchange rates.

Introduction

In this paper we motivate the use of second order stochastic di¤erential equations in economics and …nance. We show that second order stochastic di¤erential equations are the right model in continuous-time to account for integrated processes that can be made stationary by di¤erencing.

We provide an empirical illustration based on non-parametric estimators discussed in [START_REF] Nicolau | Non-Parametric Estimation of Second Order Stochastic Di¤erential Equations[END_REF]. The estimation results suggest a parametric second order stochastic di¤erential equation for stock prices and exchange rates, which we brie ‡y discussed.

If y t is an integrated discrete time process (y t I (1)), then y t is a stationary process.

But, what if Y is an integrated continuous-time di¤usion process? Can we make Y stationary by di¤erencing? Seemingly the answer is negative since if Y is a di¤usion process driven by a Brownian motion then the di¤erentiable process dY t =dt does not exist with probability one, because all samples are of unbounded variation and nowhere di¤erentiable. The di¢ culties in interpreting the 'di¤erentiated'process is perhaps one reason why continuous-time di¤erentiated processes are almost absent in applied econometrics. However, there is a simple way to explore integrated and di¤erentiated di¤usion processes. It implies the use of second order stochastic di¤erential equations (SDEs)

d (dY t =dt) = a (X t ) dt + b (X t ) dW t ; or equivalently 8 > > < > > : dY t = X t dt dX t = a (X t ) dt + b (X t ) dW t (1)
where a and b are the in…nitesimal coe¢ cients (respectively, the drift and the di¤usion coe¢ cient),

W is a (standard) Wiener process (or Brownian motion) and X is (by hypothesis) a stationary process. In this model, Y is a di¤erentiable process, by construction. It represents the integrated process,

Y t = Y 0 + Z t 0 X u du: (2) 
Note that if y is a discrete-time integrated process, for example, y t = + y t 1 + " t (" t i:i:d:N (0; 1)) then y t can be written as y t = y 0 + t + P t k=1 " k , or

y t = y 0 + t X k=1
x k ;

(3) where x t = + " t : The analogy between the discrete and the continuous-time case is obvious if we compare equations ( 2) and (3). On the other hand, the process X t = dY t =dt can be considered the equivalent concept to the …rst di¤erences sequence in discrete-time analysis (x t = y t y t 1 ).

Model (1) can be useful in empirical …nance for at least two reasons. First, the model accommodates nonstationary integrated stochastic processes (Y ) that can be made stationary by di¤erencing. As we mentioned previously, such transformation cannot be undertaken in common univariate di¤usion processes used in …nance because all sample paths from univariate di¤usion processes are nowhere di¤erentiable with probability one. Yet, many processes in economics and …nance (e.g. stock prices and nominal exchange rates) behave as the cumulation of all past perturbations (basically in the same sense as unit root processes in a discrete framework). Second, in the context of stock prices or exchange rates, the model suggests directly modeling the (instantaneous) returns, in contrast to usual continuous-time models in …nance, which directly model the prices (consider for example the elementary geometric Brownian motion and subsequent generalizations).

By directly modeling the returns, the proposed model suggests following the same strategy as in a discrete time approach (…rst one obtains the returns from log prices and then a speci…c model is proposed, for example an AR(1) with GARCH innovations). General properties for returns (stylized facts) are well known and documented (for example, returns are generally stationary in mean, the distribution is not normal, the autocorrelations are weak and the correlations between the magnitude of returns are positive and statistically signi…cant, etc.). One advantage of directly modeling the returns (X) is that these general properties are easier to specify in a model like (1) than in a di¤usion univariate process for the prices. In fact, several interesting models can be obtained by selecting a (x) and b 2 (x) appropriately. We later suggest the choice a (x) = ( x)

and b (x) = q 0 + 1 (X t ) 2 as this leads to an integrated process for the (log) prices Y whose returns, X; have an asymmetric leptokurtic stationary distribution (note that if X represents the continuously compounded return or log return of an asset, the …rst equation in system (1) should be interpreted as d log Y t = X t dt):

We observe that model (1), although not used in empirical …nance and in applied economics in general, is common in engineering. For instance, it is usual for engineers to model mechanical vibrations or charge on a capacitor or condenser submitted to white noise excitation through a second order SDE. Integrated di¤usions like Y in equation ( 2) arise naturally when only observations of a running integral of the process are available. For instance, this can occur when a realization of the process is observed after passage through an electronic …lter. Another example is provided by ice-core data on oxygen isotopes used to investigate paleo-temperatures (see [START_REF] Ditlevsen | Inference for Observations of Integrated Di¤usion Processes[END_REF].

Estimation of second order SDEs raises new challenges for two main reasons. On the one hand, only the integrated process Y is observable at instants ft i ; i = 1; 2; :::g and thus X in model ( 1) is a latent non-observable process. In fact, for a …xed sampling interval, it is impossible to obtain the value of X at time t i from the observation Y ti which represents the integral Y 0 + R ti 0 X u du.

On the other hand, the estimation of model (1) cannot in principle be based on the observations fY ti ; i = 1; 2; :::g since the conditional distribution of Y is generally unknown, even if that of X is known. An exception is the case where X follows an Orstein-Uhlenbeck process, which is analyzed in [START_REF] Gloter | Parameter Estimation for a Discrete Sampling of an Integrated Ornstein-Uhlenbeck Process[END_REF]. Nevertheless, with discrete-time observations fY i ; i = 1; 2; :::g (to simplify we use the notation t i = i ; where = t i t i 1 ), and given that

Y i Y (i 1) = Z i 0 X u du Z (i 1) 0 X u du = Z i (i 1)
X u du;

we can obtain a measure of X at instant t i = i using the formula:

Xi = Y i Y (i 1) : (4)
Naturally, the accuracy of (4) as a proxy for X i depends on the magnitude of : of X; and that the step of discretization goes to zero at an appropriate rate) [START_REF] Nicolau | Non-Parametric Estimation of Second Order Stochastic Di¤erential Equations[END_REF] has shown that

ân (x) = 1 nhn P n i=1 K x X(i 1) n hn ( X(i+1) n Xi n ) n 1 nhn P n i=1 K x X(i 1) n hn p ! a (x) p h n n n (â n (x) a (x)) d ! N 0; K 2 b 2 (x) p (x)
where

K 2 = R R K 2 (u)
du and K is the kernel function, and However, Monte Carlo simulation experiments suggest that

b2 n (x) = 1 nhn P n i=1 K x X(i 1) n hn 3 2 ( Xi n X(i 1) n ) 2 n 1 nhn P n i=1 K x X(i 1) n hn p ! b 2 (x) p nh n b2 n (x) b 2 (x) d ! N 0; 4K 2 b 4 (x) p (x) :
a n (x) = P n i=1 K x X(i 1) n hn ( Xi n X(i 1) n ) n P n i=1 K
x X(i 1) n hn performs better than ân (x) for moderate/high values of (see [START_REF] Nicolau | Non-Parametric Estimation of Second Order Stochastic Di¤erential Equations[END_REF]. We use a n (x) and b2 n (x) to estimate the in…nitesimal coe¢ cients a (x) and b 2 (x) associated with these nine …nancial time series ( Xi is given by equation ( 4) and Y is the log of price). We …xed = 1=20 so the results have a monthly interpretation (t = 1 means one month). In …gure 2 we present the results.

As we expected they show that returns from exchange rates have the least variability and individual stocks have the highest variability. It is interesting to observe a regularity pattern in all estimates. In all cases the drift is clearly linear and the di¤usion is a convex function 

A Second Order SDE

The previous section suggests that the second order SDE (equation for log prices) d log Y t = X t dt (equation for returns) 

dX t = ( X t ) dt + q 0 + 1 (X t ) 2 dW t ; 0; 0 > 0; 1 0 is a plausible

Figure 1 :

 1 Figure 1: Numerical Simulation of Y and X:

Figure 2 :

 2 Figure 2: Non-parametric estimates of a (x) and b 2 (x).

  in the neighborhood of zero. Several other stock prices and exchange rate time series showed the same pattern. The speci…cation b 2 (x) = 0 + 1 (x ) 2 seems to …t the nonparametric estimates very well. The quadratic hypothesis for the di¤usion is interesting as we show in next section.

:

  model for prices and returns of exchange rates, stocks and stocks indices. This model presents very interesting properties. It can be shown that X is ergodic and the invariant distribution P 0 has density p (x) with respect to the Lebesgue measure. The density p is given by p(x) = m (x) = R R m (u) du where m (u) = b 2 (u) s (u) 1 and s (z) = exp n R z z0 2a (u) =b 2 (u)To the best of our knowledge, p is a new probability density function (pdf). Since the function exp farctan (x)g > 0 is bounded away from zero, the tails of p are dominated by the expression This means that p has polynomial tails and thus heavy tails. Moreover, p generalizes the t-Student distribution since if = , p is the t-Student distribution (in this case centered in ). The component exp farctan (:)g can be seen as a weight function that gives more weight to the right or left tails of p according to the sign of : If, for example, > the
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Non-parametric estimation of integrated di¤usions based on the observations n Xi o is analyzed in [START_REF] Nicolau | Non-Parametric Estimation of Second Order Stochastic Di¤erential Equations[END_REF]. Gloter (1999[START_REF] Gloter | Parameter Estimation for a Discretely Observed Integrated Di¤usion Process[END_REF] and [START_REF] Ditlevsen | Inference for Observations of Integrated Di¤usion Processes[END_REF] analyze parametric and semi-parametric estimation.

Examples

2.1 A Simulated Process absence of mean reversion, shocks are persistent, mean and variance depend on time, etc. On the other hand, the unconditional distribution of X (return) is asymmetric and leptokurtic. We assume

An Empirical Illustration

In this application, we suppose that both in…nitesimal coe¢ cients, a and b; are unknown and our aim is their non-parametric functional estimation. Under some conditions (including stationarity
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distribution is left-skewed. This tends to occur when > 0 in the case of returns of stock prices because positive returns normally present lower variability than negative returns (we notice that the volatility is minimum at ). It can be shown that

(the proofs are available from the author upon request). The pdf p can even be explored in discrete-time modeling. One of the di¢ culties in modeling autoregressive conditional skewness and kurtosis is related with the choice of the conditional density. This pdf p; after being properly normalized, can permit that the …rst four conditional moments evolve separately. 
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