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The aim of this paper is to analyze the optimal trajectories of a spacecraft subjected to a modulated radial thrust, whose magnitude is inversely proportional to the square of the distance from the primary body. This case is representative of a Sun-facing solar sail with a passive attitude control system. In this study the sailcraft is assumed to perform a finite number of reorientation maneuvers to set the propelling acceleration to zero and generate suitable coasting arcs along the trajectory. Accordingly, the resulting generalized orbit is a sequence of either propelled or ballistic conic arcs, whose main characteristics (in terms of semimajor axis, eccentricity, and perihelion radius) can be calculated in closed form. As a result, the sailcraft optimal performance can be studied using an analytical approach.

In particular, some compact relationships are drawn and discussed that allow one to find the optimal sailcraft characteristics required to reach a prescribed final orbit.

Introduction

The trajectory design of a solar sail based mission is usually addressed in an optimal framework [START_REF] Dellnitz | A multi-objective approach to the design of low thrust space trajectories using optimal control[END_REF][START_REF] Racca | New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system[END_REF]. Because the solar sail uses no propellant, the aim of the optimization process is to find suitable relationships between the sail performance, as the maximum propelling acceleration at launch, and the total flight time. Apart from the mathematical approach used to tackle the problem [START_REF] Betts | Survey of numerical methods for trajectory optimization[END_REF], the results of an optimal analysis are generally obtained in numerical form. In fact, in most cases the solar sail trajectory cannot be computed analytically, as it arises from a fairly involved optimal steering law (Mengali and Quarta, 2005c;Mengali et al., 2007).

The propelling acceleration direction and magnitude of a solar sail depend on the sail attitude and on the sailcraft distance from the Sun. However, when the sail attitude is held fixed, the propelling acceleration direction is a constant of motion in an orbital frame, whereas its magnitude changes with the distance from the Sun in the same way as the solar radiation pressure does. If one neglects the potential anisotropy in the Sun's irradiation [START_REF] Mcinnes | The dynamics of solar sails with a non-point source of radiation pressure[END_REF], and assumes that the sail nominal plane is normal to the incoming sunrays, the propelling acceleration is, in its turn, purely radial, with a magnitude directly proportional to the local gravitational pull.

The motion of a constant mass spacecraft under a radial thrust inversely proportional to the square of the distance from the primary body has been studied by [START_REF] Boltz | Orbital motion under continuous radial thrust[END_REF], and then further investigated by [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF] and [START_REF] Yamakawa | Optimal radially accelerated interplanetary trajectories[END_REF]. From a practical point of view, a pure radial thrust can be obtained with a passive control by means of a sail having a slightly conical form, and whose apex is directed sunward [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF][START_REF] Mengali | Optimal control laws for axially symmetric solar sails[END_REF]. The use of a passive control system provides a substantial simplification to the whole mission design process, because it avoids the complex task of continuously varying the sail attitude, which represents one of the most challenging mission goals [START_REF] Kirpichnikov | Planar heliocentric roto-translatory motion of a spacecraft with a solar sail of complex shape[END_REF][START_REF] Koblik | Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys[END_REF]. In most cases, however, a passive control is too restrictive as it does not guarantee the fulfilment of some minimum performance criteria. In fact, the use of a Continuous Radial Thrust (CRT) provides unnecessarily conservative results in terms of required maximum thrust level to accomplish a given mission. Not surprisingly, some compromise solutions are often adopted as, for example, the use of a piecewise-constant steering law [START_REF] Otten | Near minimum-time trajectories for solar sails[END_REF][START_REF] Mengali | Solar sail trajectories with piecewise-constant steering laws[END_REF].

In this paper a different compromise solution is chosen. More precisely, it is assumed that the sailcraft attitude motion is purely passive with the exception of a finite number of reorientation maneuvers whose aim is to rotate the sail such as to set the thrust to zero and generate suitable coasting arcs along the trajectory, see Figure 1. Each maneuver is nearly instantaneous, as the time interval necessary to complete the sail reorientation is negligible with respect to the characteristic mission time. Such a Modulated Radial Thrust (MRT)

strategy, applied at a constant-thrust-level propulsion system, has been recently investigated by [START_REF] Quarta | Optimal switching strategy for radially accelerated trajectories[END_REF], who have shown that a MRT guarantees a substantial reduction in the performance required to fulfil a given mission when compared to a CRT case. The aim of this paper is to extend the analysis of [START_REF] Quarta | Optimal switching strategy for radially accelerated trajectories[END_REF] to a solar sail spacecraft, whose propelling acceleration is modulated and varies as the inverse square distance from the Sun. The resulting sailcraft trajectory is a sequence of either propelled or ballistic conic arcs. The peculiarity of such a trajectory allows one to calculate analytically the characteristics of each conic arc, in terms of both eccentricity and semimajor axis length. In addition, for a given geometry of the initial sailcraft orbit and a given value of solar sail lightness number β (the ratio of the maximum solar radiation pressure acceleration to the solar gravitational acceleration), it is shown that the geometrical characteristics of any conic arc depend only on the distances at which the reorientation maneuvers are performed. As a result, for a given value of β and an assigned number of mission arcs, it is possible to calculate the sequence of reorientation maneuvers that optimize a given performance index.

Firstly, the strategy that maximizes the semimajor axis length of the final propelled arc is studied.

It is shown that the corresponding control law consists in setting the thrust on as long as the sail moves away from the Sun, and setting it to zero when the sailcraft approaches the Sun. As a special case of the above strategy, the escape problem for a propelled trajectory is investigated. It is well known that, for a solar sail subjected to a CRT, there exists a minimum value of lightness number β min below which the sail cannot attain an escape condition [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF]. Using an optimal MRT strategy the escape condition can be obtained even if β is substantially less than β min . Moreover, some simple analytical relationships are found that link the number of trajectory arcs with the minimum necessary value of β, the total mission time, and the minimum perihelion distance.

As a second mission scenario, the minimum value of β required to reach a ballistic arc with a given value of semimajor axis is studied. The resulting optimal control law turns out to be the symmetric counterpart of the previous steering law, that is, the sail thrust is on when the sailcraft approaches the Sun and is off when it moves away from it. This steering law is applied to study flyby missions to outer planets and to generate Earth resonant Keplerian orbits.

Mathematical Model

Consider a solar sail spacecraft moving in an elliptic parking orbit with semimajor axis a 0 and eccentricity e 0 . Assume that the solar sail provides a pure radial thrust whose magnitude is

a r = β µ ⊙ r 2 (1)
where µ ⊙ is the Sun's gravitational parameter and r is the Sun-sailcraft distance. The value of the lightness number β < 1 quantifies the sailcraft performance and is a function of the sail reflecting area, the total spacecraft mass and the optical properties of the reflective film [START_REF] Wright | Space Sailing[END_REF]Mengali et al., 2007).

An equivalent parameter that can be used to quantify the performance of a solar sail is the characteristic acceleration a c , i.e., the maximum propelling acceleration at 1 AU distance from the Sun. Substituting r = 1 AU into Eq. ( 1), yields

a c ≃ (5.93 β) mm/s 2 (2)
When subjected to a pure radial thrust, the sailcraft trajectory describes a generalized orbit, that is, an orbit obtained through a modulated, inverse square thrust [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF]Mengali and Quarta, 2007).

The resulting trajectory is actually a conic, as the sailcraft moves under the effect of a gravitational force whose magnitude is reduced with respect to the solar gravity. In addition, the sailcraft propulsion is switched off at some points along the trajectory, by suitably re-orienting the solar sail, to create a sequence of mission phases, characterized by either a propelled or a coasting arc, as schematically shown in Fig. 2. By assumption the passage P-C from a propelled arc to a coasting arc (or, viceversa C-P, from a departure propelled arc coasting arc arc number time 0 0 , a e
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Fig. 2 MRT mission strategy for a n-arc trajectory (∆t k is the k-th arc length).

coasting to a propelled arc) is performed with an instantaneous reorientation maneuver, thus implying a continuity in both the sailcraft position and velocity just before and after the maneuver accomplishment.

During a propelled arc the sailcraft describes a two-body motion subjected to a reduced gravitational parameter µ ⊙ given by [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF])

µ ⊙ µ ⊙ (1 -β) (3) 
Consider now a mission constituted by a total of n distinct arcs, and let k be the generic mission arc.

With the symbology of Fig. 2, k = 0 corresponds to the starting sailcraft orbit with eccentricity e 0 and semimajor axis a 0 , while k = 1 is the first propelled arc. Consider the problem of finding the value of a 1 , that is, the semimajor axis of the orbit in the first phase. Let r 0 ∈ a 0 [(1 -e 0 ), (1 + e 0 )] be the sailcraft distance at which the maneuver is performed. From the mechanical energy equation one obtains:

µ ⊙ 1 r 0 - 1 2 a 0 = µ ⊙ 1 r 0 - 1 2 a 1 (4)
Substituting Eq. ( 3) into (4), and solving for a 1 yields:

a 1 = a 0 (1 -β) 1 -2 a 0 β/r 0 (5)
Because 2 a 0 /r 0 > 1, Eq. ( 5) implies that a C-P maneuver increases the semimajor axis (that is, a 1 > a 0 ).

The orbit eccentricity e 1 of the first arc is obtained by observing that a radial thrust does not change the magnitude of the sailcraft angular momentum h. In fact, from h = √ µ ⊙ p 0 = constant, one obtains:

µ ⊙ p 0 = µ ⊙ p 1 (6) 
or

p 1 = p 0 1 -β (7)
The orbit eccentricity is, therefore

e 1 = 1 - p 0 a 1 (1 -β) (8) 
From Eqs. ( 5) and ( 8) the orbital characteristics of the first arc are closely related to the value of β and to the distance r 0 at which the maneuver is performed. Consider now the second arc k = 2 (a coasting arc, see Fig. 2) and assume that the second maneuver is performed at a solar distance r 1 ≥ a 1 (1 -e 1 ).

From the energy equation, the relationship between a 2 and a 1 is:

a 2 = a 1 1 + β (2 a 1 /r 1 -1) (9) 
In this case, because 2 a 1 /r 1 > 1, a P-C maneuver implies a reduction of the semimajor axis (a 2 < a 1 ).

Substituting Eq. ( 5) into (9), the semimajor axis can be expressed as a function of the parking orbit characteristics (a 0 ) and of the sailcraft system (β). The result is:

a 2 = a 0 1 -2 a 0 β 1 r 0 - 1 r 1 (10) 
Equation ( 10) shows that a 2 /a 0 can be either positive or negative, depending on the magnitude of the second term in the denominator (the latter is a function of r 0 and r 1 , that is, of the points at which the two maneuvers are performed). From the angular momentum conservation one has

(1 -β) p 1 = p 2 (11) 
Recalling Eq. ( 7) one obtains

p 2 = p 0 (12) 
from which

e 2 = 1 - p 0 a 2 (13)
where a 2 is given by Eq. ( 10).

The generalization to a generic k (with k = 1, 2, . . . , n) is straightforward, because the expressions for the semimajor axis a k , the semilatus rectum p k , and the eccentricity e k of the k-th arc depend only on whether k is odd (propelled arc) or even (coasting arc). More precisely, one has

a k =              a 0 (1 -β) 1 -2 β a 0 F k if k is odd a 0 1 -2 β a 0 F k if k is even (14) p k =          p 0 1 -β if k is odd p 0 if k is even (15)
and

e k =              1 - p 0 a 0 (1 -β) 2 (1 -2 β a 0 F k ) if k is odd 1 - p 0 a 0 (1 -2 β a 0 F k ) if k is even (16)
where

F k k-1 i=0 (-1) i r i (17) 
Note that for a given a k , the corresponding F k is obtained from Eq. ( 14). Therefore, from Eq. ( 16), the eccentricity e k depends only on β and a k . This result is not at all surprising, as it arises implicitly from the conservation of the angular momentum h. Using the polar equation of a conic section, an equivalent expression for F k is given by:

F k = k-1 i=0 (-1) i (1 + e i cos ν i ) p i (18)
where ν i is the sailcraft true anomaly at the maneuver point. In a n-arc mission, Eqs. ( 14) and ( 16) can be used to find the sailcraft performance (in terms of lightness number β) required to reach an orbit of given characteristics. In fact, the values of a n and e n of the final orbit depend both on β and on the summation in Eq. ( 18) (with k = n). The latter, in its turn, depends on the points (ν i ) at which the maneuvers are executed. Therefore, the values ν i constitute a set of n control parameters whose choice defines the final value of a n and e n through Eqs. ( 14) and ( 16). In particular, an interesting class of trajectories is found by looking for the sequence of maneuvers that either maximize or minimize F n . For example, as shown later, the maximization of F n is useful for calculating the minimum value of β that allows a sailcraft to reach an escape condition after n arcs. In principle such a problem could be tackled by looking for the extrema of a function of n independent variables. For example, from Eq. ( 17) the maximum of F n is obtained by performing the maneuver when the Sun-sail distance r i is at a minimum (maximum) when i is even (odd). By symmetry, the minimum of F n is obtained when r i is at a maximum (minimum) if i is odd (even). The same result can also be obtained following a different approach, with the aid of the calculus of variations. This allows one to introduce the mathematical model that will be used in the trajectory simulations. The details are discussed in the next section.

Sequence of optimal maneuvers

The problem of minimizing or maximizing the function F n of Eq. ( 18) is now investigated using an indirect approach. To this end, introduce the sailcraft equations of motion in vector form, viz.

ṙ = v (19) v = - µ ⊙ r 3 r + τ β µ ⊙ r 3 r (20)
where r and v are the sailcraft position and velocity vectors (with r r ), and τ = (0, 1) is the switching function (τ = 1 when the sail nominal plane is perpendicular to the incoming sunrays, and τ = 0 during a coasting arc) that models the reorientation maneuver.

Consider first the problem of optimizing F n . This amounts to looking for the steering law τ = τ (t) that maximizes (or minimizes) the specific mechanical energy E at a given final time instant t f . The Hamiltonian associated to the equations of motion is:

H λ r • v - µ ⊙ r 3 λ v • r + τ β µ ⊙ r 3 λ v • r (21)
where λ r and λ v are the vectors adjoint to r and v, respectively. Their time derivatives are given by the Euler-Lagrange equations [START_REF] Bryson | Applied Optimal Control[END_REF][START_REF] Kim | Symmetries in the optimal control of solar sail spacecraft[END_REF], that is:

λr = - ∂H ∂r = - 2 µ ⊙ (1 -τ β) r 3 λ v (22) λv = - ∂H ∂v = -λ r (23) 
The two first order differential equations ( 22) and ( 23) can be merged into a single second order differential equation involving the primer vector λ v alone [START_REF] Lawden | Optimal Trajectories for Space Navigation[END_REF]:

λv = 2 µ ⊙ (1 -τ β) r 3 λ v (24)
Bearing in mind the equations of motion ( 19)-( 20), the solution of Eq. ( 24) is [START_REF] Lawden | Optimal Trajectories for Space Navigation[END_REF]:

λ v = c v (25)
where c = 0 is a constant parameter. The sign of c depends on the transversality condition. When the problem is to maximizing the final specific mechanical energy E, the transversality condition is [START_REF] Bryson | Applied Optimal Control[END_REF][START_REF] Stengel | Optimal Control and Estimation[END_REF]:

λ v | t f = ∂E ∂v t f = v| t f (26) 
If, instead, the control problem aims at minimizing the value of F n , (equivalently, minimizing E at a given t f ), the transversality condition becomes:

λ v | t f = - ∂E ∂v t f = -v| t f (27) 
Comparing Eqs. ( 25), ( 26) and ( 27), one concludes that the primer vector satisfies the following relationships:

λ v =            v if F n = F max n -v if F n = F min n (28)
where

F max n (F min n ) is the maximum (minimum) value of F n .
We are now in a position to obtain the optimal steering law as a function of the primer vector direction. From Pontryagin's maximum principle, the optimal control law τ (t) is such that, at any time,

the Hamiltonian H of Eq. ( 21) is an absolute maximum. Because H is linear in the control variable τ , a bang-bang control law is optimal [START_REF] Stengel | Optimal Control and Estimation[END_REF]. According to [START_REF] Lawden | Optimal Trajectories for Space Navigation[END_REF] the result is:

τ =        1 if v • r > 0 0 if v • r < 0 when F n = F max n ( 29 
)
and

τ =        0 if v • r > 0 1 if v • r < 0 when F n = F min n (30) 
The previous relationships state that when F n = F max n , the sail must provide a propelling thrust as long as the sailcraft moves away from the Sun and that the thrust must be set to zero when the sailcraft approaches the Sun. The opposite happens when F n = F min n (the thrust is set to zero when the sailcraft moves away and is set on when it approaches the Sun). Note that Eq. ( 29) is a special case of the optimal control law for both an ideal sail model [START_REF] Sauer | Optimum solar-sail interplanetary trajectories[END_REF], and a solar sail with optical force model [START_REF] Dachwald | Impact of optical degradation on solar sail mission performance[END_REF]Mengali and Quarta, 2005b,c;Dachwald et al., 2006a).

Mission applications

Having found the steering law that either maximizes or minimizes F n , it is now possible to apply the above results for analyzing some specific mission scenarios.

Minimum performance to escape

As a first example, consider an escape mission from the Solar System. For a given switching strategy, that is, for a given value of F n , the problem is to find the value of lightness number β = β esc , that allows a sailcraft to reach a parabolic orbit within n maneuvers. The condition a n → ∞ (parabolic orbit) corresponds to the value of β such that the denominator of Eq. ( 14) vanishes, viz.

β esc 1 2 a 0 F n (31)
Clearly, for a given n, the value of β esc corresponds to

F n = F max n
. Also note that the minimum value of β to reach an escape condition is obtained when the last trajectory arc is a propelled arc (i.e., n is odd). In fact, as previously stated, a P-C maneuver produces a decrease of the semimajor axis. Therefore, the fulfilment of the condition a n → ∞ with a minimum value of β takes place necessarily when the semimajor axis increases, that is, with a C-P maneuver.

The optimal control law (29) implies that a C-P maneuver is performed at the orbit perihelion, while a P-C maneuver occurs at the orbit aphelion. Therefore, according to [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF], the optimal sequence of maneuvering points ν i = ν ⋆ i is:

ν ⋆ i =          0 if i is even π if i is odd for i = 0, 1, . . . , (n -1) (32) 
From Eq. ( 18), the maximum value of F k , or

F max k F k (ν ⋆ i ), is: F max k = k-1 i=0 (-1) i a i [1 -(-1) i e i ] ( 33 
)
where a i and e i are obtained from Eqs. ( 14) and ( 16) by symbolically substituting k with i. For example, assuming k = 4, a recursive application of Eqs. ( 14), ( 16) and (33) yields

a 1 = p 0 (1 -β) (1 + e 0 ) (1 -e 0 -2 β) , a 2 = p 0 (1 -e 0 -2 β) (1 + e 0 + 2 β) a 3 = p 0 (1 -β) (1 + e 0 + 2 β) (1 -e 0 -4 β) , a 4 = p 0 (1 -e 0 -4 β) (1 + e 0 + 4 β) (34) 
and

e 1 = β + e 0 1 -β , e 2 = e 0 + 2 β , e 3 = 3 β + e 0 1 -β , e 4 = e 0 + 4 β (35)
The particular structure of the above equations provides an immediate generalization to a generic value of k ≥ 1. The result is:

a k =                p 0 (1 -β) (1 -β) 2 -(e 0 + k β) 2 if k is odd p 0 1 -(e 0 + k β) 2 if k is even (36)
and

e k =            e 0 + k β 1 -β if k is odd e 0 + k β if k is even (37)
In addition, the recursive substitution of Eqs. ( 36) and (37) into Eq. ( 33) yields

F max k =              k (2 e 0 + k β) + 2 -β 2 a 0 (1 -e 2 0 ) if k is odd k (2 e 0 + k β) 2 a 0 (1 -e 2 0 ) if k is even (38) 
The minimum lightness number β ⋆ esc min (β esc ) in a trajectory constituted by n arcs, is found by substituting Eq. ( 38) (with k = n, β = β esc and n odd) into Eq. ( 31) and solving for β esc . The result is

β ⋆ esc = 1 -e 0 n + 1 (39)
Equation ( 39) links in a simple and effective way the minimum sailcraft performance required to reach an escape condition with the eccentricity of the parking orbit e 0 and the number of trajectory arcs n. Note that the same result can be found also from Eq. ( 36) (with k = n and n odd), by setting the denominator to zero.

The lack of dependence on a 0 in Eq. ( 39) implies that the minimum performance is related to the orbit shape only. This extends the results found by Mengali and Quarta (2009a) for a spacecraft subjected to a constant radial thrust. Finally, note that for a circular parking orbit (e 0 = 0) and a single propelled arc (n = 1), Eq. ( 39) provides β ⋆ esc = 1/2, in accordance to the solution originally found by [START_REF] Mcinnes | Solar Sailing: Technology, Dynamics and Mission Applications[END_REF].

The presence of n in the denominator of Eq. ( 39) suggests the possibility of a reduction of β esc at will, by simply increasing the number of trajectory arcs. Although this is in principle true, there are, however, a couple of constraints that must be taken into account. On one side an increase of n implies a corresponding increase in the total flight time ∆t esc , that is, the time interval between the first and the last maneuver.

In fact, ∆t esc is simply equal to the sum of the half-orbital periods ∆t k , with k = 1, 2, . . . , (n -1), of the elliptic arcs that constitute the trajectory between the first and the last maneuver. Accordingly:

∆t esc = n-1 k=1 ∆t k = π n-1 k=1 a 3 k µ ⊙ (40)
where a k is given by Eq. ( 36).

In addition, an increase of n tends to reduce the minimum perihelion distance from the Sun. In fact, the perihelion of any arc is r p k = p k /(1 + e k ), and from Eqs. ( 15) and (37) it may be verified that the perihelion distance decreases monotonically as long as k is increased. Therefore, the total trajectory perihelion distance is obtained in correspondence of the last C-P maneuver (that is, when k = n -1 and n is odd). The result is

r p = p 0 β (n -1) + 1 + e 0 (41) 
Note that, when β = β ⋆ esc , Eq. (41) yields

r p = p 0 (n + 1) 2 (n + e 0 ) (42) 
In particular, in the limit as n → ∞, the perihelion radius reduces to

lim n→∞ r p = p 0 2 r pmin (43)
which corresponds to the minimum theoretical value of perihelion distance reachable during an optimal escape trajectory.

The practical consequence of Eq. ( 42) is that there exists an explicit relationship between the number of arcs n and the maximum temperature experienced by the sail during the mission [START_REF] Rowe | Thermal radiative properties of solar sail film materials[END_REF][START_REF] Stimpson | Thermal control of a solar sail[END_REF]. In fact, using the model discussed in [START_REF] Mengali | Solar sail near-optimal circular transfers with plane change[END_REF] and [START_REF] Dachwald | Solar sail trajectory optimization for the solar polar imager (spi) mission[END_REF], the maximum sail equilibrium temperature is given by

Θ max = Θ r ⊕ r p ( 44 
)
where r ⊕ 1 AU and Θ 263.56 K is a reference temperature depending on the optical properties of the reflecting material [START_REF] Mcinnes | Solar Sailing: Technology, Dynamics and Mission Applications[END_REF]. Because during the mission the sail temperature cannot exceed a given sail film maximum tolerable limit Θ lim [START_REF] Mengali | Solar sail near-optimal circular transfers with plane change[END_REF], upon combining Eqs. ( 42)

and ( 44) one obtains the following relationship involving an upper limit on n:

n ≤ ⌊f ⌋ with f 2 r ⊕ e 0 Θ 2 -p 0 Θ 2 lim p 0 Θ 2 lim -2 r ⊕ Θ 2 (45)
where ⌊•⌋ is the floor function.

Recall that the previous expressions for the total flight time, the minimum perihelion distance, and the maximum sail temperature are all obtained under the assumption of minimum value of lightness number necessary to reach an escape condition. Accordingly, ∆t esc , r p and Θ max can be thought of as being the outputs of the optimization process whose performance index is β. In the following example Eqs. ( 40), (42), and (44) will be used to check that the simulation results meet the typical mission constraints.

Assuming a parking orbit equal to the Earth's heliocentric orbit, that is, a 0 = a ⊕ 1 AU and e 0 = e ⊕ 0.01671, with the aid of the previous relationships the results summarized in Table 1 are obtained. In this and all of the examples discussed below the total mission time is constrained to not exceed 15 years.

The information summarized in Table 1 allows one to find a compromise solution between the flight time and the minimum lightness number required to obtain an escape from the Solar System with a sailcraft deployment on a parabolic Earth-escape trajectory, that is, with zero hyperbolic excess energy with respect to the planet. Using a limit temperature Θ lim = 513.15 K [START_REF] Dachwald | Solar sail trajectory optimization for the solar polar imager (spi) mission[END_REF], the temperature constraint does not affect the sailcraft trajectory. In fact, from Eq. ( 43) the minimum peri- helion orbit is always greater than p 0 /2 = 0.5 AU. The only active constraint is therefore the maximum time necessary to reach an escape condition. Assuming for example ∆t esc < 2 years, from Table 1 one concludes that n = 3 and the minimum lightness number is β ⋆ esc ≃ 0.2458. This result has been confirmed by numerical simulations, by integrating the equations of motion with the optimal control law (29) in the form:

n β ⋆ esc a c r p Θ max ∆t esc [mm/s 2 ] [AU] [K] [
a r =            β ⋆ esc µ ⊙ r 2 if ṙ ≥ 0 0 if ṙ < 0 (46)
Note, in passing, that Eq. ( 46) coincides with the locally optimal control law, that is, the control law that maximizes the time derivative of the specific mechanical energy [START_REF] Macdonald | Analytical control laws for planet-centered solar sailing[END_REF][START_REF] Macdonald | Heliocentric solar sail orbit transfers with locally optimal control laws[END_REF]Mengali andQuarta, 2004, 2005a). The simulation results for n = 3 have been summarized in Fig. 3. In the figure the specific mechanical energy E (which is made dimensionless with its initial value E 0 -µ ⊙ /(2 a 0 )) during the propelled arcs is calculated by taking into account the reduced gravitational parameter, that is:

E =                  v 2 2 - µ ⊙ r when ṙ ≥ 0 v 2 2 - µ ⊙ r when ṙ < 0 ( 47 
)
where v is the sailcraft velocity magnitude. The specific mechanical energy, which has a stepwise behaviour, increases during any C-P maneuver. Note the consistency between the results of shown in Fig. 3 regarding the flight time (∆t esc ≃ 1.849 years) and the perihelion radius (r p ≃ 0.66 AU).

The sailcraft trajectory is actually a sequence of conic arcs, as shown in Fig. 4.

As a second example, consider now the escape problem from the heliocentric Mercury's orbit (a 0 = a ≃ 0.387 AU and e 0 = e ≃ 0.2056). This example allows one to investigate the impact of the starting orbit eccentricity and the perihelion distance on the mission performance. However, we explicitly maintain that a direct comparison with the previous example (escape from an Earth's parking orbit) is not possible, as the following results do not take into account the transfer time from Earth's to Mercury's orbit.

From Table 2, the optimal escape strategy requires a single maneuver (n = 1), otherwise the sail film would be exposed to a temperature greater than the limit temperature of 513.15 K. For example, assuming n = 11, the minimum lightness number required to reach an escape condition is β ⋆ esc ≃ 0.066 only, see Eq. ( 39), and the total flight time is about 3.7 years. However, the corresponding maximum temperature is Θ max ≃ 591.5 K and the resulting trajectory is rather complex, as shown in Fig. 5. Note that, as a consequence of Eq. ( 15), for all of the conic arcs the semilatus rectum is constant and, accordingly, all the arcs intersect at two points. As previously pointed out, an increase of the number of trajectory arcs implies a decrease of both the minimum perihelion distance and the minimum characteristic acceleration required to attain an escape condition. Such a behavior is essentially due to the substantial increase of radial acceleration that a sailcraft experiences when it approaches the Sun. For comparative purposes, it is possible to calculate the performance of a CRT spacecraft with constant thrust using the mathematical model discussed in [START_REF] Quarta | Optimal switching strategy for radially accelerated trajectories[END_REF]. It can be verified that, the total flight time being the same, the characteristic acceleration required by a solar sail much smaller than that of a CRT spacecraft. For example, assuming a flight time of 3.7012 years, a CRT spacecraft requires a characteristic acceleration a c = 1.162 mm/s 2 to reach an escape condition, against about 0.4 mm/s 2 of a solar sail spacecraft, see Tab. 2.

β ⋆ esc a c r p Θ max ∆t esc [mm/s 2 ] [AU] [K] [years] 1 0.

Minimum performance to reach a given ballistic orbit

As a second scenario, consider now a mission whose aim is to reach a final Keplerian orbit with a given (finite) value of semimajor axis a f > 0, starting from a parking orbit with semimajor axis a 0 and eccentricity e 0 ∈ [0, 1). The problem here is to find the minimum value of β required to accomplish such a mission. Recall from Eqs. ( 14) and ( 16) that the final orbit eccentricity is univocally obtained as a function of a f . Assume that the (final) n-th trajectory arc starts with a P-C maneuver and that the sailcraft, once reached the final orbit, jettisons the propulsion system. This scenario corresponds to a transfer orbit constituted by an even number n of elliptical arcs. Recalling from Eq. ( 15) that p f = p 0 , the final eccentricity is

e f = 1 - p 0 a f (48) 
Therefore, the final aphelion distance r a is:

r a = a f 1 + 1 - p 0 a f (49) 
Note that r a increases monotonically with increasing a f . As a result, the minimum lightness number necessary to obtain a given a f corresponds to the minimum value required to reach a given aphelion distance r a . In particular, Eq. ( 49) can be used to express a f as a function of r a in a dimensionless form.

In fact, solving Eq. ( 49) for a f , yields:

a f p 0 = (r a /p 0 ) 2 2 r a /p 0 -1 (50) 
The value of β required to fulfil the sailcraft transfer is obtained from Eq. ( 14) by setting a n = a f and choosing an even value of n. The result is:

β a f = 1 -a 0 /a f 2 a 0 F n (51) 
As in the previous escape case, the lightness number is a function of F n and, therefore, it depends on the choice of the n control parameters ν i , see Eq. ( 18). Since the lightness number is, by definition, a positive parameter, from Eq. ( 51) the minimum (superscript ⋆) lightness number β a f necessary to complete the transfer within n arcs is

β ⋆ a f =                1 -a 0 /a f 2 a 0 F max n if a f > a 0 1 -a 0 /a f 2 a 0 F min n if a f < a 0 (52)
where F max n is given by Eq. ( 38) with k = n. Also recall that F min n corresponds to the minimum value of F n with respect to the n control parameters ν i .

The expression for F min n is found by selecting the perihelion distance for a P-C maneuver and, viceversa, the aphelion for a C-P maneuver, see Eq. ( 18). Such a control law, can be thought of equivalent to the symmetric counterpart of the previous strategy required to obtain F max n . Using the same approach as that employed to obtain F max n [see Eq. ( 38)], the expression of F min n is found to be:

F min n =                  n (n β -2 e 0 ) 2 a 0 (1 -e 2 0 )
if n is even

n (n β -2 e 0 ) + 2 -β 2 a 0 (1 -e 2 0 ) if n is odd (53)
Note that, if a f < a 0 , Eq. ( 52) implies that F min n < 0. From Eq. ( 53) this is possible only provided that

β ⋆ a f ∈ (0, 2 e 0 /n).
Finally, substituting ( 38) and ( 53) (with β = β ⋆ a f ) into ( 52) and solving for β ⋆ a f , yields:

β ⋆ a f =                a f (a f -p 0 ) -a f e 0 n a f if a f > a 0 a f e 0 -a f (a f -p 0 ) n a f if a f < a 0 (54) 
from which one concludes that the minimum value of a f cannot be less than p 0 . In particular, if a f = p 0 , Eq. ( 48) states that the final orbit is circular with a radius equal to p 0 .

If, instead, a f > a 0 , an increase of n implies a corresponding decrease of β ⋆ a f , in accordance to Eq. ( 54). Similarly to the previously discussed case of mission escape, an increase of n also increases the total mission time and decreases the perihelion distance r p . The latter can be obtained from the following expression:

r p = n p 0 a f n a f (1 + e 0 ) -(n -2) a f e 0 + (n -2) a f (a f -p 0 ) (55) 
The above results can be used to investigate, for example, the minimum performance necessary to reach a heliocentric distance equal to the semimajor axis of Mars' orbit (r a = a ♂ ≃ 1.523 AU) or to the semimajor axis of Jupiter's orbit (r a = a ≃ 5.203 AU), starting from an Earth's heliocentric orbit (a 0 = a ⊕ and e 0 = e ⊕ ). These examples are representative of flyby missions towards an outer planet under the assumption that both the inclination and the eccentricity of the target planet orbit are neglected.

The mission performance for these two cases are summarized in Tables 3 and4 The tables show that although in both cases the minimum perihelion distance is tolerable, unfortunately the flight times for a mission to Jupiter are rather long. In fact the optimal trajectory (that is, with a minimum value of β) when n = 2 needs a flight time of about ∆t a f = 3.5 years with a lightness number of β ⋆ a f = 0.395 (a c ≃ 2.34 mm/s 2 ). The Mars case is much more favorable, as the flight time with n = 2 is 0.77 years only, and a moderate lightness number equal to β ⋆ a f = 0.1634 (a c ≃ 0.97 mm/s 2 ) is necessary.

The optimal trajectory for a Mars flyby, with n = 2 and n = 8 is shown in Fig. 6. Note that if n = 2, see Fig. 6(a), the sailcraft transfer is close to a more familiar circle-to-circle Hohmann transfer (recall that e ⊕ ≪ 1). According to [START_REF] Mcinnes | Orbits in a generalized two-body problem[END_REF], when n = 2 the sailcraft trajectory shows one propelled arc only, which connects the initial and final circular orbits in a quasi-Hohmann fashion. In fact, from Eqs. ( 50) and ( 54), the corresponding lightness number β ⋆ a f ≃ (1 -a 0 /a f )/2 is the minimum value required to put the aphelion of the transfer trajectory on the target circular orbit. This corresponds to obtaining, at the end of the last propelled arc, a flyby with hyperbolic excess speed v ∞ (with respect to the target planet)

given by:

v ∞ = µ ⊙ r a - √ µ ⊙ p 0 r a (56) 
When the number of arcs increases, see Fig. 6(b) where n = 8, the transfer trajectory becomes more involved but the aphelion still lies on the final target orbit. Note that the change from n = 2 to n = 8 in an Earth-Mars flyby mission, entails a saving of about 75% in the lightness number and an increase of 410% in the flight time, see Table 3. The same reduction in β ⋆ a f (75%) occurs in an Earth-Jupiter flyby mission, see Figure 7, when the strategy switches from n = 2 to n = 8, whereas the flight time doubles.

A further interesting employment of the above theory is given by the creation of an orbital resonance with the departure orbit. Resonant orbits can be used for scientific purposes or to generate multiple flyby maneuvers with Earth. An example is shown in Table 5, which summarizes the optimal performance required to reach a 1:2 resonant orbit, having a semimajor axis equal to a f = 3 √ 4 a ⊕ = 1.5874 AU. The resulting resonant orbit and the transfer trajectory towards that orbit are illustrated in Fig. 8.

Conclusions

The dynamics of a sailcraft subjected to a modulated radial thrust, whose magnitude varies as the inverse square distance from the primary body, have been thoroughly studied. When the thrust is on, the sailcraft experiences a gravitational force whose magnitude is reduced with respect to the local solar gravity. As a result, the sailcraft trajectory is a sequence of either propelled or ballistic conic arcs. The trajectory analysis has been performed in an optimal framework by maximizing or minimizing a suitable scalar performance index. The mathematical structure of the problem guarantees the achievement of some simple analytical relationships that can be used effectively to find compromise solutions between the required maximum thrust level to accomplish a given mission and the total flight time. In particular, the above mathematical model has been applied to a solar sail spacecraft and different mission scenarios have been investigated. For the escape trajectory problem, some analytical relationships are found that link the number of trajectory arcs with the minimum required lightness number, the flight time, and the perihelion distance. In addition, the minimum performance necessary to reach a ballistic arc with a given value of semimajor axis has been discussed. The resulting steering law has been applied to study flyby missions to outer planets and to generate Earth resonant Keplerian orbits. The obtained results confirm that a modulated radial thrust is superior with respect to a continuous radial thrust strategy, and the performance improvements can be calculated analytically.

Fig. 1

 1 Fig.1Sailcraft orientation during a propelled arc (solid line) and a coasting arc (dashed line).

Fig. 3

 3 Fig.3Simulation results for a Solar System escape mission with n = 3, a 0 = a⊕ and e 0 = e⊕ (grey regions correspond to propelled arcs).

Fig. 4

 4 Fig. 4 Solar System escape trajectory from an Earth's orbit with n = 3 and β = β ⋆ esc = 0.2458 (coasting arcs in dotted line, and propelled arcs in solid line).
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Fig. 5

 5 Fig. 5 Solar System escape trajectory from Mercury's orbit with n = 11 and β = β ⋆ esc = 0.066 (coasting arcs in dotted line, and propelled arcs in solid line).

Fig. 6 Fig. 7

 67 Fig. 6 Optimal trajectory for a Mars flyby (coasting arcs in dotted line, and propelled arcs in solid line).

Fig. 8

 8 Fig. 8 Transfer trajectory to reach a 1:2 Earth resonant orbit (coasting arcs in dotted line, and propelled arcs in solid line).

Table 1

 1 Optimal performance for a Solar System escape starting from an Earth's parking orbit.
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 1 
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Table 2

 2 Optimal performances for a Solar System escape starting from the Mercury's heliocentric orbit.

  as a function of n.

	n	β ⋆ a f	a c	r p	Θ max	∆t a f
			[mm/s 2 ]	[AU]	[K]	[years]
	2 0.1634	0.9692	0.9833 265.8 0.7669
	4 0.0817	0.4846	0.8471 286.3 1.8013
	6 0.0545	0.3231	0.8097 292.8 2.8584
	8 0.0409	0.2423	0.7923 296.1 3.9209
	10 0.0327	0.1938	0.7821 298.0 4.9855
	12 0.0272	0.1615	0.7755 299.2 6.0512
	14 0.0233	0.1385	0.7709 300.1 7.1174
	16 0.0204	0.1211	0.7674 300.8 8.1840
	18 0.0182	0.1077	0.7647 301.3 9.2508
	20 0.0163	0.0969	0.7626 301.8 10.3179
	22 0.0149	0.0881	0.7609 302.1 11.3850
	24 0.0136	0.0808	0.7595 302.4 12.4522
	26 0.0126	0.0746	0.7583 302.6 13.5195
	28 0.0117	0.0692	0.7572 302.8 14.5869

Table 3

 3 Optimal performances for a Mars flyby starting from an Earth's heliocentric orbit (ra = 1.523 AU and a f = 1.133 AU).

	n	β ⋆ a f	a c	r p	Θ max	∆t a f
			[mm/s 2 ]	[AU]	[K]	[years]
	2 0.3956	2.3457	0.9833 265.8 3.4986
	4 0.1978	1.1729	0.7079 313.2 4.3653
	6 0.1319	0.7819	0.6474 327.5 5.7625
	8 0.0989	0.5864	0.6209 334.4 7.2993
	10 0.0791	0.4691	0.6060 338.5 8.8985
	12 0.0659	0.3910	0.5965 341.2 10.5317
	14 0.0565	0.3351	0.5899 343.1 12.1856
	16 0.0494	0.2932	0.5850 344.5 13.8528

Table 4

 4 Optimal performances for a Jupiter flyby starting from an Earth's heliocentric orbit (ra = 5.203 AU and a f = 2.878 AU).

Table 5

 5 Optimal performance to reach a 1:2 Earth resonant orbit (a f = 1.5874 AU).
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