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Population dynamics with age structure are very important in demography and ecology since the

demographic parameters of most species change over their life (think of maturation and senescence) and

many phenomena (e.g. evolving life histories or kinship based social interactions such as cooperative

breeding) require the introduction of age for their proper description (e.g. [4]). Evolution in general

structured population is treated on a physical level of rigor in Durinx et al. [6] and Metz [20]. We

consider here a long time scale diffusion limit for the dynamics of a large purely age structured

population with closely matched birth an death rates. To this end we work out the technical details

necessary to apply the general results in Méléard and Tran [19] to this particular case. This way we

derive, starting from a logistic age-structured birth and death process, a Feller diffusion with drift and

diffusion coefficients that are averages over the age distribution.

1 Feller diffusion limit with averages on the age distribution

We assume the population’s initial size to be proportional to a parameter K, to be interpreted as the

area to which the population is confined, that we will let grow to infinity while keeping the density

constant by counting individuals with weight 1/K. The population is assumed to be well mixed and

its density is assumed to be limited by a fixed availability per unit of area of resources. Each individual

is characterized by its physical age and the population at time t is described by the following point

measure on R+

(1) XK
t =

1

K

NK
t∑

i=1

δAi(t)(da),

where Ai(t) denotes the age of the i
th oldest individual at time t and NK

t is the number of individuals

alive at time t. The space of finite measures MF (R+) is equipped with the topology of weak conver-

gence. Our processes live in the space of càdlàg paths D(R+,MF (R+)) equipped with the Skorokhod

topology. We scale time so that the life length and gestation length overall are inversely proportional

to K. To achieve this, we choose the per capita birth and death rates to be of the form:

bK(a) = K r(a) + β(a), dK(a,XK
t ) = K r(a) + η 〈XK

t , 1〉



where we denote by 〈µ, f〉 =
∫
fdµ the integral of a function f with respect to the measure µ. The

order K terms in the birth and death rates are the same, to maintain the demographic balance. We

assume that the function r(a) is positive, continuous, bounded and such that

(2)

∫ +∞

0
r(a)da = +∞.

In this model, the individuals compete for resources, which is described by the logistic death term

η 〈XK
t , 1〉 where η ≥ 0. The term β(a), which is assumed positive, continuous and bounded, can be

viewed as the growth rate of the population in absence of interaction. Finally, by choice of the time

scale, the scale for age-structure corresponds to an aging velocity equal to K, so that the physical age

of an individual born at time c is here a = K × (t − c). We shall refer to this combined scaling as

‘allometric’ after the alternative interpretation of the individual level relations as an inverse relation

between birth rate, and mean lifetime and weight.

The chosen scaling of the population process leads to a diffusion limit. For populations with

age structure, such limits have already been studied by various authors, but always for cases without

interaction and with techniques based on Laplace characterizations that can no longer be used in the

presence of a competition term (see e.g. [1, 2, 5, 7, 9, 16, 23]). Our results generalize [1, 2], where

averaging results are proved for the case where birth and death rates do not depend on age: in the

limit, these authors show that the age structure stabilizes to an exponential distribution. For cases

with both age and interactions, the literature has mainly focused on the case without our allometric

demography, proving convergence to a partial differential equation (PDE) (see e.g. [14, 21, 22]). In

particular, if the birth and death rates are both equal to r(a) we recover the classical McKendrick-von

Foerster PDE of demography [18, 10]:

(3) ∂tm(a, t) + ∂am(a, t) = −r(a)m(a, t), m(0, t) =

∫ +∞

0
r(a)m(a, t)da.

Let (Ω,A,P) be a probability space on which is defined a Poisson point measure Q(ds, di, dθ)

with intensity measure q(ds, di, dθ) = ds n(di) dθ, where ds and dθ are Lebesgue measures on R+ and

where n(di) is the counting measure on N. Following [22], we can use the measure Q(ds, di, dθ) to

define a stochastic differential equation (SDE) describing the evolution of the process 〈XK
t , f〉 for a

bounded and boundedly differentiable test function f(a) ∈ C1
b (R+,R):

(4) 〈XK
t , f〉 = 〈XK

0 , f〉+
∫ t

0
K〈XK

s , f
′〉ds + 1

K

∫

[0,t]×N×R+

1i≤K〈XK
s
−

,1〉

{
1θ≤Kr(Ai(s−))+β(Ai(s−))f(0)

− 1Kr(Ai(s−))+β(Ai(s−))<θ≤2Kr(Ai(s−))+β(Ai(s−))+η〈XK
s
−

,1〉f(Ai(s−))
}
Q(ds, di, dθ).

In the sequel, we denote by (Ft)t∈R+ the canonical filtration associated withQ and the initial conditions

(XK
0 )K≥1. When K tends to infinity, the aging velocity tends to infinity and simplification of the

allometric birth and death rates Kr(a) is not direct since births are nonlocal (age is reset to 0). The

idea is based on the observation that all terms of order K can be simplified when we compute the size

of the population. However, since the rates depend on age, we have to account for the limiting age

distribution.

Theorem 1.1. Assume that the following limit in probability holds:

lim
K→+∞

XK
0 (da) = m0(a)da, with sup

K∈N∗

E
(
〈XK

0 , 1〉3
)
< +∞.(5)

Then:

(i) the sequence of processes (〈XK
. , 1〉)K≥1 converges in distribution to the Feller diffusion:

(6) X̄t =

∫

R+

m0(a)da+

∫ t

0

(
β̂X̄s − ηX̄2

s

)
ds+

∫ t

0

√
2r̂X̄sdBs



where B is a standard real Brownian motion, β̂ =
∫
R+
β(a)m̂(a)da and r̂ =

∫
R+
r(a)m̂(a)da with:

(7) m̂(a) =
exp(−

∫ a
0 r(α)dα)∫ +∞

0 exp(−
∫ a
0 r(α)dα)da

.

(ii) for every t > 0, the sequence of measures (XK
t (da))K≥1 converges in distribution to X̄tm̂(a)da.

The proof of Theorem 1.1 is detailed in the next section. The theorem states that the age

distribution, as the fast component, stabilizes to a non-trivial equilibrium m̂(a) of the PDE (3), with

only the order K in (4) as birth and death rates. The slow component, the size of the population, is

then described by a Feller diffusion in which coefficients are averaged over m̂(a). The latter limit is

similar to the limit that was already derived for the case without age-structure by [3].

One use of the result is for the approximate calculation of extinction probabilities:

Proposition 1.2. For the diffusion (6):

(i) when η > 0, we have almost sure extinction in finite time.

(ii) when η = 0, P(∃t ∈ R+, X̄t = 0) = exp
(
− β̂

∫ +∞
0 m0(a)da/r̂

)
.

Proof. Notice that 0 is an absorbing point. When η > 0, we can prove almost sure extinction by

exhibiting a Lyapounov function (see [13, p.235] or [19]). For η = 0, we can then adapt the computation

of [13, p.236] and obtain that:

P(X̄t = 0) = exp
(
− eβ̂t

∫ +∞
0 m0(a)da

r̂(eβ̂t − 1)/β̂

)
.

Letting t→ +∞, we obtain the announced result. �

2 Proof of Theorem 1.1

The proof is divided into several steps. From (4) we see that for a test function f ∈ C1
b (R+,R) the

process:

Mf,K
t =〈XK

t , f〉 − 〈XK
0 , f〉 −

∫ t

0
〈Xs,Kf

′(.) +
(
Kr(.) + β(.)

)
f(0)−

(
Kr(.) + η〈XK

s , 1〉
)
f(.)〉ds,(8)

which can be written as an integral with respect to the compensated Poisson point measure of

Q(ds, di, dθ), is a local martingale started at 0. If we introduce τn = inf{t ≥ 0, 〈XK
t , 1〉 ≥ n},

then the process Mf,K
τn∧. is a square integrable martingale with predictable quadratic variation:

〈Mf,K〉t∧τn =

∫ τn∧t

0

(
〈XK

t , r(.)f
2(0) + r(.)f2(.) +

β(.)f2(0) + η〈XK
s , 1〉f2(.)

K
〉
)
ds.

As noticed before, the aging speed tends to infinity and it is difficult to keep track of the individual.

Moreover, births are non-local since the age of a new individual is always reset to 0, inducing an

asymmetry between an individual and its parent. If we consider the test function f ≡ 1, the derivative

with respect to age disappears and the allometric birth and death terms compensate each other. Thus:

M1,K
t = 〈XK

t , 1〉 − 〈XK
0 , 1〉 −

∫ t

0

(
〈XK

s , β〉 − η〈XK
s , 1〉2

)
ds(9)

defines a local martingale started at 0. The stopped processM1,K
τn∧. has predictable quadratic variation:

〈M1,K〉t∧τn =

∫ t∧τn

0

(
2〈XK

s , r〉+
〈XK

s , β〉+ η〈XK
s , 1〉2

K

)
ds.



As seen below, checking the tightness of the total mass processes (〈XK
. , 1〉)K≥1 is classical as soon as

moment estimates are proved. However, for the identification of the martingale problem satisfied by

the limiting values, we still need to tackle the age distribution as the rate β(a) depends on age.

1: Moment estimates. Under Assumptions (5), we will show by following [3] that

(10) sup
K∈N∗

sup
t≤T

E
(
〈XK

t , 1〉3
)
< +∞ and sup

K∈N∗

E
(
sup
t≤T

〈XK
t , 1〉2

)
< +∞.

Indeed:

〈XK
t , 1〉3 ≤ 〈XK

0 , 1〉3

+

∫ t

0

∫

N×R+

1i≤K〈XK
s
−

,1〉

[
1θ≤Kr(Ai(s−))+β(Ai(s−))

((
〈XK

s− , 1〉+
1

K

)3 − 〈XK
s− , 1〉

3
)

+1Kr(Ai(s−))+β(Ai(s−))<θ≤2Kr(Ai(s−))+β(Ai(s−))+η〈XK
s
−

,1〉

((
〈XK

s− , 1〉 −
1

K

)3 − 〈XK
s− , 1〉

3
)]
dQ.

Using that x3 − y3 = (x− y)(x2 + xy + y2), taking the expectation and using Gronwall’s lemma:

E
(
〈XK

t∧τn , 1〉3
)
= E

(
〈XK

0 , 1〉3
)

+E

(∫ t∧τn

0
ds

∫

R+

XK
s (da)

[
6r(a)〈XK

s , 1〉+ β(a)
(
3〈XK

s , 1〉2 +
3〈XK

s , 1〉
K

+
1

K2

)

− η〈XK
s , 1〉

(
3〈XK

s , 1〉2 −
3〈XK

s , 1〉
K

+
1

K2

)])

≤E
(
〈XK

0 , 1〉3
)
+

∫ t

0
C E

(
1 + 〈XK

s∧τn , 1〉3
)
ds ≤

(
E
(
〈XK

0 , 1〉3
)
+ CT

)
eCT

which is finite thanks to (5) and where C is a constant that does not depend on K nor on n. The

upper bound being independent of n, we necessarily have that limn→+∞ τn = +∞ a.s. By using

Fatou’s lemma we can get rid of the stopping time τn in the l.h.s. This proves the first part of (10).

For the second part, using (9) and Cauchy-Schwarz’ inequality:

sup
u≤t

〈XK
u∧τn , 1〉2 ≤3〈XK

0 , 1〉2 + 3 sup
u≤t

|M1,K
u∧τn |2 + 3T

∫ t

0
‖β‖2∞ sup

u≤s
〈XK

s , 1〉2 ds.

Taking the expectation and using Doob’s inequality, Gronwall’s lemma and the first estimate of (10)

completes the proof of (10). As a consequence, we can show that the martingales (8) and (9) are

square integrable martingales.

2: Tightness of the mass process. Thanks to (10), the family of marginal laws (〈XK
t , 1〉)K≥1,t∈[0,T ]

form a tight family of real random variables. Then, Aldous-Rebolledo criterion (see e.g. [15]) can be

checked for the predictable finite variation part of the semi-martingale 〈XK
. , 1〉 and for 〈M1,K〉. Let

(SK , TK)K be a sequence of stopping times such that for every K, SK ≤ TK ≤ T ∧ (SK + δ). Since

P

(∣∣∣
∫ TK

SK

(
〈XK

s , β〉 − η〈XK
s , 1〉2

)
ds
∣∣∣ > ε

)
≤δ
ε

(
‖β‖∞E

(
sup
t≤T

〈XK
s , 1〉

)
+ ηE

(
sup
t≤T

〈XK
s , 1〉2

))
,

which can be made smaller than ε by (10) and for δ small enough. A similar estimate is derived for

〈M1,K〉. Thus, the sequence (〈XK
. , 1〉)K≥1 is tight in D([0, T ],R+).

3: Tightness of the family of marginal laws (XK
t )K≥1,t∈[0,T ] in MF (R+). Modifying the

indicators in (4), it is possible to couple for each K the process XK with a process Y K without



competition where individuals give birth at rate K r(a) + β(a) and die with rate K r(a). All the

individuals in XK are present in Y K with independent and longer lifelengths. The lifelength of the ith

individual living at time t and born after time 0 is hence smaller than a random variable DK
i (t) whose

distribution is characterized by its survival function SK(ℓ) = exp
(
−
∫ ℓ
0 K r(Ku)du

)
. Since the aging

velocity is K the probability that an individual lives until age α is SK(α/K) = exp
(
−
∫ α
0 r(a)da

)
.

For an individual i alive at time 0, the remaining time it has to live can be dominated by a random

variable ∆K
i such that conditionally to the state at time 0:

P

(
∆K

i > ℓ
)
= exp

(
−
∫ ℓ

0
Kr(Ai(0) +Ku)du

)
.

Then for α, ε and n > 0:

P
(
XK

t ([0, α]c) > ε
)
≤P

( NK
t∑

i=1

1Ai(t)≥α > Kε, NK
t ≤ nK

)
+ P

(
NK

t > nK
)

≤P

( nK∑

i=1

1Di(t)≥α/K >
Kε

2

)
+

E
(
〈XK

t , 1〉
)

n
+ P

( NK
0∑

i=1

1Ai(0)+K∆K
i
≥α >

Kε

2

)
.(11)

The second term is upper bounded by ε/3 for sufficiently large n thanks to (10). For the first term,

using Bernstein’s inequality (see e.g. [12, p.241]):

P

( nK∑

i=1

1Di(t)≥α/K >
Kε

2

)
=P

( nK∑

i=1

{
1Di(t)≥α/K − SK

( α
K

)}
> K

{ε
2
− nSK

( α
K

)})

≤ exp

(
− K2(ε/2 − nSK(α/K)

)2

2
(
nK
4 + 2K(ε/2−nSK(α/K))

3

)
)

Choosing α = α(n) sufficiently large implies that (ε/2 − nSK(α/K)) > ε/4. Then, it is possible to

choose K0 = K0(α, n) sufficiently large, so that the r.h.s. is upper bounded by ε/3 for all K ≥ K0.

For the third term of (11)

(12) P

( NK
0∑

i=1

1Ai(0)+K∆K
i ≥α >

Kε

2
|XK

0

)

≤ P

( NK
0∑

i=1

{1Ai(0)+K∆K
i ≥α − 1 ∧ e−

∫ α

Ai(0)
r(a)da} > K{ε

2
−
∫

R+

1 ∧ e−
∫ α
a

r(u)duXK
0 (da)} |XK

0

)

Let φ(α) ≤ α be such that φ(α) and
∫ α
φ(α) r(a)da tend to infinity when α → +∞. Since we have the

following limit in probability

lim
K→+∞

∫

R+

1 ∧ e−
∫ α

a
r(u)duXK

0 (da) =

∫

R+

1 ∧ e−
∫ α

a
r(u)dum0(a)da

≤
∫

R+

(
1[φ(α),+∞)(a) + e

−
∫ α

φ(α)
r(u)du

)
m0(a)da

where the rhs tends to 0 when α → +∞, then for α and for K ≥ K1 = K1(α) sufficiently large, we

can upper bound the rhs of (12) by ε/3 thanks to Bernstein’s inequality and by proceeding as for the

previous term.

Note also that since the upper bound does not depend on t ∈ [0, T ] the choices of α and K0 are

independent of t ∈ [0, T ]. This provides the expected tightness.



4: Tightness of the family of measures (ΓK(dt, da) = XK
t (da)dt)K≥1. We follow the approach

of Kurtz [17]. Since we have to deal with the fast component in D([0, T ],MF (R+)), we forget that

we deal with processes and rather consider the measures (ΓK)K≥1 in MF ([0, T ] × R+). We have for

α > 0:

ΓK
(
([0, T ] × R+) \ ([0, T ] × [0, α])

)
= E

(∫ T

0
XK

t ([0, α]c)dt
)

≤
∫ T

0

(
εP
(
XK

t ([0, α]c) ≤ ε
)
+ E

(
〈XK

t , 1〉1XK
t ([0,α]c)>ε

))
dt

≤Tε+
∫ T

0
E
(
〈XK

t , 1〉2
)1/2

P
(
XK

t ([0, α]c) > ε
)1/2

dt ≤ Tε+ C(T )
√
ε.

This proves the tightness of (ΓK)K≥1 in MF ([0, T ] × R+).

5: Identification of the limiting values of (ΓK)K≥1. The sequence (ΓK , 〈XK
. , 1〉)K∈N∗ is tight in

MF ([0, T ] × R+)× D([0, T ],R+) as each of its components are. By Prohorov’s theorem (see e.g. [8])

we can extract a subsequence that converges in distribution to a limiting value (Γ, X̄) which belongs

to MF ([0, T ]× R+)× C([0, T ],R). Our purpose is now to characterize the latter.

Let ϕ(s) be a continuous bounded function. From the definition of ΓK we have for every t ∈ [0, T ]:

∫ t

0

∫

R+

ϕ(s)ΓK(da, ds) =

∫ t

0
ϕ(s)〈XK

s , 1〉ds.

By letting K tend to infinity, we obtain that the marginal measure of Γ(da, ds) is X̄sds and there

exists a transition probability γs(da) such that Γ(da, ds) = γs(da)X̄sds. Recall that for a test function

f ∈ C1
b (R+,R) we have (8). Let us write:

Mf,K
t

K
= AK

t +BK
t

AK
t =

〈XK
t , f〉 − 〈XK

0 , f〉
K

+

∫ t

0

∫

R+

(β(a)
K

f(0)− η〈XK
s , 1〉
K

f(a)
)
XK

s (da)ds

BK
t =

∫ t

0

∫

R+

(
f ′(a) + r(a)(f(0)− f(a))

)
XK

s (da)ds.

From (10), E(supt≤T A
K
t ) → 0 when K → +∞. Since Ξ 7→

∫ t
0

∫
R+

(
f ′(a)+ r(a)(f(0)− f(a))

)
Ξ(da, ds)

is continuous at Γ, the last term converges in distribution for every t ∈ [0, T ] towards

(13) M̄f
t =

∫ t

0

∫

R+

(
f ′(a) + r(a)(f(0)− f(a))

)
X̄sγs(da)ds.

Let Hs ∈ Fs be a bounded random variable. Since Mf,K is a square integrable martingale, we have

uniform integrability of the families (Mf,K
t /K)K≥1 for every t ∈ [0, T ]. Hence:

E
(
M̄f

t Hs

)
=E

(
lim

K→+∞

Mf,K
t

K
Hs

)
= lim

K→+∞
E

(Mf,K
t

K
Hs

)
= lim

K→+∞
E

(Mf,K
s

K
Hs

)
= E

(
M̄f

s Hs

)
.

This shows that M̄f is a martingale, but since (13) gives that it is also continuous with finite variation,

it is indistinguishable from the null process. Hence almost-surely and dt-almost everywhere:

(14)

∫

R+

(
f ′(a) + r(a)(f(0)− f(a))

)
X̄tγt(da) = 0.



Choosing in (14) a test function of the form f(a) = ϕ(0) +
∫ a
0 ϕ(α)dα, with continuous and bounded

ϕ, gives that:

X̄t〈γt, ϕ〉 = X̄t

∫

R+

ϕ(α)
( ∫ +∞

α
r(a)γt(da)

)
dα.

If X̄t = 0, then Γ(da, ds) = 0. On {X̄t > 0}, the above equality tells us that γt(da) is absolutely

continuous with respect to the Lebesgue measure with a density m̂t(a) that satisfies for all a ∈ R+,

m̂t(a) =
∫ +∞
a r(α)m̂t(α)dα. It results that a 7→ m̂t(a) is infinitely differentiable and solves ∂am̂t(a) =

−r(a)m̂t(a) which characterizes the stationary solution of the McKendrick-von Foerster equation (3).

The solution of this equation is of the form m̂t(a) = m̂t(0) exp(−
∫ a
0 r(α)dα), and since γt(da) is a

probability measure:

1 =

∫ +∞

0
m̂t(a)da = m̂t(0)

∫ +∞

0
e−

∫ a

0
r(α)dαda ⇔ m̂t(0) =

1∫ +∞
0 exp(−

∫ a
0 r(α)dα)da

.

This provides (7) and all the limiting values of (ΓK)K≥1 are of the form X̄tm̂(a)da where X̄ is a

limiting distribution of (XK)K≥1. Our purpose is now to identify X̄ as the unique strong solution

of the diffusion (9) so that the sequence (ΓK)K≥1 converges in distribution to its unique limiting value.

6: Identification of X̄. Let us consider for n ∈ N
∗, the times t1 < ...tn < s < t and the continuous

bounded functions ψ1, . . . , ψn. We introduce the following map:

Ψs,t(Y ) =
[
Yt − Ys −

∫ t

s

(
β̂Ys − ηY 2

s

)
ds
]
ψ1(Yt1) . . . ψn(Ytn).

Since the limiting values of (〈XK
. , 1〉)K≥1 are necessarily continuous, Ψ is continuous at X̄ . We have:

Ψs,t(〈XK
. , 1〉) = ψ1(〈XK

t1 , 1〉) . . . ψn(〈XK
tn , 1〉)

[
AK

s,t +BK
s,t

]

AK
s,t =

∫ t

s

(
〈XK

s , β〉 − β̂X̄s

)
ds, BK

s,t =

∫ t

s
η
(
〈XK

s , 1〉2 − X̄2
s

)
ds.

As β(a) is continuous and as ΓK converges to m̂(a)da X̄s ds, A
K
s,t converges to zero. Thanks to

(10), E(|AK
s,t|) → 0 when K → +∞. A similar result holds for E(|BK

s,t|) since X̄ is a limiting

value of 〈XK
. , 1〉. We deduce that for every s and t, E(|Ψs,t(〈XK

. , 1〉)|) → 0 and for all t, Mt =

X̄t −
∫
R+
m0(a)da −

∫ t
0

(
β̂X̄s − ηX̄2

s

)
ds is a martingale. To compute its bracket, we first apply Itô’s

formula to M , yielding that

(15) X̄2
t −

( ∫

R+

m0(a)da
)2 −

∫ t

0
2X̄s

(
β̂X̄s − ηX̄2

s

)
ds − 〈M〉t

is a martingale. Moreover, using Itô’s formula with (4), the following process is also a martingale:

〈XK
t , 1〉2 − 〈XK

0 , 1〉2 −
∫ t

0

∫

R+

(
(Kr(a) + β(a))

(
2〈XK

s , 1〉+
1

K

)

− (Kr(a) + η〈XK
s , 1〉)

(
2〈XK

s , 1〉 −
1

K

))
XK

s (da)ds.

which, by arguments similar to the ones above, implies that

(16) X̄2
t − X̄2

0 −
∫ t

0

[
2X̄s

(
β̂X̄s − ηX̄2

s

)
+ 2r̂X̄

]
ds



is a martingale. By identification of (15) and (16), 〈M〉t = 2r̂
∫ t
0 X̄sds, and it is classical to show that on

an enlarged filtration space, there exists a Brownian motion (Bt)t∈[0,T ] such that Mt =
∫ t
0

√
2r̂X̄sdBs.

Hence X̄ solves the Feller equation (6), for which strong uniqueness holds. 2
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[12] W. Härdle, G. Kerkyacharian, D. Picard, and A. Tsybakov. Wavelets, Approximation, and Statistical

Applications, volume 129 of Lecture Notes in Statistics. Springer, New York, 1987.

[13] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, volume 24. North-

Holland Publishing Company, 1989. Second Edition.

[14] P. Jagers and F. Klebaner. Population-size-dependent and age-dependent branching processes. Stochastic

Processes and their Applications, 87:235–254, 2000.

[15] A. Joffe and M. Métivier. Weak convergence of sequences of semimartingales with applications to multitype

branching processes. Advances in Applied Probability, 18:20–65, 1986.

[16] I. Kaj and S. Sagitov. Limit processes for age-dependent branching particle systems. Journal of Theoretical

Probability, 11(1):225–257, 1998.

[17] T.G. Kurtz. Averaging for martingale problems and stochastic approximation. In Springer, editor, Applied

stochastic analysis (New Brunswick, NJ, 1991), volume 177 of Lectures Notes in Control and Inform. Sci.,

pages 186–209, Berlin, 1992.



[18] A.G. McKendrick. Applications of mathematics to medical problems. Proc. Edin. Math.Soc., 54:98–130,

1926.
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