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EXPONENTIALITY OF FIRST PASSAGE TIMES OF

CONTINUOUS TIME MARKOV CHAINS

ROMAIN BOURGET, LOÏC CHAUMONT, AND NATALIA SAPOUKHINA

Abstract. Let (X,Px) be a continuous time Markov chain with finite or count-
able state space S and let T be its first passage time in a subset D of S. It is well
known that if µ is a quasi-stationary distribution relative to T , then this time is
exponentially distributed under Pµ. However, quasi-stationarity is not a necessary
condition. In this paper, we determine more general conditions on an initial distri-
bution µ for T to be exponentially distributed under Pµ. We show in addition how
quasi-stationary distributions can be expressed in terms of any initial law which
makes the distribution of T exponential. We also study two examples in branching
processes where exponentiality does imply quasi-stationarity.

1. Introduction

Let us denote by P (t) = {pij(t) : i, j ∈ S}, t ≥ 0 the transition probability of
a continuous time irreducible Markov chain X = {(Xt)t≥0, (Pi)i∈S}, with finite or
countable state space S and let Q = {qij : i, j ∈ S} be the associated q-matrix, that
is qij = p′ij(0). We assume that Q is conservative, that is

∑

j∈S qij = 0, for all j ∈ S,

and that X is not explosive. The transition probability (that will also be called the
transition semigroup) of X satisfies the backward Kolmogorov’s equation:

d

dt
pij(t) =

∑

k∈S

qikpkj(t) . (1.1)

Let D ⊂ S be some domain and define the first passage time by X in D by,

T = inf{t ≥ 0 : Xt ∈ D} . (1.2)

This work aims at characterizing probability measures µ on E = S \ D such that
under Pµ, the time T is exponentially distributed, that is, there exists α > 0, such
that:

Pµ(T > t) = e−αt . (1.3)

It is well known that when µ is a quasi-stationary distribution with respect to T ,
that is if

Pµ(Xt = i | T > t) = µi , for all i ∈ E and t ≥ 0, (1.4)
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then (1.3), for some value α > 0, follows from a simple application of the Markov
property, see [22] or [9] for example. Quasi-stationarity of µ holds if and only if µ
is a left eigenvector of the q-matrix of the process X killed at time T , associated to
the eigenvalue −α, see [24]. However, quasi-stationarity is not necessary to obtain
(1.3). Some examples of non quasi-stationary distribution µ such that (1.3) holds
are given later on in this paper.

Our work was first motivated by population dynamics, where it is often crucial
to determine the extinction time of a population or the emergence time of a new
mutant, see [25, 15, 6, 4] for example. In many situations, those times can be
represented as first passage times of Markov processes in some particular domain.
Then it is often much easier to find an initial distribution, under which this first
passage time is exponentially distributed than to compute its distribution under
any initial conditions.

Let us be more specific about applications to emergence times in biology which is
the central preoccupation of the authors in [4]. Adaptation to a new environment
occurs by the emergence of new mutants. In adaptation theory, emergence can be
described by the estimation of the fixation time of an allele in the population. We
may also imagine a parasite infecting a resistant or new host, a pathogen evading
chemical treatment, a cancer cell escaping from chemotherapy, etc. [15, 18, 30, 14].
An interesting and important point is to estimate the law of the time at which
these new mutant individuals emerge in the population, for example to estimate the
durability or the success probability of a new treatment or a new resistance. The
emergence problem has already been considered in the setting of branching processes
[20, 29, 30, 1], for multitype Moran models in [28, 10, 11], and for competition
processes, in [4]. In order to explain the latter case in more detail, let us recall that
a competition process is a continuous time Markov chain X = (X(1), . . . , X(d)) with
state space S = N

d, for d ≥ 2, whose transition probabilities only allow jumps to
certain nearest neighbors. Competition processes were introduced by Reuter [27] as
the natural extensions of birth and death processes and are often involved in epidemic
models [7, 14, 18]. In [4], the authors were interested in some estimation of the law
of the first passage time T , when an individual of type r, 1 ≤ r ≤ d, first emerges
from the population, that is

T = inf{t ≥ 0 : X
(r)
t = 1} .

Then varying the birth, mutation, migration and death rates, some simulations of
the law of the time T allowed us to conclude that the consideration of interactions
among two stochastic evolutionary forces, mutation and migration, can expand our
understanding of the adaptation process at the population level. In particular, it
showed under which conditions on mutation and migration rates, the pathogen can
adapt swiftly to a given multicomponent treatment.

This paper is organized as follows. In section 2, we establish a general criterion for
a measure µ to satisfy (1.3) and we study the connections between such measures and
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quasi-stationary or quasi-limiting distributions. Then, in the third section, we give
some sufficient conditions for (1.3) involving the special structure of the chain on a
partition of the state space E. In particular, Theorem 7 and its consequences allow us
to provide some examples where exponentiality may hold without quasi-stationarity.
An example of application in adaptation theory is provided in Subsection 4.2. The
fourth section is devoted to the presentation of some examples in the setting of
branching processes where exponentiality implies quasi-stationarity.

2. From exponentiality to quasi stationarity

We first introduce the killed process at time T , as follows:

XT
t =

{

Xt , if t < T ,
∆ , if t ≥ T ,

(2.1)

where ∆ is a cemetery point. Then XT is a continuous time Markov chain which is
valued in E∆ := E ∪ {∆}. Moreover if we define the killing rate by

ηi =
∑

j∈D

qij , (2.2)

then the q-matrix QT = (qTij) of XT is given by

qTij =







qij , i, j ∈ E
qi∆ = ηi , i ∈ E
q∆j = 0 , j ∈ E∆ .

(2.3)

From our assumptions, QT is obviously conservative and XT is non explosive. In
particular, QT is the q-matrix of a unique transition probability that we will denote
by P T (t) = (pTij(t))i,j∈E∆

, t ≥ 0, and which is expressed as

pTij(t) =







Pi(Xt = j, t < T ) , if i, j ∈ E,
Pi(t ≥ T ) , if i ∈ E and j = ∆,
1j=∆ , if i = ∆ and j ∈ E∆.

(2.4)

Then this semigroup inherits the Kolmogorov backward equation from (1.1):

d

dt
pTij(t) =

∑

k∈E∆

qTikp
T
kj(t) . (2.5)

Henceforth, all distributions ν on E∆ that will be considered will not charge the
state ∆, i.e. ν∆ = 0. In this section, we shall often consider initial distributions
µ = (µi)i∈E∆

for (XT
t ), on E∆ satisfying the following differentiability condition:

µP T (t) is differentiable and
d

dt
µP T (t) = µ

d

dt
P T (t), t > 0 . (2.6)

We extend the family of probabilities (Pi)i∈E to i = ∆, in accordance with the
definition of (P T (t)) and for each t ≥ 0, we define the probability distribution µ(t)
on E∆ as follows:

µi(t) = Pµ(X
T
t = i | T > t) , i ∈ E∆ . (2.7)

We define the vector δ by δi = 0, if i ∈ E and δ∆ = 1.
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Theorem 1. Let µ be a distribution on E∆.

(i) Assume that µ satisfies condition (2.6), then there is α > 0 such that Pµ(T >
t) = e−αt, for all t ≥ 0 if and only if

µ(t) is differentiable and µ′(t) = eαt(µQT + α(µ− δ))P T (t), t > 0. (2.8)

(ii) Assume that there is α > 0 such that Pµ(T > t) = e−αt, for all t ≥ 0, then
conditions (2.6) and (2.8) are equivalent.

(iii) When (2.8) is satisfied, the rate α may be expressed as

α =
∑

i∈E

ηiµi . (2.9)

Proof. Note that the condition Pµ(T > t) = e−αt is equivalent to Pµ(X
T
t = i, t <

T ) = e−αtµi(t). Therefore, since

Pµ(X
T
t = i) = Pµ(X

T
t = i, t < T ) + 1Ii=∆Pµ(t ≥ T ) ,

the transition function P T (t) of XT satisfies

µP T (t) = e−αtµ(t) + (1− e−αt)δ . (2.10)

Then from the differentiability condition (2.6), we see that µ(t) is differentiable and
from the Kolmogorov backward equation (2.5), we obtain

µ
d

dt
P T (t) = −αe−αtµ(t) + e−αtµ′(t) + αe−αtδ

= µQTP T (t) . (2.11)

Then from (2.10), we have e−αtµ(t) = µP T (t) − (1 − e−αt)δ and since δP T (t) = δ,
for all t ≥ 0, we see that equation (2.11) may be expressed as

µ′(t) = eαt(µQT + α(µ− δ))P T (t) , t ≥ 0 .

Conversely, if condition (2.8) is satisfied, then from (2.6), we can write equation
(2.11). Integrating this expression, we get (2.10) which implies that Pµ(T > t) =
e−αt, for all t ≥ 0. The first assertion of the theorem is proved.

Now if Pµ(T > t) = e−αt, for all t ≥ 0, then we have (2.10), so that if condition
(2.6) is satisfied, then µ(t) is differentiable and

d

dt
µP T (t) = −αe−αtµ(t) + e−αtµ′(t) + αe−αtδ . (2.12)

Moreover from the Kolmogorov backward equation and (2.12), we have µQTP T (t) =
−αe−αtµ(t) + e−αtµ′(t) + αe−αtδ, which is (2.8). The converse is easily derived from
similar arguments, so the second assertion is proved.

Then from equation (2.8), we obtain

lim
t→0

µ′(t) = (µQT + α(µ− δ))P T (0) . (2.13)

On the other hand, note that µ∆(t) = 0, for all t ≥ 0, so that in particular µ∆ =
µ∆(0) = 0 and limt→0 µ

′
∆(t) := µ′

∆(0) = 0. Finally, taking equality (2.13) at ∆ yields

µQT
∆ =

∑

i∈E∆

µiq
T
i∆ =

∑

i∈E

µiηi = µ′
∆(0)− α(µ∆ − δ∆) = α ,
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which proves the third assertion of the theorem.
�

Note that the equality in (2.8), once restricted to the set E can be simplified
as µ′(t) = eαtµ(QT + αI)P T (t), which highlights the importance of the operator
QT + αI. This also applies to the next results.

Remarks. 1. It is important to note that a distribution µ on E∆ may satisfy Pµ(T >
t) = e−αt, t ≥ 0, whereas (2.6) does not hold. Examples are given in the remark after
Theorem 7.
2. When E is finite, condition (2.6) is clearly satisfied. In the infinite case, this
condition may appear theoretical to some extend and sometimes difficult to check
when not much is known on the transition probability. However it is possible to
obtain quite simple conditions implying (2.6). For instance, observe that from (2.5),
for all i, j ∈ E∆ and t > 0,

∣

∣

∣

∣

d

dt
pTij(t)

∣

∣

∣

∣

≤
∑

k∈E∆

∣

∣qTikp
T
kj(t)

∣

∣

≤
∑

k∈E∆

|qTik|

= −2qTii . (2.14)

A sufficient condition for (2.6) to hold is then
∑

i∈E

qiµi < ∞ , (2.15)

where qi = −qTii . The latter condition is satisfied in particular when the qi’s are
bounded.

Recall definition (1.4) of quasi-stationarity. In our setting, it is equivalent to the
following statement: a distribution µ on E∆, is quasi-stationary if

µi = µi(t) , for all t ≥ 0 and i ∈ E∆. (2.16)

We will simply say that µ is a quasi-stationary distribution. Then, let us state the
following classical result, already mentioned in the introduction.

Theorem 2 ([26]). A distribution µ on E∆ is quasi-stationary if and only if the
equation

µQT = −αµ+ αδ , (2.17)

holds for some α > 0. (Note that (2.17) is equivalent to µQT
i = −αµi, for all i ∈ E.)

In [26] it is proved that (2.17) is equivalent to the fact that P T satisfies the Kol-
mogorov forward equation, which is the case under our assumptions, that is

d

dt
pTij(t) =

∑

k∈E

pTik(t)q
T
kj . (2.18)
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Knowing condition (2.6), Theorem 2 easily follows from an application of the Kol-
mogorov backward equation. Actually, under this assumption Theorem 2 can be
derived from Theorem 1. As a consequence of both these theorems we also obtain
that (2.6) holds whenever µ is quasi-stationary.

Corollary 3. If µ is a quasi-stationary distribution then condition (2.6) holds.

Proof. If µ is quasi-stationary, then it follows from (2.16) and the Markov property
that Pµ(T > t) = e−αt, for some α > 0 (this fact is well known, see [9], for instance).
Moreover the function µ(t) is differentiable and µ′(t) = 0, for all t ≥ 0. On the other
hand, from Theorem 2, equation (2.17) holds. Therefore, condition (2.8) holds, so
that (2.6) is satisfied from part (ii) of Theorem 1. �

A distribution π on E∆ is called the quasi-limiting distribution (or the Yaglom
limit) of a distribution µ on E∆, if it satisfies

lim
t→∞

Pµ(X
T
t = i | T > t) = πi , for all i ∈ E∆. (2.19)

Then a well known result asserts that any quasi-limiting distribution is also a quasi-
stationary distribution, see for example [22, 9, 23]. Recall also that if π is the
quasi-limiting distribution of some distribution µ, then the rate α satisfying (1.3) is
given by the expression

α = inf

{

a ≥ 0 :

∫ ∞

0

eatPi(T > t) dt = ∞

}

> 0 , (2.20)

which does not depend on the state i ∈ E, see Section 3 in [16] for instance. As an
application of Theorem 1 and the above remarks, we show in the next corollary how
to construct quasi-stationary distributions from distributions satisfying (1.3).

Corollary 4. Let µ be a distribution on E∆ such that Pµ(T > t) = e−αt, t ≥ 0, for
some α > 0 and satisfying (2.6). If µ admits a quasi-limiting distribution, π, then
the latter is given by:

π = µ+

∫ ∞

0

(µQT + α(µ− δ))eαtP T (t) dt ,

where
∫∞

0
(µQT + α(µ − δ))eαtP T (t) dt should be understood as a possibly improper

integral. In particular, π is a quasi-stationary distribution on E∆.

Proof. Under these assumptions, it follows from Theorem 1 that for all t ≥ 0, µ′(t) =
eαt(µQT + α(µ − δ))P T (t). Moreover, since Pµ(T > 0) = 1, µ(t) is continuous at 0
and µ(0) = µ, so that

µ(t)− µ =

∫ t

0

(µQT + α(µ− δ))eαuP T (u)du .

Since µ(t) converges to a proper distribution µ, as t tends to ∞, it follows that

the improper integral
∫∞

0
(µQT + α(µ − δ))eαuP T (u)du = limt→+∞

∫ t

0
(µQT + α(µ −

δ))eαuP T (u)du exists and is finite. The fact that π is a quasi-stationary distribution
follows from the results which are recalled before the statement of the corollary. �
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Corollary 4 may be interpreted as follows: if µ is such that T is exponentially dis-
tributed under Pµ and admits a Yaglom limit, then the correction term which allows
us to obtain a quasi-stationary distribution from µ is

∫∞

0
(µQT +α(µ−δ))eαtP T (t) dt.

The next results of this section show that whenever there exists a non quasi-
stationary distribution which makes the time T exponentially distributed, then under
some conditions, we may construct a whole family of distributions having the same
property.

Proposition 5. Let µ be a distribution on E∆ satisfying (2.6) and such that Pµ(T >

t) = e−αt, t ≥ 0, for some α > 0. Let us define the vector (µ
(1)
i )i∈E∆

, by

µ
(1)
j =

−1

α

∑

i∈E∆

µiq
T
ij , j ∈ E , µ

(1)
∆ = 0 . (2.21)

If for all j ∈ E,

0 ≤ −
∑

i∈E∆

µiq
T
ij ≤ α , (2.22)

then (µ
(1)
i )i∈E∆

is a distribution on E∆ which satisfies Pµ(1)(T > t) = e−αt, for all
t ≥ 0.

Proof. The assumption Pµ(T > t) = e−αt is equivalent to

∑

i∈E

µip
T
i∆(t) = 1− e−αt . (2.23)

Using condition (2.6) and the Kolmogorov backward equation (2.5), we obtain by
differentiating the latter equality

∑

i∈E

(

∑

j∈E∆

qTijp
T
j∆(t)

)

µi = αe−αt .

Decomposing the left hand side and using (2.3) and (2.9), we obtain

∑

i∈E

(

∑

j∈E∆

qTijp
T
j∆(t)

)

µi =
∑

i∈E

(

qTi∆ +
∑

j∈E

qTijp
T
j∆(t)

)

µi

= α+
∑

i,j∈E

qTijp
T
j∆(t)µi

= αe−αt ,

which gives

∑

j∈E

pTj∆(t)

(

−1

α

∑

i∈E

µiq
T
ij

)

= 1− e−αt . (2.24)
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Then from condition (2.22), we may let t tend to ∞ in (2.24), in order to obtain by

monotone convergence that
∑

j∈E µ
(1)
j = 1, so that

µ
(1)
j =

−1

α

∑

i∈E

µiq
T
ij , j ∈ E , µ

(1)
∆ = 0

is a distribution on E∆. Moreover (2.24) is equation (2.23) where we have replaced
µ by µ(1), so that µ(1) satisfies Pµ(1)(T > t) = e−αt. �

Corollary 6. Let µ be a distribution on E∆ and α > 0. For n ≥ 1, let us denote by

qn,Tij the entries of (QT )n and define the vector (µ
(n)
i )i∈E∆

, by

µ
(n)
j =

(−1)n

αn

∑

i∈E∆

µiq
n,T
ij , j ∈ E , µ

(n)
∆ = 0 . (2.25)

Then,

1. µ(n) is a quasi-stationary distribution associated to the rate α, for some n ≥ 1,
if and only if µ(k) = µ(k+1), for all k ≥ n.

2. Assume that for all j ∈ E,
∑

i∈E qTij < ∞. If the sequence (µ(n)) converges,

as n → ∞, toward a proper distribution µ(∞), then µ(∞) is a quasi-stationary
distribution.

3. Assume that E is finite. If Pµ(T > t) = e−αt, t ≥ 0 and if for all n ≥ 1,

0 ≤ (−1)n
∑

i∈E∆

µiq
n,T
ij ≤ αn , (2.26)

then for all n ≥ 1, (µ
(n)
i )i∈E∆

is a distribution on E∆ which satisfies Pµ(n)(T >
t) = e−αt, for all t ≥ 0.

Proof. The proof of the first part simply follows from the identity:

µ
(k+1)
i =

−1

α
µ(k)QT

i , i ∈ E , (2.27)

and Theorem 2.
The second assertion is a consequence of the same observation, which leads, by

passing to the limit thanks to the assumptions to, µ(∞)QT
i = −αµ

(∞)
i , i ∈ E. Then

we conclude by applying Theorem 2.
Then the third part follows from Proposition 5 by induction. Indeed, first recall

that since E is finite, condition (2.6) is satisfied for any distribution. If the result

is true for ν := µ(n), then from the inequality 0 ≤ (−1)n+1
∑

i∈E∆

µiq
n+1,T
ij ≤ αn+1 and

identity (2.27), we derive that for all j ∈ E,

0 ≤ −
∑

i∈E∆

νiq
T
ij ≤ α ,

so that from Proposition 5, ν
(1)
j := −1

α

∑

i∈E∆

νiq
T
ij = µ(n+1) is a distribution on E∆

which satisfies Pν(1)(T > t) = e−αt, for all t ≥ 0. �
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As we have already observed, if supi∈E qi ≤ α, where qi := −qTii , then condition (2.6)
is satisfied, but also for all j ∈ E,

(−1)n
∑

i∈E∆

µiq
n,T
ij ≤ αn , (2.28)

which provides the second inequality in (2.26). An interesting problem is then to de-
termine simple conditions ensuring the first inequality in (2.26), that is nonnegativity

of the term (−1)n
∑

i∈E∆

µiq
n,T
ij .

3. Sufficient conditions for exponentiality.

Let us keep the notation of the previous sections. The next theorem provides
sufficient conditions for a distribution µ to insure that T is exponentially distributed
under Pµ. As shown in Section 4, this result allows us to construct examples for
which such distributions exist.

Theorem 7. Let {E1, E2, . . . } be a finite or infinite partition of S containing at
least two elements and with E1 = D (in particular {E2, E3, . . . } is a partition of E).
Assume that:

(i) For all k ≥ 2 and l ≥ 1 and for all i ∈ Ek, the quantity
∑

j∈El
qij does not

depend on i. For i ∈ Ek, we set

q̄kl :=
∑

j∈El

qij . (3.1)

Let µ is a distribution on E∆, with support in E. The following two conditions are
equivalent.

(ii) For all k ≥ 1, the quantity Pµ(Xt ∈ Ek | T > t) does not depend on t ≥ 0.
More specifically, we have,

Pµ(Xt ∈ Ek | T > t) = µ̄k , t ≥ 0 , (3.2)

where µ̄k =
∑

i∈Ek

µi.

(iii) There exists α > 0, such that

µ̄Q̄ = −αµ̄+ αd ,

where Q̄ = (q̄kl)k,l≥1, q̄1k = 0, for k ≥ 1, q̄kk = −
∑

l≥1, l 6=k q̄kl, for k ≥ 1,

µ̄ = (µ̄k)k≥1 and d = (1, 0, 0, . . . ).

Moreover, if conditions (i) and (ii) (or equivalently conditions (i) and (iii)) are
satisfied, then T is exponentially distributed under Pµ, with parameter α given by

α =
∑

k≥1

q̄k1µ̄k . (3.3)

Proof. Let (Yt)t≥0 be the continuous time process with values in N = {1, 2, . . . } which
is defined by Yt = k, if Xt ∈ Ek, that is

Yt =
∑

k≥1

k1I{Xt∈Ek} , t ≥ 0 .
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Observe that T = inf{t : Yt = 1}. Then under assumption (i), the absorbed process

Y T
t =

{

Yt , if t < T ,
1 , if t ≥ T ,

(3.4)

is a continuous time Markov chain with q-matrix Q̄ = (q̄kl)k,l≥1, as defined in (iii).
See for instance Section 3.4 in [9].

Then recall from (iii), the definition of the measure µ̄ on N: µ̄k =
∑

i∈Ek
µi, k ≥ 2

and µ̄1 = 0. Let (P̄k)k≥1 be the family of probability laws associated to the Markov
process (Yt)t≥0. For all k ≥ 2,

Pµ(Xt ∈ Ek, t < T ) =
∑

i∈E

µiPi(Xt ∈ Ek, t < T )

=

n
∑

l=2

∑

i∈El

µiPi(Xt ∈ Ek, t < T )

=

n
∑

l=2

µ̄lP̄l(Yt = k, t < T )

= P̄µ̄(Yt = k, t < T ) , (3.5)

where the third equality follows from the fact that Pi(Xt ∈ Ek, t < T ) = P̄l(Yt =
k, t < T ), for all i ∈ El. Assume that condition (ii) holds, then we derive from (3.2)
and (3.5) that for all k ≥ 2,

P̄µ̄(Yt = k | t < T ) = µ̄k ,

which means that µ̄ is a quasi stationary distribution with respect to the lifetime
of the Markov process Y T . In particular, thanks to Theorem 2, (ii) and (iii) are
equivalent. Moreover, since (2.8) in Theorem 1 is satisfied, then from (iii) in this
theorem, T is exponentially distributed under Pµ̄, with parameter α =

∑n

k=2 q̄k1µ̄k.
We conclude from equality (3.5) which shows that Pµ(t < T ) = P̄µ̄(t < T ). �

Remark. Let us focus on two very particular situations, where Theorem 7 can
be applied. First, in the particular case where the partition {E2, E3, . . . } of E is
reduced to the singletons of E, then condition (ii) is obviously satisfied and condition
(i) simply means that µ is quasi-stationary with respect to T , hence the conclusion
follows from Theorem 2.

Then recall the definition of ηi in (2.2). In contrast to the latter situation, by
considering {E} as a partition of E, it follows from Theorem 7 that if there exists
α > 0 such that ηi = α, for all i ∈ E, then the first passage time T has an exponential
distribution with parameter α under Pµ, for all initial distributions µ with support
in E. This result follows also from direct arguments, see Proposition 8 below for
instance. In the case where S is finite, it is stated in Proposition 2.1, (ii) of [9]. Note
that, if in addition there is a Yaglom limit, µ, as recalled in the previous section, then
in this case, µ is explicitly given on E by

µ = 1{i} +

∫ ∞

0

1{i}(Q
T + αI)P T (t)eαt dt ,
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for all i ∈ E. In particular, this expression does not depend on i. Note that in this
case, µ corresponds to the stationary distribution of the unkilled process X. Finally,
let us emphasize that from this particular situation, we can construct examples where
an initial distribution µ satisfies (1.3) but not (2.6).

Actually it is always possible to compare the distribution of T with the exponential
law, as Proposition 8 shows. It provides exponential bounds for the distribution
function of the first passage time.

Proposition 8. Define the rates α0 = inf i∈E ηi and α1 = supi∈E ηi, where ηi is
defined in (2.2). Then the tail distribution of the first passage time T satisfies the
inequalities:

e−α1t ≤ Pi(t < T ) ≤ e−α0t , (3.6)

for all t ≥ 0 and for all i ∈ E.

Proof. By definitions (2.2) and (2.3), we obtain that α0 ≤ qk∆ ≤ α1, for all k. From
these inequalities and Kolmogorov’s forward equation at state i ∈ E and ∆, i.e.

d

dt
pTi∆(t) =

∑

k∈E

pTik(t)qk∆ ,

we derive that,

α0Pi(t < T ) ≤
d

dt
Pi(t < T ) ≤ α1Pi(t < T ) .

The result follows immediately. �

4. Examples and application

4.1. Two examples of exponentality. With the aim of illustrating the previous
results, we provide in this subsection two examples of non quasi-stationary distribu-
tions µ such that T is exponentially distributed under Pµ.

An example when the state space is finite: With the same notations as in Theorem
7, let S = {1, 2, 3, 4, 5, 6}, E1 = D = {1}, E2 = {2, 3}, E3 = {4, 5}, E4 = {6} and let
us define the q-matrix,

Q =















−6 0 2 1 1 2
1 −8 1 1 2 3
1 0 −7 2 1 3
1 1 1 −8 2 3
1 0 2 1 −7 3
1 1 0 1 1 −4















,

which clearly satisfies the general conditions of this paper, see Section 1, as well as
condition (i) of Theorem 7. Let Q′ be the q-matrix Q (or equivalently QT ), to which
the first line and the first column have been removed and let Q̄′ be the q-matrix Q̄
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to which the first line and the first column have been removed, that is

Q′ =













−8 1 1 2 3
0 −7 2 1 3
1 1 −8 2 3
0 2 1 −7 3
1 0 1 1 −4













and Q̄′ =





−7 3 3
2 −6 3
1 2 −4



 .

The Perron-Frobenius eigenvalue of Q̄′ is λ = −1 and the associated normalized
left eigenvector is ν = (3/16, 5/16, 1/2). In particular, νQ̄′ = −ν, so that µ̄ =
(0, 3/16, 5/16, 1/2) and Q̄ satisfy condition (iii) of Theorem 7 with α = 1.

Then Theorem 7 asserts that the initial distribution µ =
(0, 3/32, 3/32, 5/32, 5/32, 1/2) is such that under Pµ, the emergence
time T is exponentially distributed with parameter 1. Moreover, since
µQT = (0,−3/32,−3/32,−5/16, 0,−1/2), then relation (2.17) in Theorem 2
cannot be satisfied for any α > 0, and hence µ is not a quasi-stationary distribution.

Also, note that µ satisfies conditions of Proposition 5. Then with the notation of
this proposition, we have µ(1) = (0, 3/32, 3/32, 5/16, 0, 1/2), so that condition (2.22)
is satisfied and from this proposition, µ(1) is another distribution such that under
Pµ(1) , T is exponentially distributed with parameter 1. Moreover, we can check as

above that µ(1) is not a quasi-stationary distribution.

Exponentiality in Z
d-valued Lévy processes. In this example the state space is S = Z

d,
with d ≥ 2 and X is a d-dimensional compound Poisson process. In particular, X
issued from 0, can be represented on some probability space (Ω,F ,P), as,

Xt =
Nt
∑

k=0

ξk , t ≥ 0 ,

where (ξk)k≥1 is a sequence of i.i.d. random variables with distribution on Z
d \ {0},

ξ0 = 0 and (Nt)t≥0 is a standard Poisson process, that is independent of the sequence
(ξk)k≥1. As usual, Px, x ∈ Z

d will denote the family of probability measures such
that X starts from x under Px.

Then assume that there is a linear transformation M : Zd → Z
d, such that the

coordinates of the compound Poisson process Kt := MXt, t ≥ 0, are independent
and non degenerate. Assume moreover that for some vector u = (u1, . . . , ud) ∈ Z

d,
whose d′ coordinates (0 < d′ < d) are equal to 0, the support of the distribution of
tuMξ1, is a set of the form {−a,−a+1, . . . ,−1, 1, . . . , b−1, b}, for some 0 < a, b < ∞
and that E(tuMξ1) < 0. Note then that the Lévy process

Yt :=
tuMXt =

Nt
∑

k=0

tuMξk , t ≥ 0 ,

satisfies the conditions of Definition 1 in [19], except that it is lattice. However, as
noticed just after this definition, we can check from an analogous result in [5] that
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Theorem 1 in [19] is still valid in the lattice case. Fix an integer k > 0 and let,

T = inf{t : Yt < −k} .

Then Theorem 1 in [19] asserts that there exists a quasi-stationary distribution for
Y , with respect to T . Let us denote by ν this distribution and let µ be a measure
such that:

(i) µ = θM−1, where θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θd is a product probability measure on
Z
d and θM−1 is the image of θ by M ,

(ii) ν = µA−1, where A is the linear transformation, Ax = tuMx, x ∈ Z
d.

Let Px, x ∈ Z be the probability measure under which Y starts from x, then from
(ii) and the quasi-stationarity of ν, we obtain

Pµ(T > t) = Pν(T > t) = e−αt , for some α > 0.

Observe that the time T can be expressed as

T = inf{t : Xt ∈ D} , where D = {x ∈ Z
d : tuMx < −k} .

Then let us show that µ is not quasi-stationary with respect to time T . Let v =
(v1, . . . , vd) ∈ Z

d be another vector such that vi = 0 if ui 6= 0, for i = 1, . . . , d and
set Z := tvMX. Assume that Z is not a degenerate process. Then by construction
of u, v and µ, the compound Poisson processes Y and Z are independent under Pµ.
It follows that for all i ∈ Z and t ≥ 0,

Pµ(Zt = i | T > t) = Pµ(Zt = i) .

If µ was quasi-stationary, then the last expression would be equal to µB−1(i), where
B := tvM , hence µB−1 would be a stationary distribution for the compound Poisson
process Z. But such a distribution does not exist, as is well known.

Note that this situation becomes trivial when the coordinates of the Poisson
process X = (X(1), . . . , X(d)) are independent, that is M = Id. Let us chose Y
and Z as follows, Y = X(1) and Z = X(2). Then any measure µ of the form
µ := ν ⊗ θ2 ⊗ · · · ⊗ θd, where ν is the quasi-stationary distribution associated to Y
as above, is such that (1.3) holds, although it is not quasi-stationary.

Remarks Contrary to the situations that are described just above, it may sometimes
happens that exponentiality implies quasi-stationarity. Here are a couple of examples.

(i) Let X be a birth and death process with birth rate λn = nλ and death rate
νn = nν, when the process is in state n. In this case, S is the set {0, 1, . . . }
of nonnegative integers. Set D = {0} and recall the definition of the first
passage time,

T = inf{t : Zt = 0} ,

which is an absorption time in the present case. It is well known that, if
ν > λ, then Pk(T < ∞) = 1, for all k ≥ 1 and from the branching property,
we have for all k ∈ E = {1, 2, . . . } and all t > 0,

Pk(T ≤ t) = [P1(Zt = 0)]k . (4.1)



14 ROMAIN BOURGET, LOÏC CHAUMONT, AND NATALIA SAPOUKHINA

Le qt := P1(Zt = 0) be the extinction probability, then from (4.1), for any
probability measure µ on E, the quantity Pµ(Zt = 0) = Pµ(T ≤ t) corresponds
to the generating function Gµ of µ, evaluated at qt, that is

Pµ(T ≤ t) = Gµ(qt) . (4.2)

In [2], p.109, we can find the expression: qt =
νe(ν−λ)t−ν

νe(ν−λ)t−λ
, so that if µα is a

distribution which satisfies Pµα
(T > t) = e−αt, for some α > 0, then from

(4.2), its generating function is given by:

Gµα
(t) = 1−

(

ν − λt

ν(1− t)

)
−α

ν−λ

, t ∈ [0, 1) .

This shows that for any α > 0 there is a unique distribution satisfying
Pµα

(T > t) = e−αt. In the case of continuous state branching processes,
a similar expression for the Laplace transform of µα has been obtained in
[21], see p. 438 therein.

(ii) In the case where S is a finite set, another example where exponentiality
implies quasi-stationarity is given in part (iii) of Proposition 2.1 of [9]. The
Markov chain that is considered in this work is a random walk in the finite
set {0, 1, . . . , N} that is killed at 0.

(iii) In the case of continuous state space Markov processes, other examples where
exponentiality implies quasi-stationarity may be found in [13]. In this work it
is proved that if the absorption time of a positive selfsimilar Markov process
is exponentially distributed under some initial distribution, then the latter is
necessarily quasi-stationary.

4.2. Application to the emergence time of a mutant escaping treatment.

Let us consider the case of a pathogen population living on a host population. At
each time t, the whole host population is either treated or not. A pathogen individual
can mutate to defeat the treatment. We assume that each pathogen has the same mu-
tation rate during a reproduction. Then, the probability that at least one pathogen
mutates in the population is proportional to the pathogen population size. Since
a treatment controls the pathogen population size, we assume that the latter takes
two different values according to the presence or absence of the treatment. Thus, the
mutant emergence rate takes two different values. In presence of the treatment, the
pathogen population size is low, then the mutant emergence rate is low. In absence
of treatment, the pathogen population size is high, then the mutant emergence rate
is high.Then, the dynamics of the pathogen population size is described as a Markov
chain X whose state space S is split up in three parts, that is S = E1 ∪ E2 ∪ E3,
with :

. E1, the set of values of the pathogen population size when the population
contains at least one mutant,

. E2, the set of values of the pathogen population size when the population
contains no mutants and its size is less than a given value K,

. E3, the set of values of the pathogen population size when the population
contains no mutants and its size is greater than K.
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The transition rates from Ei to Ej , 1 ≤ i, j ≤ 3 are denoted by q̄ij , in accordance
with the notation of Theorem 7. The set E2 corresponds to the presence of
treatment and in this case, the number of pathogens is low. The set E3 corresponds
to the absence of treatment and the number of pathogens is high. In each case, the
number of pathogens does not fluctuate very much, so that we can assume that the
transition rates q̄23 and q̄32 between E2 and E3 are constant. They depend only on
the treatment strategy, that is on the choice to use a treatment or not at time t.
Then for the same reasons both mutant emergence rates q̄21 and q̄31 are supposed
to be constant. From the present model, q̄21 should be much lower than q̄31. The
emergence time is then defined as T = inf{t ≥ 0 : Xt ∈ E1}.

Let us consider a treatment strategy ensuring that µ(E2) = µ̄2 is the probability for
the pathogen population size to be less than K before a mutation occurs. Similarly,
the probability for the size to be greater than K before mutation, is µ(E3) = µ̄3 =
1 − µ̄2. From Theorem 7, T is exponentially distributed with parameter α > 0, if µ̄
solves the equation :

µ̄Q̄T = −αµ̄ , (4.3)

with

Q̄T =

(

−q̄23 − q̄21 q̄23
q̄32 −q̄32 − q̄31

)

.

Let us set α = µ̄2q̄21 + µ̄3q̄31 and

µ̄2 =
q̄21 − q̄31 + q̄23 + q̄32 −

√

(q̄21 − q̄31 + q̄23 − q̄32)2 + 4q̄23q̄32
2(q̄21 − q̄31)

.

Then we can check that µ̄ = (µ̄2, µ̄3) is a solution of (4.3). Therefore, with this
choice for α and µ̄, the time T is exponentially distributed with parameter α > 0.

From a biological point of view, these results may be interpreted as follows. The
rate µ̄2 represents the proportion of time during which the host population has been
treated. Then from this proportion of time, we can determine the distribution of the
emergence time of a mutant pathogen.
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