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EXPONENTIALITY OF FIRST PASSAGE TIMES OF CONTINUOUS

TIME MARKOV CHAINS

ROMAIN BOURGET, LOÏC CHAUMONT, AND NATALIA SAPOUKHINA

Abstract. Let (X,Px) be a continuous time Markov chain with finite or countable state
space S and let T be its first passage time in a subset D of S. It is well known that if µ is
a quasi-stationary distribution relatively to T , then this time is exponentially distributed
under Pµ. However, quasi-stationarity is not a necessary condition. In this paper, we
determine more general conditions on an initial distribution µ for T to be exponentially
distributed under Pµ. We show in addition how quasi-stationary distributions can be
expressed in terms of any initial law which makes the distribution of T exponential. We
also study two examples in branching processes where exponentiality does imply quasi-
stationarity.

1. Introduction

Let us denote by P (t) = {pij(t) : i, j ∈ S}, t ≥ 0 the transition probability of a continuous
time irreducible Markov chain X = {(Xt)t≥0, (Pi)i∈S}, with finite or countable state space
S and let Q = {qij : i, j ∈ S} be the associated q-matrix, that is qij = p′ij(0). We assume

that Q is conservative, that is
∑

j∈S qij = 0, for all j ∈ S, and that X is not explosive. The

transition probability (that will also be called the transition semigroup) of X satisfies the
backward Kolmogorov’s equation:

d

dt
pij(t) =

∑

k∈S

qikpkj(t) . (1.1)

Let D ⊂ S be some domain and define the first passage time by X in D by,

T = inf{t ≥ 0 : Xt ∈ D} . (1.2)

This work aims at characterizing probability measures µ on E = S \D such that under Pµ,
the time T is exponentially distributed, that is, there exists α > 0, such that:

Pµ(T > t) = e−αt . (1.3)

It is well known that when µ is a quasi-stationary distribution with respect to T , that is if

Pµ(Xt = i |T > t) = µi , for all i ∈ E and t ≥ 0, (1.4)

then (1.3), for some value α > 0, follows from a simple application of the Markov property,
see [15] or [6] for example. Quasi-stationarity of µ holds if and only if µ is a left eigenvector
of the q-matrix of the process X killed at time T , associated to the eigenvalue −α, see
[17]. However, quasi-stationarity is not necessary to obtain (1.3). Some examples of non
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quasi-stationary distribution µ such that (1.3) holds are given later on in this paper.

Our work was first motivated by population dynamics, where it is often crucial to
determine the extinction time of a population or the emergence time of a new mutant,
see [2, 3, 11, 18] for example. In many situations, those times can be represented as first
passage times of Markov processes in some particular domain. Then it is often much
easier to find an initial distribution, under which this first passage time is exponentially
distributed than to compute its distribution under any initial conditions.

Let us be more specific about applications to emergence times in biology which is the
central preoccupation of the authors in [2]. Adaptation to a new environment passes by
the emergence of new mutants. In adaptation theory, emergence can be described by
the estimation of the fixation time of an allele in the population. We may also imagine
a parasite infecting a resistant or new host, a pathogen evading chemical treatment, a
cancer cell escaping from chemotherapy, etc. [10, 11, 13, 22]. An interesting and important
point is to estimate the law of the time at which these new mutant individuals emerge
in the population, for example to estimate the durability or the success probability of a
new treatment or a new resistance. Emergence problem has already been considered in
the setting of branching processes [21, 22], for multitype Moran models in [7], and for
competition processes, in [2]. In order to explain the latter case in more details, let us

recall that a competition process is a continuous time Markov chain X = (X(1), . . . ,X(d))
with state space S = N

d, for d ≥ 2, whose transition probabilities only allow jumps to
certain nearest neighbors. Competition processes where introduced by Reuter [20] as the
natural extensions of birth and death processes and are often involved in epidemic models
[4, 10, 13]. In [2], the authors were interested in some estimation of the law of the first
passage time T , when an individual of type r = 1, . . . , d first emerges from the population,
that is

T = inf{t ≥ 0 : X
(r)
t = 1} .

Then varying the birth, mutation, migration and death rates, some simulations of the
law of the time T allow us to conclude that the consideration of interactions among two
stochastic evolutionary forces, mutation and migration, can expand our understanding
of the adaptation process at the population level. In particular, it shows under which
conditions on mutation and migration rates, pathogen can adapt swiftly to a given
multicomponent treatment.

This paper is organized as follows. In section 2, we establish a general criterion for a
measure µ to satisfy (1.3) and we study the connections between such measures and quasi-
stationary or quasi-limiting distributions. Then, in the third section, we give some sufficient
conditions for (1.3) involving the special structure of the chain on a partition of the state
space E. In particular, Theorem 3 and its consequences allow us to provide some examples
where exponentiality may hold without quasi-stationarity. An example of application in
adaptation theory is provided in Subsection 3.2. The fourth section is devoted to the
presentation of some examples in the setting of branching processes where exponentiality
implies quasi-stationarity.
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2. From exponentiality to quasi stationarity

We first introduce the killed process at time T , as follows:

XT
t =

{

Xt , if t < T ,
∆ , if t ≥ T ,

(2.1)

where ∆ is a cemetery point. Then XT is a continuous time Markov chain which is valued
in E∆ := E ∪ {∆}. Moreover if we define the killing rate by

ηi =
∑

j∈D

qij , (2.2)

then the q-matrix QT = (qTij) of XT is given by

qTij =







qij , i, j ∈ E

qi∆ = ηi , i ∈ E

q∆j = 0 , j ∈ E∆ .

(2.3)

From our assumptions, QT is obviously conservative and XT is non explosive. In particular,
QT is the q-matrix of a unique transition probability that we will denote by P T (t) =
(pTij(t))i,j∈E∆

, t ≥ 0, and which is expressed as

pTij(t) =







Pi(Xt = j, t < T ) , if i, j ∈ E,
Pi(t ≥ T ) , if i ∈ E and j = ∆,
1j=∆ , if i = ∆ and j ∈ E∆.

(2.4)

Then this semigroup inherits the Kolmogorov backward equation from (1.1):

d

dt
pTij(t) =

∑

k∈E∆

qTikp
T
kj(t) . (2.5)

Henceforth, all distributions ν on E∆ that will be considered will not charge the state ∆,
i.e. ν∆ = 0. In this section, we shall often consider initial distributions µ = (µi)i∈E∆

for
(XT

t ), on E∆ satisfying the following differentiability condition:

µP T (t) is differentiable and
d

dt
µP T (t) = µ

d

dt
P T (t), t > 0 . (2.6)

We extend the family of probability (Pi)i∈E to i = ∆, in accordance with the definition of
(P T (t)) and for each t ≥ 0, we define the probability distribution µ(t) on E∆ as follows:

µi(t) = Pµ(X
T
t = i |T > t) , i ∈ E∆ . (2.7)

We define the vector δ by δi = 0, if i ∈ E and δ∆ = 1.

Theorem 1. Let µ be a distribution on E∆.

(i) Assume that µ satisfies condition (2.6), then there is α > 0 such that Pµ(T > t) =
e−αt, for all t ≥ 0 if and only if

µ(t) is differentiable and µ′(t) = eαt(µQT + α(µ − δ))P T (t), t > 0. (2.8)

(ii) Assume that there is α > 0 such that Pµ(T > t) = e−αt, for all t ≥ 0, then conditions
(2.6) and (2.8) are equivalent.

(iii) When (2.8) is satisfied, the rate α may be expressed as

α =
∑

i∈E

ηiµi . (2.9)
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Proof. Note that the condition Pµ(T > t) = e−αt is equivalent to Pµ(X
T
t = i, t < T ) =

e−αtµi(t). So since

Pµ(X
T
t = i) = Pµ(X

T
t = i, t < T ) + 1Ii=∆Pµ(t ≥ T ) ,

the transition function P T (t) of XT satisfies

µP T (t) = e−αtµ(t) + (1− e−αt)δ . (2.10)

Then from the differentiability condition (2.6), we see that µ(t) is differentiable and from
the Kolmogorov backward equation (2.5), we obtain

µ
d

dt
P T (t) = −αe−αtµ(t) + e−αtµ′(t) + αe−αtδ

= µQTP T (t) . (2.11)

Then from (2.10), we have e−αtµ(t) = µP T (t) − (1 − e−αt)δ and since δP T (t) = δ, for all
t ≥ 0, we see that equation (2.11) may be expressed as

µ′(t) = eαt(µQT + α(µ − δ))P T (t) , t ≥ 0 .

Conversely, if condition (2.8) is satisfied, then from (2.6), we can write equation (2.11).
Integrating this expression, we get (2.10) which implies that Pµ(T > t) = e−αt, for all
t ≥ 0. The first assertion of the theorem is proved.

Now if Pµ(T > t) = e−αt, for all t ≥ 0, then we have (2.10), so that if condition (2.6) is
satisfied, then µ(t) is differentiable and

d

dt
µP T (t) = −αe−αtµ(t) + e−αtµ′(t) + αe−αtδ . (2.12)

Moreover from the Kolmogorov backward equation and (2.12), we have µQTP T (t) =
−αe−αtµ(t)+e−αtµ′(t)+αe−αtδ, which is (2.8). The converse is easily derived from similar
arguments, so the second assertion is proved.

Then from equation (2.8), we obtain

lim
t→0

µ′(t) = (µQT + α(µ− δ))P T (0) . (2.13)

On the other hand, note that µ∆(t) = 0, for all t ≥ 0, so that in particular µ∆ = µ∆(0) = 0
and limt→0 µ

′
∆(t) := µ′

∆(0) = 0. Finally, taking equality (2.13) at ∆ yields

µQT
∆ =

∑

i∈E∆

µiq
T
i∆ =

∑

i∈E

µiηi = µ′
∆(0)− α(µ∆ − δ∆) = α ,

which proves the third assertion of the theorem.
�

Remarks 1. It is important to note that a distribution µ on E∆ may satisfy Pµ(T > t) =
e−αt, t ≥ 0, whereas (2.6) does not hold. Examples can be constructed from Corollary 4 in
the next section.
2. When E is finite, condition (2.6) is clearly satisfied. In the infinite case, this condition
may appear theoretical to some extend and sometimes difficult to check when not much is
known on the transition probability. However it is possible to obtain quite simple conditions
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implying (2.6). For instance, observe that from (2.5), for all i, j ∈ E∆ and t > 0,
∣

∣

∣

∣

d

dt
pTij(t)

∣

∣

∣

∣

≤
∑

k∈E∆

∣

∣qTikp
T
kj(t)

∣

∣

≤
∑

k∈E∆

|qTik|

= −2qTii . (2.14)

A sufficient condition for (2.6) to hold is then
∑

i∈E

qiµi < ∞ , (2.15)

where qi = −qTii . The later condition is satisfied in particular when the qi’s are bounded.

Recall definition (1.4) of quasi-stationarity. In our setting, it is equivalent to the following
statement: a distribution µ on E∆, is quasi-stationary if

µi = µi(t) , for all t ≥ 0 and i ∈ E∆. (2.16)

We will simply say that µ is a quasi-stationary distribution. Then, let us state the following
classical result, already mentioned in the introduction.

Theorem 2 ([19]). A distribution µ on E∆ is quasi-stationary if and only if the equation

µQT = −αµ+ αδ , (2.17)

holds for some α > 0. (Note that (2.17) is equivalent to µQT
i = −αµi, for all i ∈ E.)

In [19] it is proved that (2.17) is equivalent to the fact that P T satisfies the Kolmogorov
forward equation, which is the case under our assumptions, that is

d

dt
pTij(t) =

∑

k∈E

pTik(t)q
T
kj . (2.18)

Knowing condition (2.6), it is actually quite easy to prove Theorem 2. Note also that under
this assumption, Theorem 2 is a consequence of Theorem 1. As a consequence of both these
theorems we also obtain that (2.6) holds whenever µ is quasi-stationary.

Corollary 1. If µ is a quasi-stationary distribution then condition (2.6) holds.

Proof. If µ is quasi-stationary, then it follows from (2.16) and the Markov property that
Pµ(T > t) = e−αt, for some α > 0 (this fact is well known, see [6], for instance). Moreover
the function µ(t) is differentiable and µ′(t) = 0, for all t ≥ 0. On the other hand, from
Theorem 2, equation (2.17) holds. Therefore, condition (2.8) holds, so that (2.6) is satisfied
from part (ii) of Theorem 1. �

A distribution π on E∆ is called the quasi-limiting distribution (or the Yaglom limit) of
a distribution µ on E∆, if it satisfies

lim
t→∞

Pµ(X
T
t = i |T > t) = π(i) , for all i ∈ E∆. (2.19)

Then a well known result asserts that any quasi-limiting distribution is also a quasi-
stationary distribution, see for example [15, 6, 16]. Recall also that if π is the quasi-limiting
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distribution of some distribution µ, then the rate α satisfying (1.3) is given by the expression

α = inf

{

a ≥ 0 :

∫ ∞

0
eatPi(T > t) dt = ∞

}

> 0 , (2.20)

which does not depend on the state i ∈ E. As an application of Theorem 1 and the above
remarks, we show in the next corollary how to construct quasi-stationary distributions from
distributions satisfying (1.3).

Corollary 2. Let µ be a distribution on E∆ such that Pµ(T > t) = e−αt, t ≥ 0, for some
α > 0 and satisfying (2.6). If µ admits a quasi-limiting distribution, π, then the later is
given by:

π = µ+

∫ ∞

0
(µQT + α(µ − δ))eαtP T (t) dt ,

where
∫∞
0 (µQT +α(µ− δ))eαtP T (t) dt should be understood as a possibly improper integral.

In particular, π is a quasi-stationary distribution on E∆.

Proof. Under these assumptions, it follows from Theorem 1 that for all t ≥ 0, µ′(t) =
eαt(µQT + α(µ − δ))P T (t). Moreover, since Pµ(T > 0) = 1, µ(t) is continuous at 0 and
µ(0) = µ, so that

µ(t)− µ =

∫ t

0
(µQT + α(µ− δ))eαuP T (u)du .

Since µ(t) converges to a proper distribution µ, as t tends to ∞, it follows that the improper

integral
∫∞
0 (µQT +α(µ−δ))eαuP T (u)du = limt→+∞

∫ t

0 (µQ
T +α(µ−δ))eαuP T (u)du exists

and is finite. The fact that µ is a quasi-stationary distribution follows from the results
which are recalled before the statement of the corollary. �

Corollary 2 may be interpreted as follows: if µ is such that T is exponentially distributed
under Pµ and admits a Yaglom limit, then the correction term which allows us to obtain a

quasi-stationary distribution from µ is
∫∞
0 (µQT + α(µ − δ))eαtP T (t) dt.

The next result shows that whenever there exists a non quasi-stationary distribution
which makes the time T exponentially distributed, then under some conditions, we may
construct a whole family of distributions having the same property.

Proposition 1. Let µ be a distribution on E∆ satisfying (2.6) and such that Pµ(T > t) =

e−αt, t ≥ 0, for some α > 0. For n ≥ 1, let us denote by q
n,T
ij the entries of (QT )n and let

us define the vector (µ
(n)
i )i∈E∆

, by

µ
(n)
j =

(−1)n

αn

∑

i∈E∆

µiq
n,T
ij , j ∈ E , µ

(n)
∆ = 0 . (2.21)

If for all j ∈ E,

0 ≤ (−1)n
∑

i∈E∆

µiq
n,T
ij ≤ αn , (2.22)

then (µ
(n)
i )i∈E∆

is a distribution on E∆ which satisfies Pµ(n)(T > t) = e−αt, for all t ≥ 0.

Proof. The assumption Pµ(T > t) = e−αt is equivalent to
∑

i∈E

µip
T
i∆(t) = 1− e−αt . (2.23)
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Using condition (2.6) and the Kolmogorov backward equation (2.5), we obtain by differen-
tiating the latter equality

∑

i∈E





∑

j∈E∆

qTijp
T
j∆(t)



µi = αe−αt .

Decomposing the left hand side and using (2.3) and (2.9), we obtain

∑

i∈E





∑

j∈E∆

qTijp
T
j∆(t)



µi =
∑

i∈E



qTi∆ +
∑

j∈E

qTijp
T
j∆(t)



 µi

= α+
∑

i,j∈E

qTijp
T
j∆(t)µi

= αe−αt ,

which gives
∑

j∈E

pTj∆(t)

(

−1

α

∑

i∈E

µiq
T
ij

)

= 1− e−αt . (2.24)

Then from condition (2.22), we may let t tend to ∞ in (2.24), in order to obtain by monotone

convergence that
∑

j∈E µ
(1)
j = 1, so that

µ
(1)
j =

−1

α

∑

i∈E

µiq
T
ij , j ∈ E , µ

(1)
∆ = 0

is a distribution on E∆. Moreover (2.24) is equation (2.23) where we have replaced µ by

µ(1), so that µ(1) satisfies Pµ(1)(T > t) = e−αt.
The result is proved for n = 1. Then the proof is completed by iterating these arguments.

�

Let µ be a distribution on E∆ such that Pµ(T > t) = e−αt, t ≥ 0, for some α > 0. As we
have already observed, if supi∈E qi ≤ α, where qi := −qTii , then condition (2.6) is satisfied,
but moreover, it is easy to check that for all n ≥ 1 and for all j ∈ E,

(−1)n
∑

i∈E∆

µiq
n,T
ij ≤ αn , (2.25)

which provides the second inequality in (2.21). An interesting problem is then to determine
simple conditions insuring the first inequality in (2.21), that is nonnegativity of the term

(−1)n
∑

i∈E∆

µiq
n,T
ij .

Corollary 3. Let µ be a distribution on E∆ satisfying (2.6) and such that Pµ(T > t) = e−αt,

t ≥ 0, for some α > 0. Define µ(n) as in (2.21). Then,

1. if for some n ≥ 1, µ(n) is a quasi-stationary distribution, then µ(k) = µ(k+1), for all
k ≥ n.

2. If the sequence of distributions µ(n) converges, as n → ∞, toward a proper distribu-
tion µ(∞), then µ(∞) is a quasi-stationary distribution.

Proof. The proof of the first part simply follows from the identity:

µ
(n+1)
i =

−1

α
µ(n)QT

i , i ∈ E ,
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and Theorem 2. The second assertion is a consequence of the same observation, which

leads, under the assumption to, µ(∞)QT
i = −αµ

(∞)
i , i ∈ E. Then we conclude by applying

Theorem 2. �

In particular if the state space E∆ is finite and −QT is an honest matrix then from Perron-
Frobenius theorem, assertion 2. of Corollary 3 is satisfied for the maximal eigenvalue α of
−Q.

3. Sufficient conditions for exponentiality.

3.1. General results. Let us keep the notation of the previous sections. The next the-
orem provides sufficient conditions for a distribution µ to insure that T is exponentially
distributed under Pµ. This result together with its Corollary 4 allow us to construct exam-
ples for which such distributions exist.

Theorem 3. Let {E1, E2, . . . } be a finite or infinite partition of S containing at least two
elements and with E1 = D (in particular {E2, E3, . . . } is a partition of E). Assume that µ
is a distribution with support in E that satisfies the following condition:

(i) For all k ≥ 2 and l ≥ 1, with k 6= l and for all i ∈ Ek, the quantity
∑

j∈El
qij does

not depend on i. For i ∈ Ek, we set

q̄kl :=
∑

j∈El

qij . (3.1)

Then the following two conditions are equivalent.

(ii) For all k ≥ 1, the quantity Pµ(Xt ∈ Ek | T > t) does not depend on t ≥ 0. More
specifically, we have,

Pµ(Xt ∈ Ek | T > t) = µ̄k , t ≥ 0 , (3.2)

where µ̄k =
∑

i∈Ek

µi.

(iii) There exists α > 0, such that

µ̄Q̄ = −αµ̄+ αd ,

where Q̄ = (q̄kl)k,l≥1, q̄1k = 0, for k ≥ 1, q̄kk = −
∑

l≥1 q̄kl, for k ≥ 1, µ̄ = (µ̄k)k≥1

and d = (1, 0, 0, . . . ).

Moreover, if conditions (i) and (ii) (or equivalently conditions (i) and (iii)) are satisfied,
then T is exponentially distributed under Pµ, with parameter α given by

α =
∑

k≥1

q̄k1µ̄k . (3.3)

Proof. Let (Yt)t≥0 be the continuous time process with values in {1, 2, . . . } which is defined
by Yt = k, if Xt ∈ Ek, that is

Yt =
∑

k≥1

k1I{Xt∈Ek} , t ≥ 0 .

Observe that T = inf{t : Yt = 1}. Then we will first show that under assumption (i), the
absorbed process

Y T
t =

{

Yt , if t < T ,
1 , if t ≥ T ,

(3.4)

is a continuous time Markov chain with q-matrix Q̄ = (q̄kl)k,l≥1, as defined in (iii).
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Let us first assume that the number of sets in the partition (Ek) is finite and is n ≥ 2.
Recall from Section 2, the definition of {pTij(t) : i, j ∈ S} and {qTij : i, j ∈ S}, the transition
probability and the q-matrix of the Markov chain X, killed at T . For all t ≥ 0, define

kil(t) :=

{

Pi(Xt ∈ El, t < T ) =
∑

j∈El
pTij(t) , if i ∈ E∆ and 2 ≤ l ≤ n,

P
T
i∆(t) , if i ∈ E∆ and l = 1.

From the corollary, on page 132 in [5], the function t 7→ kil(t) is differentiable and for
2 ≤ l ≤ n,

d

dt
kil(t) =

∑

j∈El

d

dt
pTij(t) , t ≥ 0 . (3.5)

Applying the Kolmogorov forward equation (2.18), we obtain, for 1 ≤ l ≤ n,

d

dt
kil(t) =

∑

j∈El

∑

m∈E

pTim(t)qmj

=

n
∑

x=2

∑

m∈Ex

pTim(t)
∑

j∈El

qmj

=

n
∑

x=2

∑

m∈Ex

pTim(t)q̄xl

=

n
∑

x=2

kix(t)q̄xl =

n
∑

x=1

kix(t)q̄xl .

Let i1 ∈ E1, . . . , in ∈ En. Then from the above equality, the function K(t) = {kij l(t) : 1 ≤
j, l ≤ n} satisfies

d

dt
K(t) = K(t)Q̄ , t ≥ 0 , with K(0) = Id . (3.6)

Since n < ∞, the solution of (3.6) is unique, this shows that for all l ≥ 1, the functions
t 7→ kil(t) does not depend on i ∈ Ek. Then we set

p̄kl(t) = kil(t) , for 1 ≤ k, l ≤ n and i ∈ Ek,

and P̄ (t) = {p̄kl(t) : 1 ≤ k, l ≤ n}, t ≥ 0. Form (3.6), we can write

d

dt
P̄ (t) = P̄ (t)Q̄ , t ≥ 0 , with P̄ (0) = Id . (3.7)

Then let us check that Y T is a Markov chain with transition semigroup P̄ (t), t ≥ 0 and
q-matrix Q̄. For all k1, . . . , kn, kn+1 ≥ 2, 0 ≤ s1 < s2 < · · · < sn+1 and for any measure ν

on E,

Pν(Y
T
sn+1

= kn+1 |Y
T
s1

= k1, . . . , Y
T
sn = kn)

= Pν(Xsn+1 ∈ Ekn+1 , sn+1 < T |Xs1 ∈ Ek1 , . . . ,Xsn ∈ Ekn , sn < T )

=
Eν(1I{Xs1∈Ek1

,...,Xsn∈Ekn ,sn<T}PXsn
(Xsn+1−sn ∈ Ekn+1 , sn+1 − sn < T ))

Pν(Xs1 ∈ Ek1 , . . . ,Xsn ∈ Ekn , sn < T )

= p̄knkn+1(sn+1 − sn) .

The last identity follows from the fact that for any i ∈ Ekn ,

kikn+1(sn+1 − sn) = Pi(Xsn+1−sn ∈ Ekn+1 , sn+1 − sn < T ) = p̄knkn+1(sn+1 − sn) ,
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which has been proved above. The case where k1, . . . , kn, kn+1 may possibly be equal to 1,
is proved similarly.

Then recall from (iii), the definition of the measure µ̄ on {1, . . . , n}: µ̄k =
∑

i∈Ek
µi,

k ≥ 2 and µ̄1 = 0. Let (P̄k)k≥1 be the family of probability laws associated to the Markov
process (Yt)t≥0. For all k = 2, . . . , n,

Pµ(Xt ∈ Ek, t < T ) =
∑

i∈E

µiPi(Xt ∈ Ek, t < T )

=

n
∑

l=2

∑

i∈El

µiPi(Xt ∈ Ek, t < T )

=

n
∑

l=2

µ̄lP̄l(Yt = k, t < T )

= P̄µ̄(Yt = k, t < T ) , (3.8)

where the third equality follows from the fact that Pi(Xt ∈ Ek, t < T ) = P̄l(Yt = k, t < T ),
for all i ∈ El. Assume that condition (ii) holds, then we derive from (3.2) and (3.8) that
for all k = 2, . . . , n,

P̄µ̄(Yt = k | t < T ) = µ̄k ,

which means that µ̄ is a quasi stationary distribution with respect to the lifetime of the
Markov process Y T . In particular, thanks to Theorem 2, (ii) and (iii) are equivalent. More-
over, since (2.8) in Theorem 1 is satisfied, then from (iii) in this theorem, T is exponentially
distributed under Pµ̄, with parameter α =

∑n
k=2 q̄k1µ̄k. We conclude from equality (3.8)

which shows that Pµ(t < T ) = P̄µ̄(t < T ).
Now assume that the number of elements in the partition (Ek) is countable. For all

n ≥ 1, define the set E
(n)
1 = E1 ∪ En+1 ∪ En+2 ∪ . . . and set Tn = inf{t : Xt ∈ E

(n)
1 }. Let

us consider the process Y (n) defined by

Y
(n)
t = 1I

{Xt∈E
(n)
1 }

+

n
∑

k=2

k1I{Xt∈Ek} , t ≥ 0 .

Then we have Tn = inf{t : Y
(n)
t = 1}, and the absorbed process

Y
(n),Tn

t =

{

Y
(n)
t , if t < Tn,

1 , if t ≥ Tn,
(3.9)

is a continuous time Markov chain. Indeed, the Markov chain X satisfies assumption (ii)

of the theorem with respect to the partition {E
(n)
1 , E2, . . . , En} of S. Therefore, from what

has been proved before, Y (n),Tn is a continuous time Markov chain. Moreover, we easily
check that Y (n),Tn converges in law in the sense of finite dimensional distributions to Y T

and that the later has Q̄ for q-matrix. Then the equivalence between (ii) and (iii) follows
in the same way as in the finite case. Moreover, when (i) and (ii) are satisfied then we
conclude that T is exponentially distributed with parameter α =

∑

k≥1 q̄k1µ̄k in the same
way as in the finite case. �

In the particular case where the partition {E2, E3, . . . } of E is reduced to the singletons of
E, then condition (ii) is obviously satisfied and condition (i) simply means that µ is quasi-
stationary with respect to T , hence the conclusion follows from Theorem 2. Conversely, by
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considering {E} as a partition of E, we obtain the following consequence of Theorem 3.
Recall the definition of ηi in (2.2).

Corollary 4. If there exists α > 0 such that ηi = α, for all i ∈ E, then the first passage
time T has an exponential distribution with parameter α under Pµ, for all initial distribution
µ with support in E.

Proof. We apply Theorem 3 with the finite partition {E1, E2} of S, given by E1 = D

and E2 = E. Then we see that part (i) of Theorem 3 is precisely the assumption of the
present corollary. Moreover, part (ii) simply follows from the form of the fact for all i ∈ E2,
Pi(Xt ∈ E2, t < T ) = Pi(t < T ), in this particular case. Then we conclude from Theorem 3.

�

Remarks 1. From Corollary 4, it becomes clear that there exist many instances of con-
tinuous time Markov chains for which we can find initial distributions µ such that T is
exponentially distributed under Pµ, whereas (2.6) is not satisfied.
2. Under the assumption of this corollary, if moreover there is a Yaglom limit, µ, as recalled
in the previous section, then µ is explicitly given by

µ = 1{i} +

∫ ∞

0
(1{i}Q

T + α(1{i} − δ))eαtP T (t) dt .

In particular, this expression does not depend on i.
3. In the case where S is finite, it is stated in Proposition 2.1, (ii) of [6] that if the sum of
the rows of the matrix (qij)i,j∈E are constant, then T is exponentially distributed under Pµ,
for all probability measure µ. This result is a consequence of Corollary 4 since when the
sum of the rows of the matrix (qij)i,j∈E are constant, the rates ηi are constant.

Actually it is always possible to compare the distribution of T with the exponential law,
as Proposition 1 shows. Let us first define the continuous time Markov chain X̂ by removing
D from the state space of X. More specifically, the state space of X̂ is E and its q-matrix is
given by q̂(i, j) = q(i, j), if i 6= j and i, j ∈ E and q̂(i, i) = −

∑

j∈E,i 6=j q̂(i, j), for all i ∈ E.

We denote by {P̂i : i ∈ E} the family of probability distributions associated to X̂ . Then

we may check that {(X̂t)t≥0, (P̂i)i∈E} is a continuous time irreducible and non explosive
Markov chain on E. We first establish the following lemma which presents a decomposition
of the first passage time T .

Lemma 1. Let {ε(i) : i ∈ E} be a family of random variables which is independent of

the process {(X̂t)t≥0, (P̂i)i∈E}. We suppose that each random variable ε(i) is exponentially

distributed with parameter ηi. Let (Tn)n≥1 be the sequence of jump times of X̂, set T0 = 0,
define In = Tn − Tn−1, n ≥ 1 and

T̂ =

∞
∑

n=0

(Tn + ε(X̂Tn))1IΩn , (3.10)

where Ωn = {ε(X̂T0) > I1, . . . , ε(X̂Tn−1) > In, ε(X̂Tn ) ≤ In+1}, for n ≥ 1 and Ω0 =

{ε(X̂0) ≤ I1}. Then for all i ∈ E, we have the identity in law

[(Xu, u < T ),Pi] = [(X̂u, u < T̂ ), P̂i] .

Proof. This result is a direct consequence of the general structure of continuous time Markov
chains. Indeed, it suffices to observe that when the process X is in a state i ∈ E, the
waiting time for hitting D is independent from the past and exponentially distributed, with
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parameter ηi. Hence it is clear that before time T , the process X behaves like a process in
E, i.e. X̂ killed at a time T̂ , whose decomposition is given by equation (3.10). �

The following result provides exponential bounds for the distribution function of the first
passage time.

Proposition 2. Define the rates α0 = infi∈E ηi and α1 = supi∈E ηi, where ηi is defined in
(2.2). Then the tail distribution of the first passage time T satisfies the inequalities:

e−α1t ≤ Pi(t < T ) ≤ e−α0t , (3.11)

for all t ≥ 0 and for all i ∈ E.

Proof. It follows from Lemma 1 that for all i ∈ E and t ≥ 0,

Pi(t < T ) (3.12)

= P̂i(t < T̂ )

=

∞
∑

n=0

∑

i0,...,in∈E

P̂i(t < Tn + ε(X̂Tn),Ωn | X̂T0 = i0, . . . , X̂Tn = in)×

P̂i(X̂T0 = i0, . . . , X̂Tn = in) , (3.13)

where i0 = i. Then, from the Markov property and the assumption on the random variables
{ε(i) : i ∈ E} in Lemma 1, under P̂i, conditionally on {X̂T0 = i0, . . . , X̂Tn = in}, the
random variables I1, . . . , In+1, ε(i0), . . . , ε(in) are independent. So with I = (I1, . . . , In+1)
and x = (x1, . . . , xn+1), one has

P̂i(t < Tn + ε(X̂Tn),Ωn | X̂T0 = i0, . . . , X̂Tn = in) (3.14)

=

∫

R
n+1
+

P̂i(I ∈ dx)P̂i(ε(i0) > x1, . . . , ε(in−1) > xn, t− tn < ε(in) < xn+1) ,

where tn = x1 + · · ·+ xn. The integrand in the above integral may be written as

P̂i(ε(i0) > x1, ε(i1) > x2, . . . , ε(in−1) > xn, t− tn < ε(in) < xn+1) (3.15)

= e−η(i0)x1−η(i1)x2−···−η(in−1)xn(e−η(in)[(t−tn)∨0] − e−η(in)xn+1)1I{t<tn+1} ,

where for n = 0, the term e−η(i0)x1−η(i1)x2−···−η(in−1)xn is understood to be 1. Hence by
applying successively (3.15), (3.14) and (3.13), it follows

Pi(t < T )

= Êi

(

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

)

,

where for each n, {X ′
n : n ≥ 0} is a sequence of random variables which has the same law

as {X̂n :≥ 0} under P̂x and which is independent of the sequence {Tn : n ≥ 0}. Let k be
the (random) index such that Tk ≤ t < Tk+1, then we easily check that the term which is
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in the expectation of the right hand side of the above equality is

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

= e−η(X′

0)I1−···−η(X′

k−1)Ik
[

e−η(X′

k
)(t−Tk) − e−η(X′

k
)Ik+1

]

+

∞
∑

n=k+1

e−η(X′

0)I1−···−η(X′

n−1)In
[

1− e−η(X′

n)In+1

]

= e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k
)(t−Tk) .

But from the assumption, we have η(X ′
n) ≥ α0, a.s., for each n ≥ 0, so that it follows

e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k
)(t−Tk) ≤ e−α0(I1+···+Ik)e−α0(t−Tk) = e−α0t, a.s. which gives the

second inequality in (3.11).
We obtain the first inequality in (3.11) by bounding from above the term Pi(T ≤ t).

More precisely, we show that Pi(T ≤ t) = 1 − Pi(t < T ) ≤ e−α1t in the same way as we
obtained the other bound. �

Note that Corollary 4 may also be obtained as a direct consequence on Proposition 1. It
suffices to assume that α0 = α1 in this proposition.

3.2. Application to the emergence time of a mutant escaping treatment. Let us
consider the case of a pathogen population living on a host population. At each time t, the
whole host population is either treated or not. The mutation rate depends on the pathogen
population size. Since treatment reduces the pathogen population size, we assume that
the mutation rate takes two different values, according to the presence or absence of the
treatment. Then, the dynamics of the pathogen population size is described as a Markov
chain X whose state space S is split up in three parts, that is S = E1 ∪ E2 ∪ E3, with :

. E1, the set of values of the pathogen population size when the population contains
at least one mutant,

. E2, the set of values of the pathogen population size when the population contains
no mutants and its size is less than a given value K,

. E3, the set of values of the pathogen population size when the population contains
no mutants and its size is greater than K.

The set E2 corresponds to the presence of treatment and E3 corresponds to its absence.
Recall the notation of Theorem 3. The transition rates between E2 and E3 depend only
on the treatment strategy and are considered to be constant equal to q̄23 and q̄32. We
also note the two transition rates to E1, that is the mutations rates, by q̄21 and q̄31. The
emergence time is then defined as T = inf{t ≥ 0 : Xt ∈ E1}.

Let us consider a treatment strategy ensuring that the probability for the pathogen
population size to be less than K, before a mutation occurs, is µ(E2) = µ̄2. Similarly, the
probability for the size to be greater than K, before mutation, is µ(E3) = µ̄3 = 1−µ̄2. From
Theorem 3, T is exponentially distributed with parameter α > 0, if µ̄ solves the equation :

µ̄Q̄T = −αµ̄ , (3.16)

with

Q̄T =

(

−q̄23 − q̄21 q̄23
q̄32 −q̄32 − q̄31

)

.
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Set α = µ̄2q̄21 + µ̄3q̄31 and

µ̄2 =
q̄21 − q̄31 + q̄23 + q̄32 −

√

(q̄21 − q̄31 + q̄23 − q̄32)2 + 4q̄23q̄32
2(q̄21 − q̄31)

,

then we can check that µ̄ = (µ̄2, µ̄3) is a solution of (3.16), so that with this choice for α

and µ̄, the time T is exponentially distributed with parameter α > 0.

From a biological point of view, these results may be interpreted and used as follows.
The rate µ̄2 represents the proportion of time during which the host population has been
treated after some time. From this proportion of time, we can determine the emergence
time of a mutant pathogen. Then a treatment strategy can be designed.

4. When exponentiality implies quasi-stationarity

In this section, we present two examples where exponentiality implies quasi-stationarity.
The first one concerns extinction times in branching processes and in the second one we set
out the case of the emergence time of a new type in a multitype branching process.

4.1. Extinction time in branching processes. Let (Zt, t ≥ 0) be an irreducible critical
or subcritical continuous time branching process on the set S = {0, 1, . . . } of nonnegative
integers, as it is defined in Chapter III of [1]. Set D = {0} and recall the definition of the
first passage time:

T = inf{t : Zt = 0} ,

which is an absorbtion time in the present case. Then it is well known that under these
assumptions, Pk(T < ∞) = 1, for all k ≥ 1 and from the branching property, we have for
all k ∈ E = {1, 2, . . . } and all t > 0,

Pk(T ≤ t) = Pk(Zt = 0)

= [P1(Zt = 0)]k . (4.1)

Let us set qt = P1(Zt = 0), then from (4.1), for any probability measure µ on E, the
quantity Pµ(Zt = 0) corresponds to the generating function Gµ of µ evaluated at the point
qt, that is

Pµ(Zt = 0) =

∞
∑

k=0

Pk(Zt = 0)µ(k)

=

∞
∑

k=0

qkt µ(k)

= Gµ(qt) . (4.2)

Note that qt is a non decreasing function. Let q−1
t be its right continuous inverse, i.e.

q−1
t = inf{s : qs > t}. Then from (4.1) and (4.2), for T to be exponentially distributed

under Pµ with parameter α > 0, we should have for all t ∈ [0, 1):

Gµ(t) = 1− e−αq−1
t . (4.3)

Equation (4.3) shows that for each α > 0, there is exactly one measure µ = µα, with support
on E such that T is exponentially distributed with parameter α, under Pµ. According
to Theorem 3.1 in [14], that is easily extended to discrete state space, continuous time
branching processes, if the Malthusian parameter ρ of (Zt, t ≥ 0), i.e. E1(Zt) = e−ρt, is
strictly positive, then for α ≤ ρ, µα is a quasi-stationary distribution, whereas it is not in
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the case where α > ρ. When ρ = 0 there is no quasi-stationary distribution associated to
T .

Observe that sometimes the generating function Gµα may be derived explicitly. For
instance in [1], p.109, it is proved that if Z is a birth and death process with rates λn = nλ

and νn = nµ, when the process is in state n, then

qt =
νe(ν−λ)t − ν

νe(ν−λ)t − λ
.

With q−1
t = ln

(

ν−λt
ν(1−t)

) 1
ν−λ

, we obtain,

Gµα(t) = 1−

(

ν − λt

ν(1− t)

)
−α
ν−λ

, t ∈ [0, 1) ,

which allows us to recover the generating function of the unique quasi stationary distribution
associated to T and α. In the case of continuous state branching processes, a similar
expression for the Laplace transform of µα has been obtained in [14], see p. 438 therein.

4.2. Emergence time in multitype branching processes. Let Z = (Z(1), . . . , Z(d)) be
a d-type, irreducible, supercritical branching process, see Section V.7 in [1]. The state space

of Z is then S = {0, 1, . . . }d. Let ν = (ν(1), . . . , ν(d)) be the offspring distribution of Z. We
assume that for all i = 1, . . . , d,

ν(i)(0) = 0 ,

so that, each individual has at least one child, with probability 1. In particular, the extinc-
tion time is almost surely infinite. Then we are concerned with the emergence time of the
subpopulation of type d, that is:

T = inf{t : Z
(d)
t ≥ 1} .

For k = (k1, . . . , kd) ∈ S, let Pk be the probability under which Z starts from k, i.e.
Z0 = k, Pk-a.s. It is not difficult to check that under our assumptions, Pk(T < ∞) = 1,
for all k ∈ S \ {0}. In the present case, the domain in which T is the first passage time
is D = S \ ({0, 1, . . . }d−1 × {0}), that is E = {0, 1, . . . }d−1 × {0}. Let ei ∈ S be defined
as e1 = (1, 0, . . . , 0, . . . , 0), e2 = (0, 1, 0 . . . , 0, . . . , 0),... Then we derive from the branching
property of Z that for all k ∈ E,

Pk(T > t) =

d−1
∏

i=1

Pei
(T > t)ki . (4.4)

(Recall that kd = 0, when k ∈ E.) Let µ be a distribution whose support is included in E.
Recall that the (multidimentional) generating function of µ is defined by

Gµ(t) =
∑

k∈E

tk11 . . . t
kd
d µ(k) , for t = (t1, . . . , td) ∈ [0, 1)d. (4.5)

Let us set qi,t = Pei
(T > t) and for k ∈ E, let qt = (q1,t, . . . , qd,t) and qk

t = qk11,t×· · ·×q
kd
d,t =

qk11,t × · · · × q
kd−1

d−1,t (recall that qd,t ≡ 1). Then we derive from (4.4) and (4.5) that

Pµ(T > t) =
∑

k∈E

qk

t µ(k) , t ∈ [0, 1) ,

= Gµ(qt) . (4.6)
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Let us assume that d = 2. Then in this case, the state space of the process Z killed at
time T can be identified to {0, 1, . . . }, so we write Pk, k ∈ {0, 1, . . . } for the probability
distributions associated to the killed process. Similarly to the situation presented in 4.1,
for each α > 0, the distribution µα such that Pµα(T > t) = e−αt, is uniquely determined

by equation (4.6). Indeed, if q−1
1,t is the right continuous inverse of q1,t = P1(T > t), then

Gµα(t) = e−αq−1
1,t , t ≥ 0 .

An open question is then to determine whether if µα is quasi-stationary or not. According
to Theorem 2, it amounts to check if µα satisfies the equation µαQ

T = −αµα+αδ. Besides,
from Theorem 1.1 in [8] this can be determined at least for the rate α which is defined in
(2.20), that is

α = inf

{

a ≥ 0 :

∫ ∞

0
eatPi(T > t) dt = ∞

}

.

Then provided α is strictly positive and limk→∞ Pk(T < t) = 0, for all t ≥ 0 (the
latter condition is clearly satisfied in our case) the distribution µα is a quasi-stationary
distribution associated to the rate α.

Remarks 1. In the case where S is a finite set, another example where exponentiality
implies quasi-stationarity is given in part (iii) of Proposition 2.1 of [6]. The Markov chain
that is considered in this work is a random walk in the finite set {0, 1, . . . , N} killed at 0.
2. In the case of continuous state space Markov processes, other examples where exponen-
tiality implies quasi-stationarity have been emphasized in [9]. In this work it is proved that
if the absorbtion time of a positive selfsimilar Markov process is exponentially distributed
under some initial distribution, then the latter is necessarily quasi-stationary.

Acknowledgement We are very grateful to Professor Servet Martínez to have pointed out
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