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1 Introduction

A competition process
(

X, {Pi : i ∈ N
d
0}
)

is a continuous time homogeneous
Markov chain with state space N

d
0, for d ≥ 1, whose transition matrix only

allows jumps to certain nearest neighbors. Competition processes where intro-
duced by Reuter [14] as the natural extensions of birth and death processes
and are often involved in epidemic models [3,5,8,10]. Here, we use competition
processes in order to study adaptive population dynamics. Let us first give a
proper definition.

We call {pt(i, j) : t ≥ 0 , i, j ∈ N
d
0} the transition probability functions

of the Markov chain X = {(X
(1)
t , . . . , X

(d)
t ), t ≥ 0}, and we denote by Q =

{q(i, j) : i, j ∈ N
d
0} the associated Q-matrix, i.e. q(i, j) = p′0(i, j). Let i =

(i1, . . . , id), then this matrix is defined as follows:

q(i, j) = λk(i) , j = (i1, . . . , ik−1, ik + 1, ik+1, . . . , id)

= µk(i) , j = (i1, . . . , ik−1, ik − 1, ik+1, . . . , id)

= γkl(i) , j = (i1, . . . , ik−1, ik − 1, ik+1, . . . , il−1, il + 1, il+1, . . . , id)

= γlk(i) , j = (i1, . . . , ik−1, ik + 1, ik+1, . . . , il−1, il − 1, il+1, . . . , id)

= −
∑

x 6=i

q(i, x) , j = i

= 0 , for other j.

The value q(i, j) is the transition rate at which the process jumps from the state
i to the state j. For k, l ∈ {1, . . . , d}, λk, µk and γkl, are nonnegative functions.
The values λk(i) and µk(i) represent the rates at which an individual of type k
is born or dies, respectively, when the population is of size i ∈ N

d
0. The values

γkl represent the rates at which an individual of type k mutates into an indi-
vidual of type l. We assume that for all k and l, µk(i) = γkl(i) = 0 if ik = 0. We
emphasize that Q is conservative, i.e. q(i, i) = −

∑

j 6=i q(i, j), for all i ∈ N
d
0, so

that the Q-matrix is related to the transition functions through the backward
and forward Kolmogorov equations. We also make the classical regularity as-
sumption under which the Q-matrix determines the law of X , see for instance
[6]. So X stays in state i for an exponential time with parameter

∑

x 6=i q(i, x)

and then jumps to state j with probability q(i, j)
(

∑

x 6=i q(i, x)
)−1

.

Adaptation to a new environment pass by the emergence of new mutants.
For example, we may imagine the following situations: a parasite infecting a
resistant or new host, a pathogen evading chemical treatment, a cancer cell es-
caping from chemotherapy, etc. [5,7,8,16]. An interesting and important point
is to estimate the law of the time at which these new individuals emerge, for
example to estimate the durability or the success probability of a new treat-
ment or a new resistance. Emergence problem has already been considered in
the setting of branching processes [15,16] and for multitype Moran models [4].
However, if branching processes approaches provide really suitable methods for



On emergence times of competition processes 3

the study of extinction issues [2,12], emergence problems seems to be more dif-
ficult to tackle under general progeny distributions. On the other hand, Moran
type models are efficient especially for the estimation of emergence times, as
the population size growths. Competition processes models are generally well
adapted to emergence problems provided birth, death and mutation rates are
properly adjusted as it is illustrated in Section 4. In this paper, we are inter-
ested in the computation of the law of the first time Sr when an individual of
type r = 1, . . . , d first emerges from the population (Fig. 1), i.e.

Sr = inf{t ≥ 0 : X
(r)
t = 1} .

Let us also point out that in some cases, type r may become extinct after the
time Sr, so that this time may not correspond to the first time at which type
r will settle definitively in the population. In such situations, it is still possible

to use the same method to study the time inf{t ≥ 0 : X
(r)
t = n}, where n is a

level by which type r is definitively settled, with an arbitrary large probability.

Fig. 1 Emergence time of a three dimensional competition process. This sample
path shows the variations of the three populations over the time. Solid line, big dashed line
and small dashed line correspond to first, second and third type, respectively. Then S3 is
the emergence time of the third type.

This paper is organized as follows. In Section 2, we first give an estimation
of the distribution function of the emergence time when the process starts
from any initial law supported by the set {i ∈ N

d
0 : ir = 0}. Then we show

that when the initial law is a quasi-stationary distribution, the emergence
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time is exponentially distributed with a parameter which is made explicit in
terms of the transition rates. In Section 3, we discuss some conditions for
the existence of quasi-stationary distributions. In Section 4, as an application
of these results, we give a biological example of the time for pathogen type
overcome host resistance. Then Section 5 is an annex which is devoted to the
proof of a technical lemma.

2 Emergence of a particular type.

In this section, we consider a competition process
(

X, {Pi : i ∈ N
d
0}
)

as it is
defined in the introduction. Although our model is based on competition pro-
cesses, some results of this section may be generalized to general continuous
time Markov chains. For the sake of simplicity, we suppose that the type whose
emergence time is of interest is d. So in the sequel, we denote Sd by S, i.e.
with X = (X(1), . . . , X(d)), we set

S = inf{t ≥ 0 : X
(d)
t = 1} .

2.1 Some bounds for the tail distribution.

This subsection aims at describing the time S in terms of the characteristics
of the competition process X , in order to determine the exponential decay of
its distribution function, under general conditions.

Definition 1 We set for all i ∈ N
d
0,

η(i) = λd(i) +

d
∑

l=1

γld(i) .

The values η(i) will be called the emergence rates (of type d). In particular,
when X is in a state i, an individual of type d will appear with probability

η(i)
(

∑

j 6=i q(i, j)
)−1

.

We define the restricted process X̂ as the (d − 1)-dimensional competition
process with rates q̂(x, y) = q(x′, y′), if x 6= y, where x = (x1, . . . , xd−1), y =
(y1, . . . , yd−1) and x′ = (x1, . . . , xd−1, 0), y

′ = (y1, . . . , yd−1, 0) and q̂(x, x) =

−
∑

y∈N
d−1
0 ,x 6=y q̂(x, y). We denote by {P̂x : x ∈ N

d−1
0 } the family of probability

distributions of the process X̂. Then we may check that
(

X̂, {P̂x : x ∈ N
d−1
0 }

)

is a competition process on N
d−1
0 whose Q-matrix is Q̂ = {q̂(x, y) : x, y ∈

N
d−1
0 }.

In all the remainder of this paper, we assume that the Q-matrices Q and Q̂
are regular, i.e. they determine the laws of X and X̂ respectively, in a unique
way. We refer to Section 2 of [6] where some sufficient conditions for regularity
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of Q-matrices of competition processes are obtained. We begin this subsection
with the following lemma which presents a decomposition of the process X up
to time S.

Lemma 1 Let {ε(x) : x ∈ N
d−1
0 } be a family of random variables which is

independent of the process X̂. We suppose that each random variable ε(x) is
exponentially distributed with parameter η(x′), where x′ = (x1, . . . , xd−1, 0).
Let (Tn)n≥1 be the sequence of jump times of X̂, set T0 = 0, define In =
Tn − Tn−1, n ≥ 1 and

Ŝ =

∞
∑

n=0

(Tn + ε(X̂Tn))1IΩn , (2.1)

where Ωn = {ε(X̂T0) > I1, . . . , ε(X̂Tn−1) > In, ε(X̂Tn) ≤ In+1}, for n ≥ 1 and

Ω0 = {ε(X̂0) ≤ I1}. Then for all x ∈ N
d−1
0 , we have the identity in law

[((X(1)
u , . . . , X(d−1)

u ), u < S),P(x,0)] = [(X̂u, u < Ŝ), P̂x] .

Proof This result is a direct consequence of the general structure of continuous
time Markov chains. Indeed, it suffices to observe that when the process X is
in a state i ∈ N

d−1
0 ×{0}, the waiting time for type d to emerge is independent

from the past and exponentially distributed, with parameter η(i) = λr(i) +
∑d

l=1 γlr(i). Hence it is clear that before time S, the process X behaves like a

competition process in N
d−1
0 , i.e. X̂ killed at a time Ŝ, whose decomposition

is given by equation (2.1).

As an application of this lemma, the following result provides exponential
bounds for the distribution function of the emergence time. From now on we
set

E = N
d−1
0 × {0}.

Theorem 1 Define the rates α0 = infi∈E η(i) and α1 = supi∈E η(i). Then
the tail distribution of the emergence time S satisfies the inequalities:

e−α1t ≤ Pi(t < S) ≤ e−α0t , (2.2)

for all t ≥ 0 and for all i ∈ E. In particular, if there exists α > 0 such that
η(i) = α, for all i ∈ E, then the emergence time S has an exponential law with
parameter α under Pµ, for all initial distribution µ with support in E.

Proof It follows from Lemma 1 that for all x ∈ N
d−1
0 and t ≥ 0,

P(x,0)(t < S) (2.3)

= P̂x(t < Ŝ)

=

∞
∑

n=0

∑

x0,...,xn∈N
d−1
0

P̂x(t < Tn + ε(X̂Tn), Ωn | X̂T0 = x0, . . . , X̂Tn = xn)×

P̂x(X̂T0 = x0, . . . , X̂Tn = xn) , (2.4)
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where x0 = x. Then, from the Markov property and the assumption on the
random variables {ε(x) : x ∈ N

d−1
0 } in Lemma 1, under P̂x, conditionally on

{X̂T0 = x0, . . . , X̂Tn = xn}, the random variables I1, . . . , In+1, ε(x0), . . . , ε(xn)
are independent. So with I = (I1, . . . , In+1) and y = (y1, . . . , yn+1), one has

P̂x(t < Tn + ε(X̂Tn), Ωn | X̂T0 = x0, . . . , X̂Tn = xn) (2.5)

=

∫

R
n+1
+

P̂x(I ∈ dy)P̂x(ε(x0) > y1, . . . , ε(xn−1) > yn, t− tn < ε(xn) < yn+1) ,

where tn = y1 + · · ·+ yn. For all k ≥ 0, set x′
k = (xk, 0). The integrand in the

above integral may be written as

P̂x(ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn, t− tn < ε(xn) < yn+1) (2.6)

= e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn(e−η(x′

n)[(t−tn)∨0] − e−η(x′

n)yn+1)1I{t<tn+1} ,

where for n = 0, the term e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn is understood to be
1. Hence by applying successively (2.6), (2.5) and (2.4), it follows

P(x,0)(t < S)

= Êx

(

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

)

,

where for each n, X ′
n = (X̃n, 0) and {X̃n : n ≥ 0} is a sequence of random

variables which has the same law as {X̂n :≥ 0} under P̂x and which is inde-
pendent of the sequence {Tn : n ≥ 0}. Let k be the (random) index such that
Tk ≤ t < Tk+1, then we easily check that the term which is in the expectation
of the right hand side of the above equality is

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

= e−η(X′

0)I1−···−η(X′

k−1)Ik
[

e−η(X′

k)(t−Tk) − e−η(X′

k)Ik+1

]

+

∞
∑

n=k+1

e−η(X′

0)I1−···−η(X′

n−1)In
[

1− e−η(X′

n)In+1

]

= e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k)(t−Tk) .

But from the assumption, we have η(X ′
n) ≥ α0, a.s., for each n ≥ 0, so that

it follows e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k)(t−Tk) ≤ e−α0(I1+···+Ik)e−α0(t−Tk) =
e−α0t, a.s. which gives the second inequality in (2.2).

The other inequality is proved in the same way, by obtaining an upper
bound for P̂x(Tn + ε(X̂Tn) ≤ t, Ωn | X̂T1 = x1, . . . , X̂Tn = xn). As above, this
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term can be desintegrated as

P̂x(Tn + ε(X̂Tn) ≤ t, Ωn | X̂T1 = x1, . . . , X̂Tn = xn)

=

∫

Rn
+

P (I ∈ dy)P (ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn,

ε(xn) < yn+1 ∧ (t− tn)) ,

and for the integrand, we have

P (ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn, ε(xn) < yn+1 ∧ (t− tn))

= e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn(1 − e−η(x′

n)[yn+1∧(t−tn)])1I{tn≤t} ,

so that

P(x,0)(t < S)

= Êx

(

∞
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)[In+1∧(t−Tn)])1I{Tn≤t}

)

.

If k is such that Tk ≤ t < Tk+1, then

∞
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)[In+1∧(t−Tn)])1I{Tn≤t}

=
k−1
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)In+1) +

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

k−1)Ik(1− e−η(X′

k)(t−Tk))

= 1− eη(X
′

k)t .

But since η(X ′
k) ≤ α1, a.s., we have 1− eη(X

′

k)t ≤ 1− e−α1 , a.s., which proves
the first inequality in (2.2).

We emphasize that for Proposition 1 to be relevant in the applications it is
necessary that α0 > 0 and/or α1 < ∞. In practice, the emergence rates are
often bounded away from 0 and ∞. At least, most of the time, it is reasonable
to make this assumption, see the application of Section 4.

2.2 Using quasi-stationary distributions

As already seen in the previous subsection, in order to study the emergence
time S, it is necessary to have a good description of the whole process X up
to this time. To be more specific, we introduce the killed process at time S, as
follows:

XS
t =

{

Xt , if t < S,
∆ , if t ≥ S,

(2.7)
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where ∆ is a cemetery point. Then XS is a continuous time Markov chain
which is valued in E ∪ {∆}, whose Q-matrix QS = (qS(i, j)) is given by

qS(i, j) =







q(i, j) , i, j ∈ E
q(i,∆) = η(i) , i ∈ E
q(∆, j) = 0 , j ∈ E ∪ {∆} .

(2.8)

Again, we assume that the matrix QS is regular, so that there exists a unique
associated transition probability that we will denote by PS . We define the
vector δ by δ(i) = 0, if i ∈ E and δ(∆) = 1.

Theorem 2 A probability distribution µ on E satisfies

Pµ(Xt = i |S > t) = µ(i) , (2.9)

for all t ≥ 0 and i ∈ E, if and only if it solves the equation

µQS = −αµ+ αδ , (2.10)

for some α ∈ [0,∞). Moreover under Pµ, the time S is exponentially dis-
tributed with parameter

α =
∑

i∈E

η(i)µ(i) . (2.11)

Proof Let us first show that under condition (2.9), the time S is exponentially
distributed. Let s, t ≥ 0, then from the definition of S and the Markov property
applied at time s, we have

Pµ(S > s+ t) = Pµ(1I{t<S}PXt(s < S))

= Pµ(t < S)Pµ(s < S) ,

where the last equality follows from (2.9). This proves our assertion.
Then suppose that condition (2.9) holds and let α be the parameter of the

law of time S. Since η(i) < ∞, for all i ∈ E, we have Pi(S = 0) = 0, for all
i ∈ E, so that Pµ(S = 0) = 0, therefore α < ∞. We extend the law µ on E∪∆
by setting µ(∆) = 0. Then for all i ∈ E ∪∆, one has

Pµ(X
S
t = i) = Pµ(Xt = i, t < S) + 1Ii=∆Pµ(t ≥ S) .

Since Pµ(Xt = i, t < S) = e−αtµ(i), the transition function PS(t) of XS

satisfies

µPS(t) = e−αtµ+ (1− e−αt)δ . (2.12)

Differentiating with respect to t and applying Kolmogorov’s backward equa-
tion gives

µ
d

dt
PS(t) = −αe−αtµ+ αe−αtδ

= µQSPS(t) . (2.13)
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Note that this differentiation is justified since each state in E is connected to
a finite number of neighbors through (Pt) (and hence (PS

t )), so that the term
µPS(t) is the sum of a finite number of functions. Then from (2.12) and since
δPS(t) = δ, we see that a solution of equation (2.13) is given by

µQS = −αµ+ αδ .

We finally deduce that µQS(∆) =
∑

i∈E∪∆ µ(i)qS(i,∆) =
∑

i∈E µ(i)η(i) = α.
Conversely, let us assume that µ is a distribution on E which satisfies

equation (2.10), for some value α ∈ [0,∞). Let us denote by PS its associated
transition function. (Note that PS is unique according to our assumption
of regularity.) Then from Kolmogorov’s backward equation and (2.10), the
transition function µPS satisfies the equation

d

dt
µPS(t) = −αµP (t) + αδ .

This equation admits µPS(t) = e−αtµ+(1− e−αt)δ as a unique solution. But
the later equality is equivalent to (2.9).

A probability distribution µ which satisfies (2.9) is called a quasi-stationary
distribution. We refer to [11] and Chap. 3 of [9] where some connections be-
tween quasi-stationary distributions and the Q-matrix are presented for gen-
eral continuous time Markov chains. In population dynamics, these distribu-
tions are very much involved, and most of the time they are used to study
extinction of populations, see for instance [2], [10], [12] and [18].

Remark 1 There are situations where the emergence time may not corre-
spond to the first time at which the subpopulation of type d will fix in the
population. More specifically, this time may occur only when the subpopulation
size reaches a certain level. For example, in epidemiology, it is interesting to
know the time at which the pathogen population reaches a certain level (in or-
der to start treatments for instance). In this case one is rather interested in
the waiting time S(n):

S(n) = inf{t ≥ 0 : X
(d)
t = n} .

Previous results may easily be adapted to S(n) by considering:

En = N
d−1
0 × {0, 1, . . . , n− 1} .

Then we define the killed process XS(n)

as in (2.7). The later is a En ∪ {∆}-

valued continuous time Markov chain whose Q-matrix QS(n)

= (qS
(n)

(i, j))
may be expressed as in (2.8), with

η(i) =

{

λd(i) +
∑d

l=1 γld(i) , if id = n,
0 , otherwise.
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Then the same conclusion as in Theorem 2 holds, that is a probability distri-
bution µ on En satisfies

Pµ(Xt = i |S(n) > t) = µ(i) ,

for all t > 0 and i ∈ En, if and only if it solves the equation

µQS = −αµ+ αδ ,

for some α ≥ 0, and under Pµ, the time S(n) is exponentially distributed with
parameter

α =
∑

i∈E

η(i)µ(i) .

3 On the existence of quasi-stationary distributions

In the following subsection, we provide some sufficient conditions for the ex-
istence of quasi-stationary distributions. Then in the next subsection, we will
apply these results to a particular case of 2-dimensional competition process.

3.1 General results

We keep the assumptions of Section 2, that is
(

X, {Pi : i ∈ N
d
0}
)

is a competi-
tion process such that the conservative Q-matrices Q and QS are regular. We
denote by ⇒ the weak convergence of probability measures.

Theorem 3 If there exist probability measures π and µ on E, such that

Pπ(Xt ∈ dx |S > t) ⇒ µ(dx) , as t → +∞ ,

then µ satisfies condition (2.9).

Proof From the hypothesis, for all bounded function f : Nd
0 → R,

lim
t→∞

Pπ(f(Xt) |S > t) =

∫

f(x)µ(dx) .

Let u > 0 and A ⊆ E, then applying this identity to the function f(x) =
Px(Xu ∈ A, S > u) and the Markov property gives

∫

f(x)µ(dx) = lim
t→∞

Eπ(PXt(Xu ∈ A, S > u) |S > t)

= lim
t→∞

Pπ(Xt+u ∈ A, S > t+ u)
1

P(S > t)

= lim
t→∞

Pπ(Xt+u ∈ A |S > t+ u)
Pπ(S > t+ u)

Pπ(S > t)
. (3.14)
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Let A = E in this identity. We obtain that for each u > 0,

lim
t→∞

Pπ(S > t+ u)

Pπ(S > t)
= Pµ(S > u) .

Since Pµ(S = 0) = 0, the above identity shows that S is exponentially dis-
tributed under Pµ, with parameter α = − logPµ(S > 1) > 0, i.e., for all u ≥ 0,
Pµ(S > u) = e−αu. Plugging this equality into (3.14), gives

eαuPµ(Xu ∈ A, u < S) = lim
t→∞

Pπ(Xt+u ∈ A |S > t+ u)

= µ(A) ,

which is identity (2.9).

Theorem 1 provides a sufficient condition for the existence of a quasi-stationary
distribution. However, in practice, for this result to be exploitable, we need
some information on the law of Xu conditionally to {S > u}.

Now we focus on conditions regarding the Q-matrix which are a bit more
technical than Theorem 1 but that can be verified provided this matrix is
sufficiently explicit. An application will be given in subsection 3.2. We first
state a general result on the existence of negative eigenvalues.

Proposition 1 Let M = (mij) be any matrix on E and denote by I the matrix
of the identity on E. If there exists a real c ∈ (0,∞) such that,

(a) for all i, j ∈ E and k ∈ N0,

m
(k)
ij < ∞ , (3.15)

(b) the matrix (M + cI) is nonnegative and irreductible,
(c) there exists i, j ∈ E such that

0 < lim
n→+∞

(

n
∑

k=0

Ck
nm

(k)
ij cn−k

)1/n

≤ c , (3.16)

then M admits a negative left eigenvalue with an associated positive eigenvector
(i.e. there are α ≥ 0 and µ such that 0 < µ(i) < ∞, for all i ∈ E and
µM = −αµ).

Proof This result is a consequence of Theorem 3.3 in [1]. Let us first check that
M + cI satisfies the three conditions of this theorem. We denote by (cij)i,j∈E

the entries of this matrix. First we derive from (a) that for all i, j ∈ E and
n ∈ N0,

c
(n)
ij =

n
∑

k=0

Ck
nm

(k)
ij cn−k < ∞ ,

so that condition i) of Theorem 3.3. in [1] is satisfied. Then since from as-
sumption (b), the matrix M + cI is irreducible, by definition for all i, j ∈
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E there exists n ≥ 1 such that c
(n)
ij > 0, which is condition ii) of The-

orem 3.3. in [1]. From Theorem A in [19], the limits limn→+∞(c
(n)
ij )1/n =

lim
n→+∞

(

n
∑

k=0

Ck
nm

(k)
ij cn−k

)1/n

exist and do not depend on i, j ∈ E. Let us de-

note by λ∗ their common value. From Theorem A in [19], λ∗ is the maximum
eigenvalue of M + cI. Moreover, from (c) we have

0 < λ∗ ≤ c .

This implies, condition iii) of Theorem 3.3 in [1]. We deduce from this theorem
that there exists a vector µ such that for all i, 0 < µ(i) < +∞ and

µ(M + cI) = µM + cµI = µM + cµ = λ∗µ .

Since λ∗ ≤ c, we have
µM = λ∗µ− cµ = −αµ ,

with α = c− λ∗ ≥ 0, and the conclusion of the proposition follows.

A Q-matrix Q on N
d
0 being given, we consider the matrix Q = (q̄ij) on E

which is defined by
qij = qij , i, j ∈ E . (3.17)

Note that ifQS satisfies equation (2.10) for some nonnegative vector µ (i.e. such
that µ(i) ≥ 0, for all i ∈ E and

∑

i∈E µ(i) > 0) and α ∈ [0,∞), then −α is a

left eigenvalue of Q and µ is an associated eigenvector, i.e.

µQ = −αµ . (3.18)

Conversely, if µ is a nonnegative vector such that 0 <
∑

i∈E µ(i) < ∞, then
equation (3.18), for µ and α ∈ [0,∞) implies equation (2.10) and hence (2.11),

for the vector
(
∑

i∈E µ(i)
)−1

µ and the value α.

Therefore if the matrix Q satisfies the conditions of Proposition 1 with
an eigenvector µ such that 0 <

∑

i∈E µ(i) < ∞, then we may conclude
to the existence of a quasi-stationary distribution. Note that the condition
∑

i∈E µ(i) < ∞ is satisfied whenever the state space E is finite and that in
this case, Proposition 1 amounts to Perron-Frobenius Theorem.

3.2 Application to a 2-dimensional competition process

In this subsection we apply Proposition 1 and the consecutive discussion to
the particular case of a 2-dimensional competition process with constant birth
and death rates q > 0 and bounded emergence rates, i.e. α1 = supi∈E ηi < ∞.
The state space is then E = N0 × {0} which will be identified to the set of
nonnegative integers, i.e. E = N0.

The matrix Q introduced in (3.17) which is associated to the Q-matrix of
this competition process is then given by
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Q =











−2q − η1 2q 0 . . .
q −2q − η2 q 0 . . .
0 q −2q − η3 q 0 . . .
...

. . .
. . .

. . .
. . .











.

In the remainder of this subsection, we will check that the matrix Q satisfies
conditions (a), (b) and (c) of Proposition 1. First note that condition (a) is nec-
essarily satisfied since the matrix Q has a finite number of nonzero coefficients
on each line and column.

Then in order to show that conditions (b) and (c) are satisfied, we state
a couple of preliminary results bearing on the matrix D = (dij)i,j∈E with
coefficients

dij =

{

1 , if i+ 1 = j or i− 1 = j,
0 , otherwise.

We first notice the following relations which follow directly from the definition
of D: for all i ∈ N0, j > 0 and n > 1,

d
(n)
ij = d

(n−1)
i(j−1) + d

(n−1)
i(j+1) and d

(n)
i0 = d

(n−1)
i1 , (3.19)

where d
(n)
ij denote the coefficients of the matrix Dn. The proof of the following

lemma is postponed to the annex, in Section 5.

Lemma 2 The coefficients of the matrix Dn satisfy the following relations.

1. For all i, j ∈ E and n > 0,

d
(n)
ij = 0 if















j > 2 + i+ n,
or i > 2 + j + n,
or i = j (mod 2), when n is odd,
or i+ 1 = j (mod 2), when n is even,

and

d
(n)
ij > 0, otherwise. (3.20)

2. For all n > 0, d
(n)
0n = 1 and for all k > 0 and n ≥ 2k, the coefficient

d
(n)
0(n−2k) may be expressed through the following sum:

d
(n)
0(n−2k) =

n−2k
∑

i0=0

n−2k+1−i0
∑

i1=0

n−2k+2−i0−i1
∑

i2=0

. . .

n−k−2−i0−i1−···−ik−3
∑

ik−2=0

n−k−1−i0−i1−···−ik−2
∑

ik−1=0

1 . (3.21)

3. For all k > 0 and n ≥ 2k,

d
(n)
0(n−2k) =

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k) . (3.22)
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Now let us define the matrix, B = (bij)i,j∈E , with coefficients:

bij =







1 , if i+ 1 = j or i− 1 = j, and (i, j) 6= (0, 1),
2 , if (i, j) = (0, 1),
0 , otherwise.

Let c be a real such that c− 2q > α1, then we have the decomposition:

Q+ cI = qB +















u1 0 . . .

0
. . .

. . .
...
. . . ui

. . .















, (3.23)

where ui = c − 2q − ηi > 0. From our assumption, it follows that u
(def)
=

infi∈E ui > 0 and from (3.23), we derive that (Q + cI)
(n)
ij ≥ (qB + uI)

(n)
ij =

n
∑

k=0

Ck
nb

(k)
ij un−k, for all i, j and n. Note that the coefficients of the matrix B

are very close to those of D, indeed we have bij = dij , for all (i, j) 6= (0, 1)
and b01 = 2d01. Then we easily see similar arguments to those of the proof of
part 1. of Lemma 2, can be applied to B in order to show that for all i, j ∈ E,

there exists k such that b
(k)
ij > 0. This property, together with the previous

inequality proves that Q + cI is irreductible, so that Q satisfies part (b) of
Proposition 1.

Now we shall focus on the particular value d
(2n)
00 . The following result

presents some interest in its own since it provides a new characterization of
Catalan numbers.

Proposition 2 For all n ∈ N, the first element of the matrix D2n, (i.e. d
(2n)
00 )

is equal to the nth Catalan number,

Cn
(def)
=

1

n+ 1
Cn

2n . (3.24)

Proof The proof bears on the characterization of the nth Catalan number
which is given in Corollary 6.2.3 of [17]. This result asserts that Cn is the
number of monotonic paths along the edges of a grid with n× n square cells,
which do not pass above the diagonal.

Recall from (3.21) that we have, for all n > 0,

d
(2n)
00 =

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

· · ·

n−2−i0−i1−···−in−3
∑

in−2=0

n−i0−i1−···−in−2
∑

in−1=0

1 . (3.25)

Then there is
0
∑

i0=0

1 = C1 = 1 way to perform the first step. There are

0
∑

i0=0

1−i0
∑

i1=0

1 = C2 = 2 ways to perform the second step (hence there are 2
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ways to perform the two first steps). There are
0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

1 = C3 = 5

ways to perform the three first steps, and so on... Hence the representation
(3.25) agrees with the characterization which is given in Corollary 6.2.3 of [17]
and the result follows.

From Proposition 2 and (3.20), we may state, for all n > 0,

d
(n)
00 =

{

0 , if n is odd,
Cn

2
, if n is even.

(3.26)

Lemma 3 The coefficients (bij) satisfy the following properties:

1. For all n > 0 and for all k < n/2,

b
(n)
0(n−2k) =

2n+ 2− 2k

n+ 1− 2k
d
(n)
0(n−2k) and b

(n)
00 =

n+ 2

2
d
(n)
00 .

2. For all n > 0, b
(2n)
00 < 22n.

Proof Let us prove part 1. by induction. The relation is obviously true for

n = 1. Suppose that for all k < n/2, b
(n)
0(n−2k) =

2n+2−2k
n+1−2k d

(n)
0(n−2k) and b

(n)
00 =

n+2
2 d

(n)
00 . Then for all k < n/2,

b
(n+1)
0(n+1−2k) = b

(n)
0(n−2k) + b

(n)
0(n+2−2k)

=
2n+ 2− 2k

n+ 1− 2k
d
(n)
0(n−2k) +

2n+ 4− 2k

n+ 3− 2k
d
(n)
0(n+2−2k)

=
2n+ 4− 2k

n+ 2− 2k
d
(n)
0(n−2k) +

2k

(n+ 1− 2k)(n+ 2− 2k)
d
(n)
0(n−2k)

+
2n+ 4− 2k

n+ 2− 2k
d
(n)
0(n+2−2k) −

2n+ 4− 2k

(n+ 2− 2k)(n+ 3− 2k)
d
(n)
0(n+2−2k)

=
2n+ 4− 2k

n+ 2− 2k
(d

(n)
0(n−2k) + d

(n)
0(n+2−2k))

+
2k

(n+ 1− 2k)(n+ 2− 2k)

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k)

−
2n+ 4− 2k

(n+ 2− 2k)(n+ 3− 2k)
d
(n)
0(n+2−2k) , from (3.22)

=
2n+ 4− 2k

n+ 2− 2k
d
(n+1)
0(n+1−2k) , from (3.19) .

If n is even, then k < (n+1)/2 ⇔ k ≤ n/2 and if n is odd, then k < (n+1)/2 ⇔
k ≤ (n − 1)/2. The case k < n/2 has already been considered above. So the
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only remaining case is k = n/2, for which we can write

b
(n+1)
01 = 2b

(n)
00 + b

(n)
02

=
2(n+ 2)

2
d
(n)
00 +

n

3
d
(n)
02

=
n+ 4

2
(d

(n)
00 + d

(n)
02 ) +

n

2
d
(n)
00 +

(

n

3
−

n+ 4

2

)

d
(n)
02

=
n+ 4

2
d
(n)
01 +

(

n(n+ 4)

6
+

n

3
−

n+ 4

2

)

d
(n)
02 , from (3.22)

=
n+ 4

2
d
(n)
01 .

Moreover,

b
(n+1)
00 = b

(n)
01

=
n+ 3

2
d
(n)
01

=
n+ 1 + 2

2
d
(n+1)
00 .

So by induction, for all n and k < n/2, b
(n)
0(n−2k) = 2n+2−2k

n+1−2k d
(n)
0(n−2k) and

b
(n)
00 = n+2

2 d
(n)
00 . This ends the proof of part 1.

Again, we prove part 2. by induction. We have b
(2)
00 = 2 < 22. Suppose that

b
(2(n−1))
00 < 22(n−1) then, from Proposition 2 and part 1. of Lemma 3,

b
(2n)
00 =

(n+ 2)

2

(2n)!

n!(n+ 1)!

= b
(2(n−1))
00

n+ 2

n+ 1

(2n− 1)2n

n(n+ 1)

= 4b
(2(n−1))
00

n3 + (3/2)n2 − n

n3 + 2n2 + n

< 4 ∗ 22n−2 = 22n ,

which ends the proof of part 2.

Define the matrix

(eij)i,j∈E = qB + (c− 2q)I .

On the one hand, from (3.23), for all i, j ∈ E, (Q + cI)ij ≤ eij , hence

n
∑

k=0

Ck
nq

(k)
00 c

n−k ≤ e
(n)
00 .
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Moreover, from (3.26) and Lemma 3, b
(k)
00 < 2k, for all k > 0, so that

e
(n)
00 =

n
∑

k=0

Ck
nq

kb
(k)
00 (c− 2q)n−k

<

n
∑

k=0

Ck
nq

k2k(c− 2q)n−k

= cn .

On the other hand, from (3.23), for all i, j ∈ E,
(

Q+ cI
)

ij
> qbij and from

Lemma 3 and Proposition 2, lim
n→+∞

(

b
(2n)
00

)
1
2n

> 0, hence 0 < lim
n→+∞

(

n
∑

k=0

Ck
nq

(k)
00 c

n−k

)1/n

.

Therefore, we have proved that there exists c > 0, such that

0 < lim
n→+∞

(

n
∑

k=0

Ck
nq

(k)
00 c

n−k

)1/n

≤ c ,

and we conclude that the matrix Q satisfies part (c) of Proposition 1. Then,
applying this result, we derive that there is α ≥ 0 and a positive eigenvector
µ such that

µQ = −αµ .

Finally, note that the coordinates of the eigenvector µ are given explicitly in
terms of the coefficients of the matrix Q+cI, in the proof of Theorem 3.3 of [1].
However, this expression does not allow us to conclude that

∑

i∈E µ(i) < ∞.

4 Breakdown of host resistance

Consider the emergence of pathogen mutants overcoming host resistance in
a host-pathogen system. We assume that there are two types of habitat for
pathogen individuals: susceptible and resistant host subpopulations. Denote
ξ as the proportion of the resistant host subpopulation (so the proportion of
susceptible host subpopulation is 1 − ξ). We distinguish mutant and resident
individuals in the pathogen population. A resident individual can only live on
the susceptible hosts while mutants can live on both susceptible and resistant
host subpopulations. We denote by X(1) the number of residents individuals
on susceptible host, by X(2) the number of mutants on susceptible host and by
X(3) the number of mutants on resistant host. Every pathogen individual can
give birth to another individual of the same type or die. Suppose that resident
individuals can mutate (X(1) −→ X(2)) and mutants can migrate between
the two habitats (X(2)

⇆ X(3)). So we have a three dimensional competition

process, Xt = (X
(1)
t , X

(2)
t , X

(3)
t ) with non linear transition rates (based on
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Lotka-Volterra equations). When X reaches the state i = (i1, i2, i3) ∈ N
3
0,

transition rates are:


























































λ1(i1) = r(1 − ν)i1
λ2(i1, i2) = βri2 + rνi1
λ3(i3) = βri3
µ1(i1, i2) = ( r(1−ν)

(1−ξ)K (i1 − 1 + βi2) + ξD)i1

µ2(i1, i2) = ( βr
(1−ξ)K (i2 − 1 + 1

β i1))i2

µ3(i3) = ( βr
ξK (i3 − 1))i3

γ23(i2) =

{

ξDi2 if i2 < γK
ξDγK else

γ32(i3) = (1 − ξ)Di3

(4.27)

where r is a growth rate, ν is a mutation rate, β is a mutation cost, K is the
total pathogen carrying capacity, D is a migration rate and γ is a constant
such that γK is the maximum size that we are sure i2 will not exceed (γ ≥ ξ).
The rate γ23 is assumed to be finite, since the size of a biological population is
finite even if the population is large. Moreover, since a mutation always occurs
together with a reproduction, the rate γ12 is 0 and has been identified to the
spontaneous birth rate of type 2. We are interested in the emergence of the
third type – a virulent mutant able to invade the resistant host subpopulation:

S = inf{t ≥ 0 : X
(3)
t = 1} .

Let us assume that π is a probability distribution on N
3
0 such that for all t > 0

and i ∈ N
2
0 × {0},

Pπ(Xt = (i1, i2, 0) |S > t) = π(i1, i2, 0) .

Then π solves the equation

πQS = −απ + αδ , (4.28)

for some α ≥ 0. Applying Theorem 2, this shows that the time S is exponen-
tially distributed with parameter

α =
∑

(i1,i2,0)

η(i1, i2, 0)π(i1, i2, 0) =

∞
∑

i2=1

(γ23(i2)

∞
∑

i1=0

π(i1, i2, 0)) . (4.29)

In order to solve the system (4.28), we used numerical methods of the Gauss-
Jordan Elimination and Raphson-Newton, see [13]. If a new resistant host
is introduced into the pathogen habitat and the initial pathogen population
structure follows the law π at this time, it will take, on average, a time equal
to 1/α before the resistance will be broken. The distribution of the emergence
time can be estimated by simulations of the competition process (4.27) using
the Gillepsie algorithm (Fig. 2).
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Fig. 2 Probability distribution function of the emergence time S. Dotted line
represents the distribution function of the exponential law with parameter α given in (4.29).
Crosses represent the distribution function of S obtained by simulations of the competition
process (4.27). The values of the parameters are K = 10, µ = 0.05, r = 1, D = 1, β = 1, ξ =
0.5 and γ = 30.
.

From (4.29) one can derive key-processes and parameter values prolonging
the durability of host resistance. The approach can be generalized to n types
of resistances. In this case, we may check that the number of different types of

pathogen is then N
(def)
=
∑n

i=0 C
i
n2

n−i, which corresponds to the dimension of
the competition process. Indeed, there are Ci

n areas with i resistances in the
environment, and there are 2n−i types of mutant living on each of these areas.
This N -dimensional competition process can include recombinations between
pathogen types and it can be used to study the effects of the host population
structure on the pathogen adaptive dynamics.

5 Annexe: Proof of lemma 2.

Let us prove part 1. by induction. For n = 1 the result is obviously true. Then
let us suppose that it is true for some n ≥ 1.

– For all i ≥ 0 and j > 0 :

if j > 2 + i+ n+ 1, then j − 1 > 2 + i+ n and j + 1 > 2 + i+ n,
if i > 2 + j + n+ 1, then i > 2 + (j − 1) + n and i > 2 + (j + 1) + n,
if i = j (mod 2) and n+1 odd, then i+1 = (j−1) (mod 2) = (j+1) (mod 2)
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and n is even,
if i + 1 = j (mod 2) and n + 1 even, then i = (j − 1) (mod 2) =
(j + 1) (mod 2) and n is odd.

Therefore in all these cases, d
(n+1)
ij = d

(n)
i(j−1) + d

(n)
i(j+1) = 0.

– For all i ≥ 0 and for j = 0 : we have 0 < 2+ i+n+1, so the first condition
never holds. Therefore,

if i > 2 + n+ 1, then i > 2 + 1 + n,
if i = 0 (mod 2) and n + 1 is odd, then i + 1 = (0 + 1) (mod 2) and n is
even,
if i+1 = 0 (mod 2) and n+1 is even, then i = (0+1) (mod 2) and n is odd.

So in all these cases, d
(n+1)
i0 = d

(n)
i(0+1) = 0.

– If the triple (i, j, n+1) is not in one of the previous cases, then neither are

the triples (i, j−1, n) and (i, j+1, n). Hence d
(n+1)
ij = d

(n)
i(j−1)+d

(n)
i(j+1) > 0 .

So we conclude that part 1. is true for all n > 0.

Now, we prove part 2. again by using mathematical induction. For n = 1,

we have d
(1)
01 = 1. Suppose that, d

(n−1)
0(n−1) = 1, then d

(n)
0n = d

(n−1)
0(n−1) + d

(n−1)
0(n+1) =

1+0 = 1, from part 1. We conclude that the first assertions of part 2. are true.

We can check equation (3.21) for n = 2, by a simple calculation. Suppose that
(3.21) holds for all k ≥ 1 and 2k ≤ n, then for 2k ≤ n,

– if k > 1, then

d
(n+1)
0(n+1−2k)

= d
(n)
0(n−2k) + d

(n)
0(n−2(k−1))

=
n−2k
∑

i0=0

n−2k+1−i0
∑

i1=0

· · ·

n−k−2−i0−i1−···−ik−3
∑

ik−2=0

n−k−1−i0−i1−···−ik−2
∑

ik−1=0

1

+

n−2(k−1)
∑

i0=0

n−2(k−1)+1−i0
∑

i1=0

· · ·

n−(k−1)−2−i0−i1−···−ik−4
∑

ik−3=0

n−(k−1)−1−i0−i1−···−ik−3
∑

ik−2=0

1

=

n+1−2k
∑

i0=1

n+1−2k+1−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−3
∑

ik−2=0

n+1−k−1−i0−i1−···−ik−2
∑

ik−1=0

1

+

n+1−2k+1
∑

i0=0

n+1−2k+2−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−4
∑

ik−3=0

n+1−k−1−i0−i1−···−ik−3
∑

ik−2=0

1

=

n+1−2k
∑

i0=0

n+1−2k+1−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−3
∑

ik−2=0

n+1−k−1−i0−i1−···−ik−2
∑

ik−1=0

1 .
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– if k = 1, then

d
(n+1)
0(n+1−2) = d

(n)
0(n−2) + d

(n)
0n =

n−2
∑

i0=0

1 + 1 =

n+1−2
∑

i0=1

1 .

Let us extend this equality to the case where 2k ≤ n + 1. If n is even, then
2k ≤ n+ 1 ⇔ 2k ≤ n. If n is odd, then for 2k = n+ 1,

d
(n+1)
0(n+1−2k) = d

(n+1)
00 = d

(n)
01

=

1
∑

i0=0

2−i0
∑

i1=0

3−i0−i1
∑

i2=0

. . .

n−(n−1)/2−2−i0−i1−···−i(n−1)/2−3
∑

i(n−1)/2−2=0

n−(n−1)/2−1−i0−i1−···−i(n−1)/2−2
∑

i(n−1)/2−1=0

1

=

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

. . .

n−(n−1)/2−2−i0−i1−···−i(n−1)/2+1−3
∑

i(n−1)/2−2+1=0

n−(n−1)/2−1−i0−i1−···−i(n−1)/2−2+1
∑

i(n−1)/2−1+1=0

1

=

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

. . .

n+1−(n+1)/2−2−i0−i1−···−i(n+1)/2−3
∑

i(n+1)/2−2=0

n+1−(n+1)/2−1−i0−i1−···−i(n+1)/2−2
∑

i(n+1)/2−1=0

1 .

So by induction (3.21) is true for all k > 0 and 2k ≤ n.

Again, we prove part 3. using mathematical induction. For n = 2, we have

d
(2)
00 = (4+4−2)(2+1−2)

2(2+3−2) d
(2)
02 = 6

6d
(2)
02 = 1. Suppose that for all k > 0 and 2k ≤ n,

d
(n)
0(n−2k) =

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k) .

Then

d
(n+1)
0(n+1−2k)

= d
(n)
0(n−2k) + d

(n)
0(n+2−2k) =

(

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
+ 1

)

d
(n)
0(n+2−2k)

=
2n3 + 14n2 + 28n+ 16 + 8k2 − 24k2 − 32kn− 8kn2 + 8k2n

2k(n+ 3− 2k)(n+ 4− 2k)
d
(n)
0(n+2−2k)
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and

(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)
d
(n+1)
0(n+3−2k)

=
2n+ 6− 2k(n+ 2− 2k)

2k(n+ 4− 2k)
(d

(n)
0(n+2−2k) + d

(n)
0(n+4−2k))

=
(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)
(d

(n)
0(n−2(k−1)) + d

(n)
0(n+2−2(k−1)))

=
(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)

(

(2k − 2)(n+ 5− 2k)

(2n+ 6− 2k)(n+ 3− 2k)
+ 1

)

d
(n)
0(n−2(k−1))

=
2n3 + 14n2 + 28n+ 16 + 8k2 − 24k2 − 32kn− 8kn2 + 8k2n

2k(n+ 3− 2k)(n+ 4− 2k)
d
(n)
0(n+2−2k) .

Then we extend this equality to the case where 2k ≤ n + 1. If n even, then
2k ≤ n+ 1 ⇔ 2k ≤ n. If n odd, then for 2k = n+ 1,

d
(n+1)
0(n+1−2k) = d

(n+1)
00 = d

(n)
01 =

n+ 5

2(n− 1)
d
(n)
03

and

(2(n+ 1) + 4− 2k)(n+ 1 + 1− 2k)

2k(n+ 1 + 3− 2k)
d
(n+1)
0(n+1+2−2k)

=
n+ 5

3(n+ 1)
d
(n+1)
02 =

n+ 5

3(n+ 1)
(d

(n)
01 + d

(n)
03 )

=
n+ 5

3(n+ 1)

(

n+ 5

2(n− 1)
+ 1

)

d
(n)
03

=
n+ 5

2(n− 1)
d
(n)
03 .

Hence for all k > 0 and 2k ≤ n+ 1,

d
(n+1)
0(n+1−2k) =

(2(n+ 1) + 4− 2k)(n+ 1 + 1− 2k)

2k(n+ 1 + 3− 2k)
d
(n+1)
0(n+1+2−2k) .

By induction the relation is true for all n ≥ 2.
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