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Angers Cedex 01, 49045, France
loic.chaumont@univ-angers.fr

SAPOUKHINA NATALIA

INRA/ACO/UA, UMR077 PaVé, IFR149,
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Competition processes are natural extensions of birth-death processes in higher dimen-
sions. At any time, for any type, a birth, a death or a mutation to another type can
occur. This work is concerned with the time S at which a particular type emerges in the
population through spontaneous birth or mutation. We give some bounds for the tail
of the distribution of S. Then using properties of quasi-stationary distributions, we give

conditions for the existence of an initial law under which S is exponentially distributed.
Finally, we provide some examples of applications to the emergence time of pathogen
mutants overcoming host resistance in a host-pathogen system.
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1. Introduction

A competition process
(

X, {Pi : i ∈ N
d
0}
)

is a continuous time homogeneous Markov

chain with state space N
d
0, for d ≥ 1, whose transition matrix only allows jumps

to certain nearest neighbors. Competition processes where introduced by Reuter12

as the natural extensions of birth and death processes and are often involved in

epidemic models.4,7,8 Here, we use competition processes in order to study adaptive
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population dynamics. Let us first give a proper definition.

We call {pt(i, j) : t ≥ 0 , i, j ∈ N
d
0} the transition probability functions of the

Markov chain X = {(X
(1)
t , . . . , X

(d)
t ), t ≥ 0}, and we denote by Q = {q(i, j) : i, j ∈

N
d
0} the associated Q-matrix, i.e. q(i, j) = p′0(i, j). Let i = (i1, . . . , id), then this

matrix is defined as follows:

q(i, j) = λk(i) , j = (i1, . . . , ik−1, ik + 1, ik+1, . . . , id)

= µk(i) , j = (i1, . . . , ik−1, ik − 1, ik+1, . . . , id)

= γkl(i) , j = (i1, . . . , ik−1, ik − 1, ik+1, . . . , il−1, il + 1, il+1, . . . , id)

= γlk(i) , j = (i1, . . . , ik−1, ik + 1, ik+1, . . . , il−1, il − 1, il+1, . . . , id)

= −
∑

x 6=i

q(i, x) , j = i

= 0 , for other j.

The value q(i, j) is the transition rate at which the process jumps from the state i

to the state j. For k, l ∈ {1, . . . , d}, λk, µk and γkl, are nonnegative functions. The

values λk(i) and µk(i) represent the rates at which an individual of type k is born

or dies, respectively, when the population is of size i ∈ N
d
0. The values γkl represent

the rates at which an individual of type k mutates into an individual of type l. We

assume that for all k and l, µk(i) = γkl(i) = 0 if ik = 0. We emphasize that Q

is conservative, i.e. q(i, i) = −
∑

j 6=i q(i, j), for all i ∈ N
d
0, so that the Q-matrix is

related to the transition functions through the backward and forward Kolmogorov

equations. We also make the classical regularity assumption under which the Q-

matrix determines the law of X , see for instance Ref. 5. So X stays in state i for

an exponential time with parameter
∑

x 6=i q(i, x) and then jumps to state j with

probability q(i, j)
(

∑

x 6=i q(i, x)
)−1

.

Adaptation to a new environment pass by the emergence of new mutants. For

example, we may imagine the following situations: a parasite infecting a resistant

or new host, a pathogen evading chemical treatment, a cancer cell escaping from

chemotherapy, etc.4,6,7,14 An interesting and important point is to estimate the law

of the time at which these new individuals emerge, for example to estimate the

durability or the success probability of a new treatment or a new resistance. Emer-

gence problem has already been considered in the setting of branching processes

and for multitype Moran models.3,13,14 However, if branching processes approaches

provide really suitable methods for the study of extinction issues,2,10 emergence

problems seems to be more difficult to tackle under general progeny distributions.

On the other hand, Moran type models are efficient especially for the estimation of

emergence times, as the population size growths. Competition processes models are

generally well adapted to emergence problems provided birth, death and mutation

rates are properly adjusted as it is illustrated in Section 4. In this paper, we are
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interested in the computation of the law of the first time Sr when an individual of

type r = 1, . . . , d first emerges from the population (Fig. 1), i.e.

Sr = inf{t ≥ 0 : X
(r)
t = 1} .

Let us also point out that in some cases, type r may become extinct after the time

Sr, so that this time may not correspond to the first time at which type r will settle

definitively in the population. In such situations, it is still possible to use the same

method to study the time inf{t ≥ 0 : X
(r)
t = n}, where n is a level by which type r

is definitively settled, with an arbitrary large probability.

Fig. 1. Emergence time of a three dimensional competition process. This sample path
shows the variations of the three populations over the time. Solid line, big dashed line and small
dashed line correspond to first, second and third type, respectively. Then S3 is the emergence time
of the third type.

This paper is organized as follows. In Section 2, we first give an estimation of the

distribution function of the emergence time when the process starts from any initial

law supported by the set {i ∈ N
d
0 : ir = 0}. Then we show that when the initial law

is a quasi-stationary distribution, the emergence time is exponentially distributed

with a parameter which is made explicit in terms of the transition rates. In Section

3, we discuss some conditions for the existence of quasi-stationary distributions. In

Section 4, as an application of these results, we give a biological example of the

time for pathogen type overcome host resistance. Then Section Appendix A is an

annex which is devoted to the proof of a technical lemma.
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2. Emergence of a particular type.

In this section, we consider a competition process
(

X, {Pi : i ∈ N
d
0}
)

as it is defined

in the introduction. Although our model is based on competition processes, some

results of this section may be generalized to general continuous time Markov chains.

For the sake of simplicity, we suppose that the type whose emergence time is of

interest is d. So in the sequel, we denote Sd by S, i.e. with X = (X(1), . . . , X(d)),

we set

S = inf{t ≥ 0 : X
(d)
t = 1} .

2.1. Some bounds for the tail distribution.

This subsection aims at describing the time S in terms of the characteristics of the

competition process X , in order to determine the exponential decay of its distribu-

tion function, under general conditions.

Definition 2.1. We set for all i ∈ N
d
0,

η(i) = λd(i) +

d
∑

l=1

γld(i) .

The values η(i) will be called the emergence rates (of type d). In particular,

when X is in a state i, an individual of type d will appear with probability

η(i)
(

∑

j 6=i q(i, j)
)−1

.

We define the restricted process X̂ as the (d − 1)-dimensional competition pro-

cess with rates q̂(x, y) = q(x′, y′), if x 6= y, where x = (x1, . . . , xd−1), y =

(y1, . . . , yd−1) and x′ = (x1, . . . , xd−1, 0), y′ = (y1, . . . , yd−1, 0) and q̂(x, x) =

−
∑

y∈N
d−1
0 ,x 6=y q̂(x, y). We denote by {P̂x : x ∈ N

d−1
0 } the family of probability

distributions of the process X̂. Then we may check that
(

X̂, {P̂x : x ∈ N
d−1
0 }

)

is a

competition process on N
d−1
0 whose Q-matrix is Q̂ = {q̂(x, y) : x, y ∈ N

d−1
0 }.

In all the remainder of this paper, we assume that the Q-matrices Q and Q̂

are regular, i.e. they determine the laws of X and X̂ respectively, in a unique way.

We refer to Section 2 of Ref. 5 where some sufficient conditions for regularity of

Q-matrices of competition processes are obtained. We begin this subsection with

the following lemma which presents a decomposition of the process X up to time

S.

Lemma 2.1. Let {ε(x) : x ∈ N
d−1
0 } be a family of random variables which is

independent of the process X̂. We suppose that each random variable ε(x) is expo-

nentially distributed with parameter η(x′), where x′ = (x1, . . . , xd−1, 0). Let (Tn)n≥1

be the sequence of jump times of X̂, set T0 = 0, define In = Tn − Tn−1, n ≥ 1 and

Ŝ =

∞
∑

n=0

(Tn + ε(X̂Tn))1IΩn , (2.1)
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where Ωn = {ε(X̂T0) > I1, . . . , ε(X̂Tn−1) > In, ε(X̂Tn) ≤ In+1}, for n ≥ 1 and

Ω0 = {ε(X̂0) ≤ I1}. Then for all x ∈ N
d−1
0 , we have the identity in law

[((X(1)
u , . . . , X(d−1)

u ), u < S),P(x,0)] = [(X̂u, u < Ŝ), P̂x] .

Proof. This result is a direct consequence of the general structure of continuous

time Markov chains. Indeed, it suffices to observe that when the process X is in a

state i ∈ N
d−1
0 × {0}, the waiting time for type d to emerge is independent from

the past and exponentially distributed, with parameter η(i) = λr(i) +
∑d

l=1 γlr(i).

Hence it is clear that before time S, the process X behaves like a competition

process in N
d−1
0 , i.e. X̂ killed at a time Ŝ, whose decomposition is given by equation

(2.1).

As an application of this lemma, the following result provides exponential bounds

for the distribution function of the emergence time. From now on we set

E = N
d−1
0 × {0}.

Theorem 2.1. Define the rates α0 = infi∈E η(i) and α1 = supi∈E η(i). Then the

tail distribution of the emergence time S satisfies the inequalities:

e−α1t ≤ Pi(t < S) ≤ e−α0t , (2.2)

for all t ≥ 0 and for all i ∈ E. In particular, if there exists α > 0 such that η(i) = α,

for all i ∈ E, then the emergence time S has an exponential law with parameter α

under Pµ, for all initial distribution µ with support in E.

Proof. It follows from Lemma 2.1 that for all x ∈ N
d−1
0 and t ≥ 0,

P(x,0)(t < S) = P̂x(t < Ŝ)

=
∞
∑

n=0

∑

x0,...,xn∈N
d−1
0

P̂x(t < Tn + ε(X̂Tn),Ωn | X̂T0 = x0, . . . , X̂Tn = xn)×

P̂x(X̂T0 = x0, . . . , X̂Tn = xn) , (2.3)

where x0 = x. Then, from the Markov property and the assumption on the

random variables {ε(x) : x ∈ N
d−1
0 } in Lemma 2.1, under P̂x, conditionally on

{X̂T0 = x0, . . . , X̂Tn = xn}, the random variables I1, . . . , In+1, ε(x0), . . . , ε(xn) are

independent. So with I = (I1, . . . , In+1) and y = (y1, . . . , yn+1), one has

P̂x(t < Tn + ε(X̂Tn),Ωn | X̂T0 = x0, . . . , X̂Tn = xn) (2.4)

=

∫

R
n+1
+

P̂x(I ∈ dy)P̂x(ε(x0) > y1, . . . , ε(xn−1) > yn, t− tn < ε(xn) < yn+1) ,
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where tn = y1+ · · ·+ yn. For all k ≥ 0, set x′
k = (xk, 0). The integrand in the above

integral may be written as

P̂x(ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn, t− tn < ε(xn) < yn+1) (2.5)

= e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn(e−η(x′

n)[(t−tn)∨0] − e−η(x′

n)yn+1)1I{t<tn+1} ,

where for n = 0, the term e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn is understood to be 1.

Hence by applying successively (2.5), (2.4) and (2.3), it follows

P(x,0)(t < S)

= Êx

(

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

)

,

where for each n, X ′
n = (X̃n, 0) and {X̃n : n ≥ 0} is a sequence of random variables

which has the same law as {X̂n :≥ 0} under P̂x and which is independent of the

sequence {Tn : n ≥ 0}. Let k be the (random) index such that Tk ≤ t < Tk+1, then

we easily check that the term which is in the expectation of the right hand side of

the above equality is

∞
∑

n=0

e−η(X′

0)I1−···−η(X′

n−1)In
[

e−η(X′

n)[(t−Tn)∨0] − e−η(X′

n)In+1

]

1I{t<Tn+1}

= e−η(X′

0)I1−···−η(X′

k−1)Ik
[

e−η(X′

k)(t−Tk) − e−η(X′

k)Ik+1

]

+
∞
∑

n=k+1

e−η(X′

0)I1−···−η(X′

n−1)In
[

1− e−η(X′

n)In+1

]

= e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k)(t−Tk) .

But from the assumption, we have η(X ′
n) ≥ α0, a.s., for each n ≥ 0, so that it fol-

lows e−η(X′

0)I1−···−η(X′

k−1)Ike−η(X′

k)(t−Tk) ≤ e−α0(I1+···+Ik)e−α0(t−Tk) = e−α0t, a.s.

which gives the second inequality in (2.2).

The other inequality is proved in the same way, by obtaining an upper bound

for P̂x(Tn + ε(X̂Tn) ≤ t,Ωn | X̂T1 = x1, . . . , X̂Tn = xn). As above, this term can be

desintegrated as

P̂x(Tn + ε(X̂Tn) ≤ t,Ωn | X̂T1 = x1, . . . , X̂Tn = xn)

=

∫

Rn
+

P (I ∈ dy)P (ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn, ε(xn) < yn+1 ∧ (t− tn)) ,

and for the integrand, we have

P (ε(x0) > y1, ε(x1) > y2, . . . , ε(xn−1) > yn, ε(xn) < yn+1 ∧ (t− tn))

= e−η(x′

0)y1−η(x′

1)y2−···−η(x′

n−1)yn(1− e−η(x′

n)[yn+1∧(t−tn)])1I{tn≤t} ,
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so that

P(x,0)(t < S)

= Êx

(

∞
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)[In+1∧(t−Tn)])1I{Tn≤t}

)

.

If k is such that Tk ≤ t < Tk+1, then

∞
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)[In+1∧(t−Tn)])1I{Tn≤t}

=

k−1
∑

n=0

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

n−1)In(1− e−η(X′

n)In+1) +

e−η(X′

0)I1−η(X′

1)I2−···−η(X′

k−1)Ik(1 − e−η(X′

k)(t−Tk))

= 1− eη(X
′

k)t .

But since η(X ′
k) ≤ α1, a.s., we have 1 − eη(X

′

k)t ≤ 1 − e−α1 , a.s., which proves the

first inequality in (2.2).

We emphasize that for Proposition 2.1 to be relevant in the applications it is nec-

essary that α0 > 0 and/or α1 < ∞. In practice, the emergence rates are often

bounded away from 0 and ∞. At least, most of the time, it is reasonable to make

this assumption, see the application of Section 4.

2.2. Using quasi-stationary distributions

As already seen in the previous subsection, in order to study the emergence time S,

it is necessary to have a good description of the whole process X up to this time.

To be more specific, we introduce the killed process at time S, as follows:

XS
t =

{

Xt , if t < S,

∆ , if t ≥ S,
(2.6)

where ∆ is a cemetery point. Then XS is a continuous time Markov chain which is

valued in E ∪ {∆}, whose Q-matrix QS = (qS(i, j)) is given by

qS(i, j) =







q(i, j) , i, j ∈ E

q(i,∆) = η(i) , i ∈ E

q(∆, j) = 0 , j ∈ E ∪ {∆} .

(2.7)

Again, we assume that the matrix QS is regular, so that there exists a unique

associated transition probability that we will denote by PS . We define the vector δ

by δ(i) = 0, if i ∈ E and δ(∆) = 1.

Theorem 2.2. A probability distribution µ on E satisfies

Pµ(Xt = i |S > t) = µ(i) , (2.8)
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for all t ≥ 0 and i ∈ E, if and only if it solves the equation

µQS = −αµ+ αδ , (2.9)

for some α ∈ [0,∞). Moreover under Pµ, the time S is exponentially distributed

with parameter

α =
∑

i∈E

η(i)µ(i) . (2.10)

Proof. Let us first show that under condition (2.8), the time S is exponentially

distributed. Let s, t ≥ 0, then from the definition of S and the Markov property

applied at time s, we have

Pµ(S > s+ t) = Pµ(1I{t<S}PXt(s < S))

= Pµ(t < S)Pµ(s < S) ,

where the last equality follows from (2.8). This proves our assertion.

Then suppose that condition (2.8) holds and let α be the parameter of the law

of time S. Since η(i) < ∞, for all i ∈ E, we have Pi(S = 0) = 0, for all i ∈ E, so

that Pµ(S = 0) = 0, therefore α < ∞. We extend the law µ on E ∪∆ by setting

µ(∆) = 0. Then for all i ∈ E ∪∆, one has

Pµ(X
S
t = i) = Pµ(Xt = i, t < S) + 1Ii=∆Pµ(t ≥ S) .

Since Pµ(Xt = i, t < S) = e−αtµ(i), the transition function PS(t) of XS satisfies

µPS(t) = e−αtµ+ (1− e−αt)δ . (2.11)

Differentiating with respect to t and applying Kolmogorov’s backward equation

gives

µ
d

dt
PS(t) = −αe−αtµ+ αe−αtδ

= µQSPS(t) . (2.12)

Note that this differentiation is justified since each state in E is connected to a

finite number of neighbors through (Pt) (and hence (PS
t )), so that the term µPS(t)

is the sum of a finite number of functions. Then from (2.11) and since δPS(t) = δ,

we see that a solution of equation (2.12) is given by

µQS = −αµ+ αδ .

We finally deduce that µQS(∆) =
∑

i∈E∪∆ µ(i)qS(i,∆) =
∑

i∈E µ(i)η(i) = α.

Conversely, let us assume that µ is a distribution on E which satisfies equation

(2.9), for some value α ∈ [0,∞). Let us denote by PS its associated transition func-

tion. (Note that PS is unique according to our assumption of regularity.) Then from

Kolmogorov’s backward equation and (2.9), the transition function µPS satisfies the

equation

d

dt
µPS(t) = −αµP (t) + αδ .



On emergence times of competition processes 9

This equation admits µPS(t) = e−αtµ + (1 − e−αt)δ as a unique solution. But the

later equality is equivalent to (2.8).

A probability distribution µ which satisfies (2.8) is called a quasi-stationary distribu-

tion. We refer to Ref. 9 where some relations between quasi-stationary distributions

and the Q-matrix are established for general continuous time Markov chains. In

population dynamics, these distributions are very much involved, and most of the

time they are used to study extinction of populations, see for instance Ref. 2, 8, 10

and 16.

Remark 1. There are situations where the emergence time may not correspond

to first time at which the subpopulation of type d will fix in the population. More

specifically, this time may occur only when the subpopulation size reaches a certain

level. For example, in epidemiology, it is interesting to know the time at which

the pathogen population reaches a certain level (in order to start treatments for

instance). In this case one is rather interested in the waiting time S(n):

S(n) = inf{t ≥ 0 : X
(d)
t = n} .

Previous results may easily be adapted to S(n) by considering:

En = N
d−1
0 × {0, 1, . . . , n− 1} .

Then we define the killed process XS(n)

as in (2.6). The later is a En ∪ {∆}-

valued continuous time Markov chain whose Q-matrix QS(n)

= (qS
(n)

(i, j)) may be

expressed as in (2.7), with

η(i) =

{

λd(i) +
∑d

l=1 γld(i) , if id = n,

0 , otherwise.

Then the same conclusion as in Theorem 2.2 holds, that is a probability distribution

µ on En satisfies

Pµ(Xt ∈ i |S(n) > t) = µ(i) ,

for all t > 0 and i ∈ En, if and only if it solves the equation

µQS = −αµ+ αδ ,

for some α ≥ 0, and under Pµ, the time S(n) is exponentially distributed with

parameter

α =
∑

i∈E

η(i)µ(i) .

3. On the existence of quasi-stationary distributions

In the following subsection, we provide some sufficient conditions for the existence

of quasi-stationary distributions. Then in the next subsection, we will apply these

results to a particular case of 2-dimensional competition process.
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3.1. General results

We keep the assumptions of Section 2, that is
(

X, {Pi : i ∈ N
d
0}
)

is a competition

process such that the conservative Q-matrices Q and QS are regular. We denote by

⇒ the weak convergence of probability measures.

Theorem 3.1. If there exist probability measures π and µ on E, such that

Pπ(Xt ∈ dx |S > t) ⇒ µ(dx) , as t → +∞ ,

then µ satisfies condition (2.8).

Proof. From the hypothesis, for all bounded function f : Nd
0 → R,

lim
t→∞

Pπ(f(Xt) |S > t) =

∫

f(x)µ(dx) .

Let u > 0 and A ∈ BR, then applying this identity to the function f(x) = Px(Xu ∈

A, S > u) and the Markov property gives
∫

f(x)µ(dx) = lim
t→∞

Eπ(PXt(Xu ∈ A, S > u) |S > t)

= lim
t→∞

Pπ(Xt+u ∈ A, S > t+ u)
1

P(S > t)

= lim
t→∞

Pπ(Xt+u ∈ A |S > t+ u)
Pπ(S > t+ u)

Pπ(S > t)
. (3.1)

Let A be the full set in this identity (i.e. A = Ω, where (Ω,F ,P) is the reference

probability space). We obtain that for each u > 0,

lim
t→∞

Pπ(S > t+ u)

Pπ(S > t)
= Pµ(S > u) .

Since Pµ(S = 0) = 0, the above identity shows that S is exponentially distributed

under Pµ, with parameter α = − logPµ(S > 1) > 0, i.e., for all u ≥ 0, Pµ(S > u) =

e−αu. Plunging this equality into (3.1), gives

eαuPµ(Xu ∈ A, u < S) = lim
t→∞

Pπ(Xt+u ∈ A, S > t+ u)

= µ(A) ,

which is identity (2.8).

Theorem 2.1 provides a sufficient condition for the existence of a quasi-stationary

distribution. However, in practice, for this result to be exploitable, we need some

information on the law of Xu conditionally to {S > u}.

Now we focus on conditions regarding the Q-matrix which are a bit more tech-

nical than Theorem 2.1 but that can be verified provided this matrix is sufficiently
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explicit. An application will be given in subsection 3.2. We first state a general

result on the existence of negative eigenvalues.

Proposition 3.1. Let M = (mij) be any matrix on E and denote by I the matrix

of the identity on E. If there exists a real c ∈ (0,∞) such that,

(i) for all i, j ∈ E and k ∈ N0,

m
(k)
ij < ∞ , (3.2)

(ii) the matrix (M + cI) is nonnegative and irreductible,

(iii) there exists i, j ∈ E such that

0 < lim
n→+∞

(

n
∑

k=0

Ck
nm

(k)
ij cn−k

)1/n

≤ c , (3.3)

then M admits a negative left eigenvalue with an associated positive eigenvector

(i.e. there are α ≥ 0 and µ such that 0 < µ(i) < ∞, for all i ∈ E and µM = −αµ).

Proof. This result is a consequence of Theorem 3.3 in Ref. 1. Let us first check

that M + cI satisfies the three conditions of this theorem. We denote by (cij)i,j∈E

the entries of this matrix. First we derive from (i) that for all i, j ∈ E and n ∈ N0,

c
(n)
ij =

n
∑

k=0

Ck
nm

(k)
ij cn−k < ∞ ,

so that condition i) of Theorem 3.3. in Ref. 1 is satisfied. Then since from assumption

(ii), the matrix M+cI is irreducible, by definition for all i, j ∈ E there exists n ≥ 1

such that c
(n)
ij > 0, which is condition ii) of Theorem 3.3. in Ref. 1. From Theorem

A in Ref. 17, the limits limn→+∞(c
(n)
ij )1/n = lim

n→+∞

(

n
∑

k=0

Ck
nm

(k)
ij cn−k

)1/n

exist and

do not depend on i, j ∈ E. Let us denote by λ∗ their common value. From Theorem

A in Ref. 17, λ∗ is the maximum eigenvalue of M+cI. Moreover, from (iii) we have

0 < λ∗ ≤ c .

This implies, condition iii) of Theorem 3.3 in Ref. 1. We deduce from this theorem

that there exists a vector µ such that for all i, 0 < µ(i) < +∞ and

µ(M + cI) = µM + cµI = µM + cµ = λ∗µ .

Since λ∗ ≤ c, we have

µM = λ∗µ− cµ = −αµ

with α = c− λ∗ ≥ 0.

A Q-matrix Q on N
d
0 being given, we consider the matrix Q = (q̄ij) on E which is

defined by

qij = qij , i, j ∈ E . (3.4)
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Note that if QS satisfies equation (2.9) for some nonnegative vector µ (i.e. such

that µ(i) ≥ 0, for all i ∈ E and
∑

i∈E µ(i) > 0) and α ∈ [0,∞), then −α is a left

eigenvalue of Q and µ is an associated eigenvector, i.e.

µQ = −αµ . (3.5)

Conversely, if µ is a nonnegative vector such that 0 <
∑

i∈E µ(i) < ∞, then

equation (3.5), for µ and α ∈ [0,∞) implies equation (2.9) and hence (2.10), for
(
∑

i∈E µ(i)
)−1

µ and α.

Therefore if the matrix Q satisfies the conditions of Proposition 3.1 with an

eigenvector µ such that 0 <
∑

i∈E µ(i) < ∞, then we may conclude to the exis-

tence of a quasi-stationary distribution. Note that the condition
∑

i∈E µ(i) < ∞ is

satisfied whenever the state space E is finite and that in this case, Proposition 3.1

amounts to Perron-Frobenius Theorem.

3.2. Application to a 2-dimensional competition process

In this subsection we apply Proposition 3.1 and the consecutive discussion to the

particular case of a 2-dimensional competition process with constant birth and death

rates q > 0 and bounded emergence rates, i.e. α1 = supi∈E ηi < ∞. The state space

is then E = N0 ×{0} which will be identified to the set of nonnegative integers, i.e.

E = N0.

The matrix Q introduced in (3.4) which is associated to the Q-matrix of this

competition process is then given by

Q =











−2q − η1 2q 0 . . .

q −2q − η2 q 0 . . .

0 q −2q − η3 q 0 . . .
...

. . .
. . .

. . .
. . .











.

In the remainder of this subsection, we will check that the matrix Q satisfies condi-

tions (i), (ii) and (iii) of Proposition 3.1. First note that condition (i) is necessarily

satisfied since the matrix Q has a finite number of nonzero coefficients on each line

and column.

Then in order to show that conditions (ii) and (iii) are satisfied, we state a

couple of preliminary results bearing on the matrix D = (dij)i,j∈E with coefficients

dij =

{

1 , if i+ 1 = j or i− 1 = j,

0 , otherwise.

We first notice the following relations which follow directly from the definition of

D: for all i ∈ N0, j > 0 and n > 1,

d
(n)
ij = d

(n−1)
i(j−1) + d

(n−1)
i(j+1) and d

(n)
i0 = d

(n−1)
i1 , (3.6)
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where d
(n)
ij denote the coefficients of the matrix Dn. The proof of the following

lemma is postponed to the annex, in Appendix A.

Lemma 3.1. The coefficients of the matrix Dn satisfy the following relations.

(i) For all i, j ∈ E and n > 0,

d
(n)
ij = 0 if















j > 2 + i+ n,

or i > 2 + j + n,

or i = j (mod 2), when n is odd,

or i+ 1 = j (mod 2), when n is even,

and

d
(n)
ij > 0, otherwise. (3.7)

(ii) For all n > 0, d
(n)
0n = 1 and for all k > 0 and n ≥ 2k, the coefficient

d
(n)
0(n−2k) may be expressed through the following sum:

d
(n)
0(n−2k) =

n−2k
∑

i0=0

n−2k+1−i0
∑

i1=0

n−2k+2−i0−i1
∑

i2=0

. . .

n−k−2−i0−i1−···−ik−3
∑

ik−2=0

n−k−1−i0−i1−···−ik−2
∑

ik−1=0

1 . (3.8)

(iii) For all k > 0 and n ≥ 2k,

d
(n)
0(n−2k) =

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k) . (3.9)

Now let us define the matrix, B = (bij)i,j∈E , with coefficients:

bij =







1 , if i+ 1 = j or i− 1 = j, and (i, j) 6= (0, 1),

2 , if (i, j) = (0, 1),

0 , otherwise.

Let c be a real such that c− 2q > α1, then we have the decomposition:

Q + cI = qB +















u1 0 . . .

0
. . .

. . .
...

. . . ui

. . .















, (3.10)

where ui = c−2q−ηi > 0. From our assumption, it follows that u
(def)
= infi∈E ui > 0

and from (3.10), we derive that (Q + cI)
(n)
ij ≥ (qB + uI)

(n)
ij =

n
∑

k=0

Ck
nb

(k)
ij un−k, for

all i, j and n. Note that the coefficients of the matrix B are very close to those of

D, indeed we have bij = dij , for all (i, j) 6= (0, 1) and b01 = 2d01. Then we easily

see that the same method as in the proof of part 1. of Lemma 3.1, can be applied

to B in order to show that for all i, j ∈ E, there exists k such that b
(k)
ij > 0. This
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property, together with the previous inequality proves that Q + cI is irreductible,

so that Q satisfies part (ii) of Proposition 3.1.

Now we shall focus on the particular value d
(2n)
00 . The following result presents

some interest in its own since it provides a new characterization of Catalan numbers.

Proposition 3.2. For all n ∈ N, the first element of the matrix D2n, (i.e. d
(2n)
00 )

is equal to the nth Catalan number,

Cn =
1

n+ 1
Cn

2n . (3.11)

Proof. The proof bears on the characterization of the nth Catalan number which

is given in Corollary 6.2.3 of Ref. 15. This result asserts that Cn is the number of

monotonic paths along the edges of a grid with n × n square cells, which do not

pass above the diagonal.

Recall from (3.8) that we have, for all n > 0,

d
(2n)
00 =

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

· · ·

n−2−i0−i1−···−in−3
∑

in−2=0

n−i0−i1−···−in−2
∑

in−1=0

1 . (3.12)

Then there is
0
∑

i0=0

1 = C1 = 1 way to perform the first step. There are
0
∑

i0=0

1−i0
∑

i1=0

1 =

C2 = 2 ways to perform the second step (hence there are 2 ways to perform the two

first steps). There are
0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

1 = C3 = 5 ways to perform the three first

steps, and so on... Hence the representation (3.12) agrees with the characterization

which is given in Corollary 6.2.3 of Ref. 15 and the result follows.

From Proposition 3.2 and (3.7), we may state, for all n > 0,

d
(n)
00 =

{

0 , if n odd,

Cn
2
, if n even.

(3.13)

Lemma 3.2. The coefficients (bij) satisfy the following properties:

(i) For all n > 0 and for all k < n/2,

b
(n)
0(n−2k) =

2n+ 2− 2k

n+ 1− 2k
d
(n)
0(n−2k) and b

(n)
00 =

n+ 2

2
d
(n)
00 .

(ii). For all n > 0, b
(2n)
00 < 22n.

Proof. Let us prove part (i) by induction. The relation is obviously true for n = 1.

Suppose that for all k < n/2, b
(n)
0(n−2k) =

2n+2−2k
n+1−2k d

(n)
0(n−2k) and b

(n)
00 = n+2

2 d
(n)
00 . Then
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for all k < n/2,

b
(n+1)
0(n+1−2k) = b

(n)
0(n−2k) + b

(n)
0(n+2−2k)

=
2n+ 2− 2k

n+ 1− 2k
d
(n)
0(n−2k) +

2n+ 4− 2k

n+ 3− 2k
d
(n)
0(n+2−2k)

=
2n+ 4− 2k

n+ 2− 2k
d
(n)
0(n−2k) +

2k

(n+ 1− 2k)(n+ 2− 2k)
d
(n)
0(n−2k)

+
2n+ 4− 2k

n+ 2− 2k
d
(n)
0(n+2−2k) −

2n+ 4− 2k

(n+ 2− 2k)(n+ 3− 2k)
d
(n)
0(n+2−2k)

=
2n+ 4− 2k

n+ 2− 2k
(d

(n)
0(n−2k) + d

(n)
0(n+2−2k))

+
2k

(n+ 1− 2k)(n+ 2− 2k)

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k)

−
2n+ 4− 2k

(n+ 2− 2k)(n+ 3− 2k)
d
(n)
0(n+2−2k) , from (3.9)

=
2n+ 4− 2k

n+ 2− 2k
d
(n+1)
0(n+1−2k) , from (3.6) .

If n is even, then k < (n+ 1)/2 ⇔ k ≤ n/2 and if n is odd, then k < (n+ 1)/2 ⇔

k ≤ (n − 1)/2. The case k < n/2 has already been considered above. So the only

remaining case is k = n/2, for which we can write

b
(n+1)
01 = 2b

(n)
00 + b

(n)
02

=
2(n+ 2)

2
d
(n)
00 +

n

3
d
(n)
02

=
n+ 4

2
(d

(n)
00 + d

(n)
02 ) +

n

2
d
(n)
00 +

(

n

3
−

n+ 4

2

)

d
(n)
02

=
n+ 4

2
d
(n)
01 +

(

n(n+ 4)

6
+

n

3
−

n+ 4

2

)

d
(n)
02 from (3.9)

=
n+ 4

2
d
(n)
01 .

Moreover,

b
(n+1)
00 = b

(n)
01

=
n+ 3

2
d
(n)
01

=
n+ 1 + 2

2
d
(n+1)
00 .

So by induction, for all n and k < n/2, b
(n)
0(n−2k) = 2n+2−2k

n+1−2k d
(n)
0(n−2k) and b

(n)
00 =

n+2
2 d

(n)
00 . This ends the proof of part (i).

Again, we prove part (ii) by induction. We have b
(2)
00 = 2 < 22. Suppose that
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b
(2(n−1))
00 < 22(n−1) then, from Proposition 3.2 and part 1. of Lemma 3.2,

b
(2n)
00 =

(n+ 2)

2

(2n)!

n!(n+ 1)!

= b
(2(n−1))
00

n+ 2

n+ 1

(2n− 1)2n

n(n+ 1)

= 4b
(2(n−1))
00

n3 + (3/2)n2 − n

n3 + 2n2 + n

< 4 ∗ 22n−2 = 22n ,

which ends the proof of part (ii).

Define the matrix

(cij)i,j∈E = qB + (c− 2q)I .

On the one hand, from (3.10), for all i, j ∈ E, (Q + cI)ij ≤ cij , hence

n
∑

k=0

Ck
nq

(k)
00 cn−k ≤ c

(n)
00 .

Moreover, from (3.13) and Lemma 3.2, b
(k)
00 < 2k, for all k > 0, so that

c
(n)
00 =

n
∑

k=0

Ck
nq

kb
(k)
00 (c− 2q)n−k

<
n
∑

k=0

Ck
nq

k2k(c− 2q)n−k

= cn .

On the other hand, from (3.10), for all i, j ∈ E,
(

Q+ cI
)

ij
> qbij and

from Lemma 3.2 and Proposition 3.2, lim
n→+∞

(

b
(2n)
00

)
1
2n

> 0, hence 0 <

lim
n→+∞

(

n
∑

k=0

Ck
nq

(k)
00 cn−k

)1/n

. Therefore, we have proved that there exists c > 0,

such that

0 < lim
n→+∞

(

n
∑

k=0

Ck
nq

(k)
00 cn−k

)1/n

≤ c ,

and we conclude that the matrix Q satisfies part (iii) of Proposition 3.1. Then,

applying this result, we derive that there is α ≥ 0 and a positive eigenvector µ such

that

µQ = −αµ .

Finally, note that the coordinates of the eigenvector µ are given explicitly in terms

of the coefficients of the matrix Q + cI, in the proof of Theorem 3.3 of Ref. 1.

However, this expression does not allow us to conclude that
∑

i∈E µ(i) < ∞.
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4. Breakdown of host resistance

Consider the emergence of pathogen mutants overcoming host resistance in a host-

pathogen system. We assume that there are two types of habitat for pathogen indi-

viduals: susceptible and resistant host subpopulations. Denote ξ as the proportion

of the resistant host subpopulation (so the proportion of susceptible host subpop-

ulation is 1 − ξ). We distinguish mutant and resident individuals in the pathogen

population. A resident individual can only live on the susceptible hosts while mu-

tants can live on both susceptible and resistant host subpopulations. We denote by

X(1) the number of residents individuals on susceptible host, by X(2) the number of

mutants on susceptible host and by X(3) the number of mutants on resistant host.

Every pathogen individual can give birth to another individual of the same type

or die. Suppose that resident individuals can mutate (X(1) −→ X(2)) and mutants

can migrate between the two habitats (X(2)
⇆ X(3)). So we have a three dimen-

sional competition process, Xt = (X
(1)
t , X

(2)
t , X

(3)
t ) with non linear transition rates

(based on Lotka-Volterra equations). When X reaches the state i = (i1, i2, i3) ∈ N
3
0,

transition rates are:






























































λ1(i1) = r(1 − ν)i1
λ2(i1, i2) = βri2 + rνi1
λ3(i3) = βri3

µ1(i1, i2) = ( r(1−ν)
(1−ξ)K (i1 − 1 + βi2) + ξD)i1

µ2(i1, i2) = ( βr
(1−ξ)K (i2 − 1 + 1

β i1))i2

µ3(i3) = ( βr
ξK (i3 − 1))i3

γ23(i2) =

{

ξDi2 if i2 < γK

ξDγK else

γ32(i3) = (1− ξ)Di3

(4.1)

where r is a growth rate, ν is a mutation rate, β is a mutation cost, K is the total

pathogen carrying capacity, D is a migration rate and γ is a constant such that

γK is the maximum size that we are sure i2 will not exceed (γ ≥ ξ). The rate

γ23 is assumed to be finite, since the size of a biological population is finite even if

the population is large. Moreover, since a mutation always occurs together with a

reproduction, the rate γ12 is 0 and has been identified to the spontaneous birth rate

of type 2. We are interested in the emergence of the third type – a virulent mutant

able to invade the resistant host subpopulation:

S = inf{t ≥ 0 : X
(3)
t = 1} .

Let us assume that π is a probability distribution on N
3
0 such that for all t > 0 and

i ∈ N
2
0 × {0},

Pπ(Xt = (i1, i2, 0) |S > t) = π(i1, i2, 0) .

Then π solves the equation

πQS = −απ + αδ , (4.2)
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for some α ≥ 0. Applying Theorem 2.2, this shows that the time S is exponentially

distributed with parameter

α =
∑

(i1,i2,0)

η(i1, i2, 0)π(i1, i2, 0) =
∞
∑

i2=1

(γ23(i2)
∞
∑

i1=0

π(i1, i2, 0)) . (4.3)

In order to solve the system (4.2), we used numerical methods of the Gauss-Jordan

Elimination and Raphson-Newton, see Ref. 11. If a new resistant host is introduced

into the pathogen habitat and the initial pathogen population structure follows the

law π at this time, it will take, on average, a time of 1/α before the resistance will

be broken. The distribution of the emergence time can be estimated by simulations

of the competition process (4.1) using the Gillepsie algorithm (Fig. 2).

Fig. 2. Probability distribution function of the emergence time S. Dotted line represents
the distribution function of the exponential law with parameter α given in (4.3). Crosses represent
the distribution function of S obtained by simulations of the competition process (4.1). The values
of the parameters are K = 10, µ = 0.05, r = 1, D = 1, β = 1, ξ = 0.5 and γ = 30.

.

From (4.3) one can derive key-processes and parameter values prolonging the

durability of host resistance. The approach can be generalized to n types of resis-

tances. In this case, we may check that the number of different types of pathogen is

then N
(def)
=
∑n

i=0 C
i
n2

n−i, which corresponds to the dimension of the competition

process. Indeed, there are Ci
n areas with i resistances in the environment, and there



On emergence times of competition processes 19

are 2n−i types of mutant living on each of these areas. This N -dimensional com-

petition process can include recombinations between pathogen types and it can be

used to study the effects of the host population structure on the pathogen adaptive

dynamics.

Appendix A. Proof of lemma 3.1.

Let us prove part (i) by induction. For n = 1 the result is obviously true. Then let

us suppose that it is true for some n ≥ 1.

• For all i ≥ 0 and j > 0 :

if j > 2 + i+ n+ 1, then j − 1 > 2 + i+ n and j + 1 > 2 + i+ n,

if i > 2 + j + n+ 1, then i > 2 + (j − 1) + n and i > 2 + (j + 1) + n,

if i = j (mod 2) and n+1 odd, then i+1 = (j−1) (mod 2) = (j+1) (mod 2)

and n is even,

if i+1 = j (mod 2) and n+1 even, then i = (j−1) (mod 2) = (j+1) (mod 2)

and n is odd.

Therefore in all these cases, d
(n+1)
ij = d

(n)
i(j−1) + d

(n)
i(j+1) = 0.

• For all i ≥ 0 and for j = 0 : we have 0 < 2+ i+n+1, so the first condition

never holds. Therefore,

if i > 2 + n+ 1, then i > 2 + 1 + n,

if i = 0 (mod 2) and n + 1 is odd, then i + 1 = (0 + 1) (mod 2) and n is

even,

if i + 1 = 0 (mod 2) and n + 1 is even, then i = (0 + 1) (mod 2) and n is

odd.

So in all these cases, d
(n+1)
i0 = d

(n)
i(0+1) = 0.

• If the triple (i, j, n+1) is not in one of the previous cases, then neither are

the triples (i, j−1, n) and (i, j+1, n). Hence d
(n+1)
ij = d

(n)
i(j−1)+d

(n)
i(j+1) > 0 .

So we conclude that part (i) is true for all n > 0.

Now, we prove part (ii) again by using mathematical induction. For n = 1, we have

d
(1)
01 = 1. Suppose that, d

(n−1)
0(n−1) = 1, then d

(n)
0n = d

(n−1)
0(n−1)+d

(n−1)
0(n+1) = 1+0 = 1, from

part 1. We conclude that the first assertions of part (ii) are true

We can check equation (3.8) for n = 2, by a simple calculation. Suppose that (3.8)

holds for all k ≥ 1 and 2k ≤ n, then for 2k ≤ n,

• if k > 1, then
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d
(n+1)
0(n+1−2k)

= d
(n)
0(n−2k) + d

(n)
0(n−2(k−1))

=

n−2k
∑

i0=0

n−2k+1−i0
∑

i1=0

· · ·

n−k−2−i0−i1−···−ik−3
∑

ik−2=0

n−k−1−i0−i1−···−ik−2
∑

ik−1=0

1

+

n−2(k−1)
∑

i0=0

n−2(k−1)+1−i0
∑

i1=0

· · ·

n−(k−1)−2−i0−i1−···−ik−4
∑

ik−3=0

n−(k−1)−1−i0−i1−···−ik−3
∑

ik−2=0

1

=

n+1−2k
∑

i0=1

n+1−2k+1−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−3
∑

ik−2=0

n+1−k−1−i0−i1−···−ik−2
∑

ik−1=0

1

+

n+1−2k+1
∑

i0=0

n+1−2k+2−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−4
∑

ik−3=0

n+1−k−1−i0−i1−···−ik−3
∑

ik−2=0

1

=

n+1−2k
∑

i0=0

n+1−2k+1−i0
∑

i1=0

· · ·

n+1−k−2−i0−i1−···−ik−3
∑

ik−2=0

n+1−k−1−i0−i1−···−ik−2
∑

ik−1=0

1 .

• if k = 1, then

d
(n+1)
0(n+1−2) = d

(n)
0(n−2) + d

(n)
0n =

n−2
∑

i0=0

1 + 1 =

n+1−2
∑

i0=1

1 .

Let us extend this equality to the case where 2k ≤ n + 1. If n is even, then 2k ≤

n+ 1 ⇔ 2k ≤ n. If n is odd, then for 2k = n+ 1,

d
(n+1)
0(n+1−2k) = d

(n+1)
00 = d

(n)
01

=
1
∑

i0=0

2−i0
∑

i1=0

3−i0−i1
∑

i2=0

· · ·

n−(n−1)/2−2−i0−i1−···−i(n−1)/2−3
∑

i(n−1)/2−2=0

n−(n−1)/2−1−i0−i1−···−i(n−1)/2−2
∑

i(n−1)/2−1=0

1

=

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

· · ·

n−(n−1)/2−2−i0−i1−···−i(n−1)/2+1−3
∑

i(n−1)/2−2+1=0

n−(n−1)/2−1−i0−i1−···−i(n−1)/2−2+1
∑

i(n−1)/2−1+1=0

1

=

0
∑

i0=0

1−i0
∑

i1=0

2−i0−i1
∑

i2=0

· · ·

n+1−(n+1)/2−2−i0−i1−···−i(n+1)/2−3
∑

i(n+1)/2−2=0

n+1−(n+1)/2−1−i0−i1−···−i(n+1)/2−2
∑

i(n+1)/2−1=0

1 .

So by induction (3.8) is true for all k > 0 and 2k ≤ n.

Again, we prove part (iii) using mathematical induction. For n = 2, we have d
(2)
00 =

(4+4−2)(2+1−2)
2(2+3−2) d

(2)
02 = 6

6d
(2)
02 = 1. Suppose that for all k > 0 and 2k ≤ n,

d
(n)
0(n−2k) =

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
d
(n)
0(n+2−2k) .
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Then

d
(n+1)
0(n+1−2k) = d

(n)
0(n−2k) + d

(n)
0(n+2−2k) = (

(2n+ 4− 2k)(n+ 1− 2k)

2k(n+ 3− 2k)
+ 1)d

(n)
0(n+2−2k)

=
2n3 + 14n2 + 28n+ 16 + 8k2 − 24k2 − 32kn− 8kn2 + 8k2n

2k(n+ 3− 2k)(n+ 4− 2k)
d
(n)
0(n+2−2k)

and

(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)
d
(n+1)
0(n+3−2k)

=
2n+ 6− 2k(n+ 2− 2k)

2k(n+ 4− 2k)
(d

(n)
0(n+2−2k) + d

(n)
0(n+4−2k))

=
(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)
(d

(n)
0(n−2(k−1)) + d

(n)
0(n+2−2(k−1)))

=
(2n+ 6− 2k)(n+ 2− 2k)

2k(n+ 4− 2k)
(

(2k − 2)(n+ 5− 2k)

(2n+ 6− 2k)(n+ 3− 2k)
+ 1)d

(n)
0(n−2(k−1))

=
2n3 + 14n2 + 28n+ 16 + 8k2 − 24k2 − 32kn− 8kn2 + 8k2n

2k(n+ 3− 2k)(n+ 4− 2k)
d
(n)
0(n+2−2k) .

Then we extend this equality to the case where 2k ≤ n + 1. If n even, then 2k ≤

n+ 1 ⇔ 2k ≤ n. If n odd, then for 2k = n+ 1,

d
(n+1)
0(n+1−2k) = d

(n+1)
00 = d

(n)
01 =

n+ 5

2(n− 1)
d
(n)
03

and

(2(n+ 1) + 4− 2k)(n+ 1 + 1− 2k)

2k(n+ 1 + 3− 2k)
d
(n+1)
0(n+1+2−2k)

=
n+ 5

3(n+ 1)
d
(n+1)
02 =

n+ 5

3(n+ 1)
(d

(n)
01 + d

(n)
03 )

=
n+ 5

3(n+ 1)
(

n+ 5

2(n− 1)
+ 1)d

(n)
03

=
n+ 5

2(n− 1)
d
(n)
03 .

Hence for all k > 0 and 2k ≤ n+ 1,

d
(n+1)
0(n+1−2k) =

(2(n+ 1) + 4− 2k)(n+ 1 + 1− 2k)

2k(n+ 1 + 3− 2k)
d
(n+1)
0(n+1+2−2k) .

By induction the relation is true for all n ≥ 2.
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