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Computation of rotation numbers for a class of PL-circle homeomorphisms

Introduction

Denote by S 1 = R/Z the circle and p : R -→ S 1 the canonical projection. Let f be an orientation preserving homeomorphism of S 1 . The homeomorphism f admits a lift f : R -→ R that is an increasing homeomorphism of R such that p • f = f • p. Conversely, the projection of such a homeomorphism of R is an orientation preserving homeomorphism of S 1 .

Historically, the dynamic study of circle homeomorphisms was initiated by H. Poincaré ([10], 1886), he introduced the rotation number of a homeomorphism f of S 1 as

ρ(f ) = lim n-→+∞ f n (x) -x n (mod 1), x ∈ R.
This limit exists and is independent of the choice of the point x and the lift f of f . For example, if R α : x → x + α (mod 1) is the rotation by angle α then it is obviously that ρ(R α ) = α (mod 1). From the definition, ρ(h • f • h -1 ) = ρ(f ) holds for any orientation preserving homeomorphism h of S 1 . Assuming f is a C r -diffeomorphism (r ≥ 2) and ρ(f ) is irrational, A. Denjoy ([4]) proved:

Denjoy's theorem, [START_REF] Denjoy | Sur les courbes définies par les équations différentielles à la surface du tore[END_REF] Every C r -diffeomorphism f (r ≥ 2) of S 1 with irrational rotation number ρ(f ) is topologically conjugate to rotation R ρ(f ) . This means that there exists an orientation preserving homeomorphism h of S 1 such that f = h -1 • R ρ(f ) • h. Denjoy noted that this result can be extended (with the same proof) to a large class of circle homeomorphisms: the class P (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], Chapter VI) and in particular for piecewise linear (PL) circle homeomorphisms. Definition 1.1. An orientation preserving homeomorphism f of S 1 is called piecewise linear (P L) if f is derivable except in finitely many points (c i ) 1≤i≤p of S 1 , called break points of f at which left and right derivatives, denoted respectively by Df -and Df + exist, and such that the derivative Df is constant on each ]c i , c i+1 [.

Denote by

-Homeo + (S 1 ) the group of orientation-preserving homeomorphisms of S 1 . -PL + (S 1 ) the set of orientation preserving PL-homeomorphisms of S 1 , it is a subgroup of Homeo + (S 1 ) which contains rotations.

Definition 1.2. A homeomorphism B ∈ PL + (S 1 ) with two break points x 0 and B(x 0 ) is called an affine Boshernitzan of S 1 of last break point B(x 0 ). The map B is identified with the bijection B (mod 1) of [0, 1[, where B is a lift to R of B (Fig. 1). When B(x 0 ) = 0, B is called a standard affine Boshernitzan, it is an affine exchange of 2 intervals on [0, 1[ (Fig. 1). It is plain that if B 0 is a standard affine Boshernitzan with B 0 (x 0 ) = 0 then

B := R x 0 • B 0 • R -1
x 0 is an affine Boshernitzan of last break point x 0 = B(R x 0 (x 0 )). Conversely, if B is an affine Boshernitzan of last break

point x 0 then B 0 := R -1 x 0 • B • R x 0 is a standard affine Boshernitzan with B 0 (B • R x 0 ) -1 (x 0 ) = 0.
Notice that Boshernitzan was the first who studied these examples in order to built examples of "rational" PL-homeomorphisms with irrational rotation numbers (cf. [START_REF] Boshernitzan | Dense orbits of rationals[END_REF]).

In this paper, we are mainly concerned with the computation of rotation numbers of PL-homeomorphisms with the (D)-property (see definition 1.4). The lecture of the preprint [START_REF] Liousse | Nombre de rotation dans les groupes de Thompson généralisés, automorphismes[END_REF] was the source of our interest in the subject.

Here the theoretical support for the formula of rotation numbers is provided by the explicite conjugacy given by Proposition 2.4. Notice that the question of the smoothness of the conjugacy of P L-homeomorphism to rotation have been studied in ( [START_REF] Liousse | PL Homeomorphisms of the circle which are piecewise C 1 conjugate to irrational rotations[END_REF], [START_REF] Adouani | Sur les Homéomorphismes du cercle de classe P C r par morceaux (r ≥ 1) qui sont conjugués C r par morceaux aux rotations irrationnelles[END_REF], [START_REF] Adouani | On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations[END_REF]). Before stating the main result, we need the following notations and definitions.

Throughout the paper, we assume that all PL-homeomorphisms have finitely many break points. Here and later, we identify a map f ∈ PL + (S 1 ) with the bijection f (mod 1), where

f is a lift to R of f . A point x ∈ S 1 is identified with its representative x in [0, 1[. For f ∈ PL + (S 1 ) and x ∈ S 1 , denote by O f (x) := {f n (x) : n ∈ Z} called the orbit of x by f . Definition 1.3. (Maximal connections). Let f ∈ PL + (S 1 ) and c ∈ C(f ). A maximal f -connection of c is a segment [f -p (c), . . . , f q (c)] := {f s (d) : -p ≤ s ≤ q} of the orbit O f (c)
which contains all the break points of f contained on O f (c) and such that f -p (c) (resp. f q (c)) is the first (resp. last) break point of f on O f (c).

We have the following properties:

-Two break points of f are on the same maximal f -connection, if and only if, they are on the same orbit.

-Two distinct maximal f -connections are disjoint.

Notations. Let f ∈ PL + (S 1 ). We let -C(f ) be the set of break points of f . -M i (f ) = [c i , . . . , f N i (c i )], N i ∈ N), the maximal f -connections of c i ∈ C(f ), (1 ≤ i ≤ p). -N := max 1≤i≤p N i . -M (f ) = p i=1 M i (f )
. So, we have the decomposition:

C(f ) = p i=1 C i (f ) where C i (f ) = C(f ) ∩ M i (f ), 1 ≤ i ≤ p. -σ f (x) : = Df -(x) Df + (x) called the f -jump in x. -π s,O f (c) (f ) := x∈O f (c) σ f (x) = x∈C(f )∩O f (c) σ f (x), for every c ∈ S 1 . Note that -π s (f ) := c∈S 1 π s,O f (c) (f ) = c∈C(f ) σ f (c) = 1.
-

d∈C i (f ) σ f (d) = d∈M i (f ) σ f (d).
Let n ∈ N * and x ∈ S 1 . We have:

-C(f n ) ⊂ {f -k (c) : k = 0, 1, . . . , n -1; c ∈ C(f )}, -Df n (x) = Df(x)Df(f (x)) × • • • × Df (f n-1 (x)), -The jump of f n in x is then: σ f n (x) = σ f (x)σ f (f (x)) × • • • × σ f (f n-1 (x)).
Hence we have

π O f (c i ) (f ) :=      N i k=1 σ f N+1 (f k (c)), if N i ≥ 1 1, if N i = 0 Write π(f ) := p i=1 π O f (c i ) (f ) Definition 1.4. Let f ∈ PL + (S 1
). We say that f has the (D)-property

([8]) if the product of f -jumps in the break points on each orbit O f (c) is trivial; that is π s,O f (c) (f ) = x∈C(f )∩O f (c) σ f (x) = 1.
In particular, if all break points belong to the same orbit then f has the (D)-property, this is the case in particular if f is an affine Boshernitzan.

Hence f satisfies the (D)-property means that: for every 1 ≤ i ≤ p, the product of f -jumps in the break points of C i (f ) is trivial; that is

d∈C i (f ) σ f (d) = 1. Assume that f (0) ∈]0, 1[. Set -M * (f ) := M (f )\{c 1 , . . . , c p }, -S := M * (f ) ∩ [0, 1[ -S ∪ {0, f (0)} = {b 0 , . . . , . . . , b n } where b 0 = 0 < b 1 < • • • < b m+1 := f (0) < • • • < b n < b n+1 = 1. -q =      2(N + 1), if 0 ∈ f -(N +1) (M (f ))

N, otherwise

We are in the position to give our main result.

Theorem 1.5. Let f ∈ PL + (S 1 ) with the (D)-property and irrational rotation number ρ(f ). Under the notations above, we have:

(i) if π(f ) = 1, ρ(f ) = log 1 Df -(0) c∈S∩[0,f (0)[ σ f N+1 (c) log(π(f )) (mod 1) (ii) if π(f ) = 1, ρ(f ) = m k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1 n k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1
(mod 1)

Corollary 1.6. Let f ∈ PL + (S 1 ) with the (D)-property and irrational rotation number ρ(f ).

Let M i = [c i , . . . , f N i (c i )], N i ∈ N * , i ∈ {1, . . . , p} be the maximal f -connections. Assume that M i ∩ C(f ) = {c i , f N i (c i )}. Then (i) π(f ) = p i=1 (σ f (c i )) -N i (ii) if π(f ) = 1, then ρ(f ) = log Df -(0) + p i=1 l i log σ f (c i ) p i=1 N i log σ f (c i ) (mod 1)
where

l i := card{1 ≤ k ≤ N i : f k (c i ) ∈ [0, f (0)[}.
Corollary 1.7. Let f ∈ PL + (S 1 ) with two break points c and f N (c), N ∈ N * and irrational rotation number ρ(f ). Then π(f ) = (σ f (c)) -N = 1 and hence

ρ(f ) = 1 N log Df -(0) log σ f (c) + l N ( mod 1) 
where

l := {1 ≤ k ≤ N : f k (c) ∈ [0, f (0)[}.
Corollary 

ρ(f ) = log Df -(0) log σ f (c) (mod 1)
Notice that the formula of ρ(f ) given in Corollary 1.8 coincides with that given by Coelho et al. ([5], Theorem 2) and Boshernitzan [START_REF] Boshernitzan | Dense orbits of rationals[END_REF].

On the other hand, let ∧ ⊂ R * + be a multiplicative subgroup and A ⊂ R be an additive subgroup, invariant by multiplication by elements of ∧ such that 1 ∈ A. Denote by T ∧,A the subgroup of PL + (S 1 ) consisting of elements with slopes in ∧, break points and their images in A.

Corollary 1.9. ([8], Lemma 3) Under the notation above, let f ∈ T ∧,A with the (D)-property and irrational rotation number ρ(f ). Then:

(i) if π(f ) = 1, then ρ(f ) = α β , where α, β ∈ A. (ii) if π(f ) = 1, then ρ(f ) = log α log π(f ) , where α ∈ Λ. Corollary 1.10. Let f ∈ T ∧,A with the (D)-property and ∧, A ⊂ Q. If π(f ) = 1 then the rotation number ρ(f ) is rational. Remark 3. Let f ∈ T ∧,A with the (D)-property and ∧, A ⊂ Q. If π(f ) = 1,
the rotation number ρ(f ) can be rational or not: For example, let consider the standard affine Boshernitzan B with two break points a and 0 = B(a) and slopes λ = DB + (0), λ ′ = DB + (a). We have

π(B) = σ B (0) = λ λ ′ = 1. By Corollary 1.8, ρ(B) = log λ ′ log λ-log λ ′ ( mod 1
). If we take λ = 4 3 p and λ ′ = 1 2 l , l, p ∈ N, then we see that

ρ(B) = -l log 2 (l + 2) log 2 -p log 3 / ∈ Q
since log 2 and log 3 are independent over Q.

Let m ≥ 2 be an integer and let T m denote the subgroup of PL + (S 1 ) consisting of elements f with slopes are integral powers of m, break points and their images under f are m-adic rational numbers (i.e. of the form

k m l : k, l ∈ Z). For m = 2, T 2 is the classical Thompson group.
Corollary 1.11. If f ∈ T m with the (D)-property (in particular if all break points belong to the same orbit) then the rotation number ρ(f ) is rational.

Note that Corollary 1.11 also hold whenever f does not satisfy the (D)property ([8]).

Some results

The purpose of this section is to introduce the basic properties of PLhomeomorphism that we need in the paper. We refer to [START_REF] Adouani | On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations[END_REF] for details. From now on, f is a PL-homeomorphism with irrational rotation number ρ(f ). Let first recall the following properties. Let f, g ∈ PL + (S 1 ). If f and g are conjugated in PL + (S 1 ) by h then π s,O f (c) (f ) = π s,Og(h(c)) (g), for every c ∈ S 1 . In particular, f satisfies the (D)-property if and only if so does g.

Proposition 2.2. ([2], Corollary 2.13)(PL-invariance of π). Let f, g ∈ PL + (S 1 ) with the (D)-property. If f and g are conjugated in PL + (S 1 ) then π(f ) = π(g). Lemma 2.3. Let σ 0 , . . . , σ n ∈ R * + and let b 0 < b 1 < • • • < b n < b n+1 be real numbers with b n+1 = b 0 + 1. If σ 0 × • • • × σ n = 1 then there exists L ∈ PL + (S 1 ) with break points b 0 = p( b 0 ), . . . , b n = p( b n ) and slopes σ L (b 0 ) = σ 0 , . . . , σ L (b n ) = σ n .
Proof. The PL-homeomorphism L of S 1 will be defined by its lift L restricted to [ b 0 , b 0 + 1] as follows:

-

L( b 0 + 1) = L( b 0 ) + 1, -b 0 , . . . , b n are the break points of L. -σ j := σ e L ( b j ) the jump of L in b j , j = 0, . . . , n. Write λ j = D L + ( b j ) the slope of L on [ b j , b j+1 [. Since σ 0 × • • • × σ n = 1, we have λ j = λ j λ j+1 × • • • × λ n-1 λ n λ n = σ j+1 × • • • × σ n λ n = (σ 0 × • • • × σ j ) -1 λ n . Now from the identity L( b 0 + 1) = L( b 0 ) + 1, it follows that 1 = L( b 0 + 1) -L( b 0 ) = n j=0 λ j ( b j+1 -b j ) = λ n n j=0 ( b j+1 -b j )(σ 0 × • • • × σ j ) -1 .
Hence,

λ n = 1 n j=0 ( b j+1 -b j )(σ 0 × • • • × σ j ) -1
and therefore for all j = 0, . . . , n

λ j = (σ 0 × • • • × σ j ) -1 n j=0 ( b j+1 -b j )(σ 0 × • • • × σ j ) -1 .
We conclude that L is uniquely determined by fixing L( b 0 ). 

(i) if π(f ) = 1, f is conjugate to a rotation through a PL-homeomorphism. (ii) if π(f ) = 1, f is conjugate to a standard affine Boshernitzan through a PL-homeomorphism. Proof. For 0 ≤ k ≤ N i , 1 ≤ i ≤ p, denote by a k,i := σ f (f k (c i )) and σ k,i := σ f N+1 (f k (c i )) where N := max 1≤i≤p N i . Then σ k,i = N i j=k a j,i .
In particular, σ 0,i = π s,O f (c i ) (f ). Since f satisfies the (D)-property, we have σ 0,i = 1. We also have

π(f ) := p i=1 N i k=1 σ k,i .
By Lemma 2.3, there exists L ∈ PL + (S 1 ) with the following properties:

(i) L(0) = 0, (ii) C(L) = {f k (c i ) : 1 ≤ k ≤ N i , 1 ≤ i ≤ p}, (iii) σ L (f k (c i )) =        σ k,i , if (k, i) = (1, 1) σ 1,1 π(f ) , if (k, i) = (1, 1)
In particular, we have π s (L) = 1. We let

F = L • f • L -1 . A priori, the break points of F are: -The break points of L -1 : L(f k (c i )), 1 ≤ k ≤ N i , 1 ≤ i ≤ p, -The image by L of break points of f : L(f k (c i )), 0 ≤ k ≤ N i , 1 ≤ i ≤ p, -The image by L•f -1 of break points of L: L(f k (c i )), 0 ≤ k ≤ N i -1, 1 ≤ i ≤ p.
Therefore the possible break points of F are among:

L(f k (c i )), 0 ≤ k ≤ N i , 1 ≤ i ≤ p.
Compute the jumps of F in these points:

σ F L(f k (c i )) = σ L f (f k (c i )) σ f (f k (c i )) σ L (f k (c i )) = σ L f k+1 (c i ) σ f (f k (c i )) σ L (f k (c i ))
It follows that

σ F L(f k (c i )) =                          σ k+1,i σ k,i a k,i , if (k, i) = (0, 1) and (k, i) = (1, 1) σ 1,1 π(f ) a 0,1 σ 0,1 , if (k, i) = (0, 1) π(f ) σ 2,1 σ 1,1 a 1,1 , if (k, i) = (1, 1)
Therefore

σ F L(f k (c i )) =                  1 π(f ) , if (k, i) = (0, 1) π(f ), if (k, i) = (1, 1)

1, otherwise

We conclude that

F = L•f •L -1 ∈ P L + (S 1 ) with C(F ) ⊂ {L(c 1 ), L(f (c 1 ))} where σ F (L(c 1 )) = 1 π(f ) and σ F (L(f (c 1 ))) = π(f ). Proof of (i): If π(f ) = 1 the map F = L • f • L -1 ∈ PL + (S 1
) and has no break points, hence it is a rotation of angle ρ(f ).

Proof of (ii): If π(f ) = 1 then F satisfies the (D)-property with

C(F ) = {L(c 1 ), L(f (c 1 ))}. So F is an affine Boshernitzan of last break point L(f (c 1 )). If we conjugate F by a rotation R L(f (c 1 )) , then B 0 = R -1 L(f (c 1 )) • F • R L(f (c 1 )
) is a standard affine Boshernitzan with the (D)-property. This completes the proof.

Computation of the rotation numbers of PL homeomorphisms with the (D)-property

In this section, we compute the rotation number of f by using the explicite conjugacy given in the proof of Proposition 2.4. Let consider first the case where f is an affine Boshernitzan with the (D)-property. Proposition 3.1. ([3], [START_REF] Coelho | Absolutely continuous invariant measures for a class of affine interval interval exchange maps[END_REF]). Let B be a standard affine Boshernitzan with two break points a and 0 = B(a) and slopes λ = DB + (0), λ ′ = DB + (a). Then

(i) ρ(B) = log λ ′ log λ -log λ ′ (mod 1). (ii) ρ(B) = - log DB(x) log π(B) (mod 1), for every x ∈ S 1 . Proof. Let σ = 1 π(B) = λ λ ′ ∈ R * + \ {1}.
Let h σ denote the homeomorphism of S 1 with lift h σ : R -→ R restricted to [0, 1[ is given by:

h σ (x) = σ x -1 σ -1 , x ∈ [0, 1[.
We identify h σ with its lift h σ . Then h σ ∈ PL + (S 1 ) with one break point 0 and such that σ hσ (0) = σ. Moreover, h σ is analytic on S 1 \{0}. Then one can check easily (see [START_REF] Boshernitzan | Dense orbits of rationals[END_REF]) that h

-1 σ • B • h σ = R α is the rotation by angle α = log λ ′ log λ-log λ ′ (mod 1). Hence ρ(B) = log λ ′ log λ -log λ ′ (mod 1). Since π(B) = σ B (0) = λ ′ λ and log λ log λ -log λ ′ = log λ ′ log λ -log λ ′ (mod 1), it follows that for every x ∈ S 1 , - log DB(x) log π(B) = log λ log λ -log λ ′ (mod 1).
Therefore, (ii) holds.

Remark. Under the hypothesis of Proposition 3.1, Coelho et al. ([5],

Theorem 3) proved that B has a unique invariant probability measure which is absolutely continuous with respect to the Haar measure and with density ϕ explicitely calculated. Here from

h -1 σ • B • h σ = R ρ(B)
, we deduce that ϕ = Dh -1 σ .

Lemma 3.2. Let f ∈ PL + (S 1 ) and L ∈ PL + (S 1 ) be as in Proposition 2. [START_REF] Denjoy | Sur les courbes définies par les équations différentielles à la surface du tore[END_REF].

Then (i) σ L (b k ) = σ f q+1 (b k ) for every k = 0, . . . , n (ii) 
n j=0 σ f q+1 (b j ) = 1. Proof. Observe that C(L) = M * (f ) = M(f)\{c 1 , . . . , c p }, S = M * (f )∩[0, 1[. Proof of (i): (i)-1: k = 0, m + 1. Then b k ∈ S and we have σ L (b k ) = σ f N+1 (b k ) = σ f q+1 (b k ) since q ≥ N + 1. (i)-2: k = 0. Then b 0 = 0. If 0 ∈ S then σ L (0) = σ f N+1 (0) = σ f q+1 (0). Now assume that 0 / ∈ S then σ L (0) = 1. Let's prove that σ f q+1 (0) = 1: -If 0 / ∈ ( p ∪ i=1 O f (c i )) ∩ [0, 1[ then σ f q+1 (0) = q k=0 σ f (f k (0)) = 1. -If 0 ∈ ( p ∪ i=1 O f (c i )) ∩ [0, 1[ then 0 = f j (c i ) for some 1 ≤ i ≤ p and j / ∈ {1, . . . , N }. Hence σ f q+1 (0) = q k=0 σ f (f k (0)) = q+j k=j σ f (f k (c i )). If j > N then obviously σ f q+1 (0) = 1. If -N -1 ≤ j ≤ -1 then q = 2(N + 1)
and

σ f q+1 (0) = q+j k=0 σ f (f k (c i )) = 2N +2+j k=0 σ f (f k (c i )) = π s,O f (c i ) (f ) = 1 since 2N +2+j ≥ N +1. If j < -N -1 then q = N and σ f q+1 (0) = q+j k=j σ f (f k (c i )) = N +j k=j σ f (f k (c i )) = 1. If = 0 then q = N and σ f q+1 (0) = q k=0 σ f (f k (c i )) = N k=0 σ f (f k (c i )) = π s,O f (c i ) (f ) = 1.
In either cases,

σ f q+1 (0) = 1 = σ L (0). (i)-3: k = m + 1. Then b m+1 = f (0). If f (0) ∈ S then σ L (f (0)) = σ f N+1 (f (0)) = σ f q+1 (f (0)). Now assume that f (0) / ∈ S then σ L (f (0)) = 1. Let's prove that σ f q+1 (f (0)) = 1: -If f (0) / ∈ ( p ∪ i=1 O f (c i )) ∩ [0, 1[ then σ f q+1 (f (0)) = q k=0 σ f (f k (f (0))) = 1. -If f (0) ∈ ( p ∪ i=1 O f (c i )) ∩ [0, 1[ then f (0) = f j (c i ) for some 1 ≤ i ≤ p and j / ∈ {1, . . . , N }. Hence σ f q+1 (f (0)) = q+1 k=1 σ f (f k (0)) = q+j+1 k=j+1 σ f (f k (c i )). If j > N then obviously σ f q+1 (f (0)) = 1. If -N ≤ j ≤ 0 then q = 2(N +1) and σ f q+1 (f (0)) = q+j+1 k=0 σ f (f k (c i )) = 2N +3+j k=0 σ f (f k (c i )) = π s,O f (c i ) (f ) = 1 since 2N + 3 + j ≥ N + 3. If j < -N -1 then q = N and σ f q+1 (f (0)) = q+j+1 k=j+1 σ f (f k (c i )) = N +j+1 k=j+1 σ f (f k (c i )) = 1. If j = -N -1 then q = N and σ f q+1 (f (0)) = 0 k=-N σ f (f k (c i )) = σ f (0) = σ f (f -N -2 (c i )) = 1.
In either cases,

σ f q+1 (f (0)) = 1 = σ L (f (0)). Proof of (ii): if 0, f (0) ∈ S then π s (L) = 1 = n j=0 σ L (b j ) = n j=0 σ f q+1 (b j ). If 0 / ∈ S (resp.f (0) / ∈ S) then σ L (0) = 1 (resp. σ L (f (0)) = 1) and n j=0 σ f q+1 (b j ) = c∈S σ L (c) = π s (L) = 1.
Proof of Theorem 1.5. Let L ∈ PL + (S 1 ) be given by Proposition 2.4.

Case (i): π(f ) = 1. Then B = L • f • L -1
is an affine Boshernitzan with break-points b := L(c 1 ) and B(b) = L(f (c 1 )) and jumps at these points:

σ B (b) = 1 π(f ) and σ L (B(b)) = π(f ) = 1. We have ρ(f ) = ρ(B). Since π(f ) = π(B) (Proposition 2.
2), it follows by Proposition 3.1, (ii), that

ρ(f ) = - log(DB -(0)) log(π(B)) = - log(DB -(0)) log(π(f )) (mod 1).
We have

DB -(0) = DL -(f (0))Df -(0) DL -(0)
and

DL -(0) DL -(f (0)) = c∈S∩[0,f (0)[ σ L (c) (since if 0 / ∈ S, σ L (0) = 1) = π(f ) ε c∈S∩[0,f (0)[ σ f N+1 (c) (since σ f q+1 (c) = σ f N+1 (c) if c ∈ S)
where ε ∈ {0, 1}. It follows that

ρ(f ) = log 1 Df -(0) c∈S∩[0,f (0)[ σ f N+1 (c) log(π(f )) (mod 1).
Case (ii): π(f ) = 1. In this case, the map

F = L • f • L -1 is a rotation of angle ρ(f ) with L(b 0 ) = 0. By Lemma 3.2, we have σ k := σ L (b k ) = σ f q+1 (b k ). Compute λ k = DL + (b k ) for k = 0, . . . , n : we have λ k = λ k λ k+1 × • • • × λ n-1 λn λ n = σ k+1 × • • • × σ n λ n with σ k+1 × • • • × σ n = 1 if k = n. By Lemma 3.2, σ 0 × • • • × σ n = 1, it follows that λ k = σ 0 × • • • × σ k -1 λ n = k j=0 σ f q+1 (b j ) -1 λ n . Now from the identity L(b 0 + 1) = L(b 0 ) + 1, it follows that 1 = L(b 0 +1)-L(b 0 ) = n k=0 λ k (b k+1 -b k ) = n k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1 λ n .
Therefore,

λ n = 1 n k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1 . Since L(b 0 ) = 0 and b m+1 = f (b 0 ), it follows that ρ(f ) = L(f (b 0 )) = L(b m+1 ) = m k=0 (L(b k+1 ) -L(b k )) = m k=0 λ k (b k+1 -b k )
We conclude that

ρ(f ) = m k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1 n k=0 (b k+1 -b k ) k j=0 σ f q+1 (b j ) -1
.

Proof of Corollary 1.6. Since f has the (D)-property, we have for every i = 1, . . . , p,

σ f N+1 (f k (c i )) =      σ f (f N (c i )) = (σ f (c i )) -1 , if k ≥ 1 1, if k = 0 It follows that π(f ) := p i=1 N i k=1 σ f N+1 (f k (c i )) = p i=1 (σ f (c i )) -N i . Write l i = card{1 ≤ k ≤ N i : f k (c i ) ∈ [0, f (0)[}. Then we have x∈S∩[0,f (0)[ σ f N+1 (x) = p i=1 (σ f (c i )) -l i .
By the formula in Theorem 1.5, we get

ρ(f ) = log 1 Df -(0) p i=1 (σ f (c i )) -l i log p i=1 (σ f (c i )) -N i = log (Df -(0)) + p i=1 l i log σ f (c i ) p i=1 N i log σ f (c i ) (mod 1).
Proof of Corollary 1.7. By hypothesis, f has one connection

M (f ) = [c, . . . , f N (c)], N ≥ 1 with M (f ) ∩ C(f ) = {c, f N (c)}.
So the formula holds by applying the formula in Corollary 1.6 for p = 1, since in this case, we have

π(f ) = (σ f (c)) -N = 1.
Proof of Corollary 1.8. This follows directly from Corollary 1.7 for N = 1.

Proof of Corollary 1.9. This follows directly from the formula in Theorem 1.5.

Proof of Corollary 1.10. This folllows from Corollary 1.9.

Proof of Corollary 1.11. By Corollary 1.10, one can suppose that π(f ) = 1. Since the slopes of f are of the form m l , l ∈ Z, and

π(f ) := p i=1 N i k=1 σ k,i where σ k,i = σ f N+1 (f k (c i )), it follows that π(f ) = m k for some k ∈ Z. Moreover Df -(0) = m s for some k ∈ Z. Therefore the formula for )
given by Theorem 1.5, implies that ρ(f

) = log m l log m k = l k for some l ∈ Z. So ρ(f ) ∈ Q.

Examples

Example 4.1. (Herman's example). Let λ > 1 and β > 0 be two real numbers. Define the P L homeomorphism f β,λ of S 1 with break points 0 and a defined by the restriction of its lift on [0, 1], noted also f β,λ by:

f β,λ =    λx, if 0 ≤ x < a; λ -β (x -1) + 1, if a ≤ x ≤ 1.
where a ∈]0, 1[ is given by λa = λ -β (a -1) + 1. Then f β,λ have jumps in 0 and a given by

σ f β,λ (0) = λ -1-β and σ f β,λ (a) = 1 σ f β,λ (0) = λ 1+β . (See Fig. 2). λ λ -β λ a 0 1 1 3

Figure 2. Herman's Example

Herman has considered the family of PL homeomorphisms R b • f β,λ of S 1 where b ∈ [0, 1] and R b is the rotation of angle b, these homeomorphisms have the break points 0 and a with jumps λ -1-β and λ 1+β respectively. He showed (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], chapter III), using continuity of the rotation number, that the rotation map ρ

: b ∈ [0, 1[-→ ρ(R b • f β,λ ) is a continuous increasing and surjective map; moreover, ρ is injective on (R \ Q)∩]0, 1[; that is for every α ∈ (R \ Q)∩]0, 1[, there exists a unique b = b(α) ∈ [0, 1[ such that ρ(R b • f β,λ ) = α. Denote by f α,β,λ = R b(α) • f β,λ . Then f α,β,λ ∈ P L + (S 1 )
with irrational rotation number α.

Suppose that f α,β,λ has the (D)-property (i.e. 0 and a belong to the sam orbit). Set f N (a) = 0, N ≥ 1. Then

(i) α = - β N (1 + β) + l N (mod 1) where l := card{1 ≤ k ≤ N : f k (a) ∈ [0, f (0)[}. In particular, β 1 + β ∈ Zα (mod 1).
(ii) the conjugacy H from f α,β,λ to R α is piecewise analytic but not PL. (iii) in the special case N = 1, we obtain:

α = 1 1 + β (mod 1) and H = h σ where σ > 0, σ = 1. Proof. (i): We have D(f α,β,λ ) -(0) = λ -β , σ f α,β,λ (0) = λ -1-β and σ f α,β,λ (a) = λ 1+β . Hence by Corollary 1.7, α = 1 N log λ -β log λ 1+β + l N = - β N (1 + β) + l N ( mod 1) 
(ii): Now we determine the conjugacy from f α,β,λ to R α : By Proposition 2.4, there exists

L ∈ PL + (S 1 ) such that B := L • f α,β,λ • L -1 is an affine Boshernitzan with two break points L(a) and B(L(a)) = L(f α,β,λ (a) 
) and jumps at these points

1 π(f α,β,λ ) = (σ f α,β,λ (a)) N = λ N (1+β) and π(f α,β,λ ) = (σ f α,β,λ (a)) -N = λ -N (1+β)
respectively. We determine the conjugating L in this case: We have

L(0) = 0, C(L) = {f k α,β,λ (a) : k = 1, . . . , N } and σ L (f k α,β,λ (a)) =            σ f N+1 α,β,λ (f k (a)), if 1 < k ≤ N σ f N+1 α,β,λ (f α,β,λ (a)) π(f α,β,λ ) , if k = 1 =      (σ f α,β,λ (a)) -1 , if 1 < k ≤ N (σ f α,β,λ (a)) -1+N , if k = 1 =      λ -1-β , if 1 < k ≤ N (λ (1+β)(-1+N ) , if k = 1 Now B 0 = R -1 L(f α,β,λ (a)) • B • R L(f α,β,λ (a)
) is a standard affine Boshernitzan with break points b : R -1 L(f α,β,λ (a)) (L(a)) and 0 = B 0 (b) and we have

π(B 0 ) = π(f α,β,λ ) = λ -N (1+β) .
We let σ = λ N (1+β) . Then by the proof of Proposition 3.1, we have

B 0 = h σ •R α •h -1
σ where h σ is the homeomorphism of S 1 defined by the restriction to [0, 1[ of its lift denoted also by h σ :

h σ (x) = σ x -1 σ-1 , x ∈ [0, 1[. We conclude that H • f α,β,λ • H -1 = R α where H := h -1 σ • R -1 L(f α,β,λ (a)) • L.
Note that H is piecewise analytic but not PL (since σ = 1).

(iii): in the special case N = 1, the map f α,β,λ has two break points a and 0 = f α,β,λ (a) with α = 1 1 + β (mod 1), σ = λ 1+β . Since L is the identity, it 

follows that f α,β,λ = h σ • R α • h -1 σ .
λ 2 = λ 4 . Therefore ) =            log λ 2 log λ 1 -2 log λ 2 + log λ 3 (mod 1), if π(f ) = 1 -λ 1 b λ 1 c + (1 -c) (mod 1), if π(f ) = 1 b c d f ( 
π(f ) = (σ f (b)) -1 (σ f (d)) -1 = λ 2 λ 1 λ 2 λ 3 = λ 2 2 λ 1 λ 3 .
Moreover, since f (d) = c < f (0) and f (b) = 0, we get l 1 = l 2 = 1. Therefore:

-if π(f ) = 1, ρ(f ) = log λ 2 + log σ f (b) + log σ f (d) log σ f (b) + log σ f (d) = log λ 2 log λ 1 λ 3 λ 2 2 = log λ 2 log λ 1 -2 log λ 2 + log λ 3
(mod 1).

We have 

S = (M (f )\{b, d}) ∩ [0, 1[= {a, c} ∩ [0, 1[= {a, c}. -S ∪ {0, f (0)} = {b 0 , b 1 , b 2 } where b 0 = a = 0 < b 1 = c < b 2 = f (0) < b 3 = 1. Hence n = 2 and m = 1. -S ∩ [0, f (0)[= {b 0 , b 1 } -if π(f ) = 1 then λ 2 2 λ 1 λ 3 = 1.
ρ(f ) = 1 k=0 (b k+1 -b k )( k j=0 σ f 2 (b j )) -1 2 k=0 (b k+1 -b k )( k j=0 σ f 2 (b j )) -1 = (b 1 -b 0 )(σ f 2 (b 0 )) -1 + (b 2 -b 1 )( 1 j=0 (σ f 2 (b j )) -1 ) (b 1 -b 0 )(σ f 2 (b 0 )) -1 + (b 2 -b 1 )( 1 j=0 (σ f 2 (b j )) -1 ) + (b 3 -b 2 )( 2 j=0 (σ f 2 (b j )) -1 ) = c(σ f (0)) -1 + (f (0) -c)(σ f (0)) -1 (σ f (c)) -1 c(σ f (0)) -1 + (f (0) -c)(σ f (0)) -1 (σ f (c)) -1 + (1 -f (0))(σ f (0)) -1 (σ f (c)) -1 = cλ 1 + (f (0) -c) cλ 1 + (1 -c) = f (0) -1 cλ 1 + (1 -c) (mod 1). As λ 1 b = 1 -f (0), we obtain ρ(f ) = -λ 1 b λ 1 c + (1 -c) (mod 1). Example 4.3. Let f ∈ PL + (S 1
) with five break points a 0 = 0 < a 1 < a 2 < a 3 < a 4 with f k (0) = a k , k = 0, 1, 2, 3, 4. (see Fig. 4). The break points of f are on the orbit of 0, then f satisfies the (D)-property. The rotation number of f is given by: Proof. The map f has one maximal connection M (f ) = [0, . . . , f 4 (0)] corresponding to N = 4. We have

ρ(f ) =          - log λ 1 log(π(f )) (mod 1), if π(f ) = 1 a 1 4a 1 -a 4 + 1 (mod 1), if π(f ) = 1 where π(f ) = λ 2 λ 3 λ 4 λ 5 λ 4 
a 2 = (1 + λ 2 )a 1 , a 3 = (1 + λ 2 + λ 2 λ 3 )a 1 , a 4 = (1 + λ 2 + λ 2 λ 3 + λ 2 λ 3 λ 4 )a 1 , a 5 = f 5 (0) = (1 + λ 2 + λ 2 λ 3 + λ 2 λ 3 λ 4 + λ 2 λ 3 λ 4 λ 5 )a 1 , λ 1 = 1 -a 5 + a 1 1 -a 4 , -0 < a 1 < 1 1 + λ 2 + λ 2 λ 3 + λ 2 λ 3 λ 4 + λ 2 λ 3 λ 4 λ 5 , We have σ f 5 (0) = 1, σ f 5 (a 1 ) = λ 2 λ 1 , σ f 5 (a 2 ) = λ 3 λ 1 , σ f 5 (a 3 ) = λ 4 λ 1 , σ f 5 (a 4 ) = λ 5 λ 1 . Hence π(f ) = λ 2 λ 3 λ 4 λ 5 λ 4 1 . We have S = (M (f )\{0}) ∩ [0, 1[. -S ∪ {0, f (0)} = {b 0 , b 1 , b 2 , b 3 , b 4 } where b 0 = 0 < b 1 = f (0) = a 1 < b 2 = a 2 < b 3 = a 3 < b 4 = a 4 < b 5 = 1. Hence n = 4 and m = 0. -S ∩ [0, f (0)[= {b 0 } -Df -(0) = λ 1 . By Theorem 1.5, we get: -if π(f ) = 1 then ρ(f ) = log 1 Df -(0) log(π(f )) (mod 1) = - log λ 1 log(π(f )) (mod 1) -if π(f ) = 1 then λ 2 λ 3 λ 4 λ 5 λ 4 1 = 1. Let L ∈ PL + (S 1
) be the conjugating from f to the rotation R ρ(f ) as given in the proof of Proposition 2.4, then we have

C(L) = S and Df + (a 4 ) = DL + (a 4 ) DL + (f (a 4 )) = 1, so λ 1 = 1. Then 4 k=0   (b k+1 -b k ) k j=0 σ f N+1 (b j ) -1   = (a 1 -0) + (a 2 -a 1 ) λ 1 λ 2 + (a 3 -a 2 ) λ 2 1 λ 2 λ 3 + (a 4 -a 3 ) λ 3 1 λ 2 λ 3 λ 4 + (1 -a 4 ) λ 4 1 λ 2 λ 3 λ 4 λ 5 = a 1 + λ 1 a 1 + λ 2 1 a 1 + λ 3 1 a 1 + (1 -a 4 ) = 4a 1 -a 4 + 1. Hence ρ(f ) = a 1 4a 1 -a 4 + 1 (mod 1). Example 4.4. Let f ∈ PL + (S 1
) with five break points a 0 = 0, a 1 , a 2 , a 3 and a 4 with f k (0) = a k , k = 0, 1, 2, 3, 4. (see Fig. 5). The break points of f are on the orbit of 0, then f satisfies the (D)-property. The rotation number of f is given by: 

ρ(f ) =           
= w + v + w w + v + w + v + v = v + 2w 3v + 2w = -2v 3v + 2w = 2a 2 -2 1 + 2a 3 -3a 2
(mod 1).
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  Moreover, let L ∈ PL + (S 1 ) be the conjugating from f to the rotation R ρ(f ) as given in the proof of Proposition 2.4, then we have C(L) = {a, c} and Df + (b) = DL + (b) DL + (f (b)) = DL + (b) DL + (0) = 1, it follows that λ 2 = 1 and λ 1 λ 3 = 1. By Theorem 1.5, we get:
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