
HAL Id: hal-00595903
https://hal.science/hal-00595903

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelet packets and de-noising based on
higher-order-statistics for transient detection

Philippe Ravier, Pierre-Olivier Amblard

To cite this version:
Philippe Ravier, Pierre-Olivier Amblard. Wavelet packets and de-noising based on higher-order-
statistics for transient detection. Signal Processing, 2001, 81 (9), pp.1909-1926. �10.1016/S0165-
1684(01)00088-3�. �hal-00595903�

https://hal.science/hal-00595903
https://hal.archives-ouvertes.fr


Wavelet Pakets and De-noising Based onHigher-Order-Statistis for transient DetetionPhilippe Ravier� and Pierre-Olivier Amblard���Laboratoire d' �Eletronique, Signaux, Images LESI-ESPEOBP 6744 - 45067 Orl�eans C�edex 2 - Franee-mail: Philippe.Ravier�univ-orleans.frTel: (33)-2-38-49-48-63Fax: (33)-2-38-41-72-45��Laboratoire des Images et des Signaux LIS-ENSIEGUMR 5083 Groupe Non Lin�eaireBP46 - 38402 St-Martin d'H�eres C�edex - Franee-mail: Bidou.Amblard�lis.inpg.frTel: (33)-4-76-82-71-06Fax: (33)-4-76-82-63-84

Preprint submitted to Elsevier Preprint 17 April 2001



In this paper, we present a detetor of transient aousti signals that ombines twopowerful detetion tools: A loal wavelet analysis and higher-order statistial propertiesof the signals. Using both tehniques makes detetion possible in low signal-to-noiseratio onditions, when other means of detetion are no longer suÆient. The proposedalgorithm uses the adapted wavelet paket transform. It leads to a partition of thesignal whih is `optimal' aording to a riterion that tests the Gaussian nature of thefrequeny bands. To get a time dependent detetion urve, we perform a de-noisingproedure on the wavelet oeÆients: The Gaussian oeÆients are set to zero. Wethen apply a lassial method of detetion on the time reonstruted denoised signal.We study the performane of the detetor in terms of experimental ROC urves. Weshow that the detetor performs better than deompositions using other lassial split-ting riteria. In a last part, we present an appliation of the algorithm on real owreordings of nulear plant pipings. The detetor indiates the presene of a missingbody in the piping at some instants not seen with a lassial energy detetor.Nous pr�esentons dans et artile un nouveau d�eteteur de signaux transitoires aous-tiques. Ce d�eteteur tire parti de deux tehniques puissantes utilis�ees en d�etetion :une analyse loale par ondelettes ombin�ee �a une exploitation des propri�et�es statis-tiques aux ordres sup�erieurs des signaux. Cette approhe rend possible la d�etetiondans des onditions de rapport signal sur bruit diÆiles alors que les m�ethodes las-siques demeurent insuÆsantes. L'algorithme propos�e utilise les paquets d'ondelettesqui r�ealisent un pavage du plan temps-fr�equene adapt�e �a l'observation. Il aboutit �a laonstrution d'une base de d�eomposition qui est \optimale" selon un rit�ere qui testela nature gaussienne des bandes fr�equentielles. Pour obtenir une ourbe de d�etetiontemporelle, on e�etue un d�ebruitage du signal par mise �a z�ero des oeÆients de ban-des gaussiennes. Une m�ethode lassique de d�etetion est ensuite appliqu�ee sur le signald�ebruit�e reonstruit en temps.On �etudie les performanes du d�eteteur en terme de ourbes COR exp�erimentales.Nous montrons que le d�eteteur donne de meilleurs r�esultats que les d�eompositionsqui utilisent d'autres rit�eres lassiques de segmentation. Dans une derni�ere partie, uneappliation de l'algorithme �a un enregistrement de irulation hydraulique dans uneentrale nul�eaire est propos�ee. Le d�eteteur indique la pr�esene d'un orps errant �ades instants non r�ev�el�es par un d�eteteur lassique d'�energie.Key words: transient detetion, wavelet pakets, multiresolution analysis, adaptedsegmentation, de-noising, higher-order statistis, ROC performane urves.1 Introdution1.1 Presentation of the problemWavelets and Higher-Order-Statistis are two of the most suessful advanes in the �eld of signalproessing of the twenty last years. Both tehniques are powerful tools that an eÆiently be usedfor detetion appliations. But rare are the appliations where researhers simultaneously have triedto take advantage of the two approahes by ombining them. We propose to do so in this paper andshow how suh a ombination an improve the quality of detetion.The problem addressed here onerns the detetion of short time impulsive signals that we all2



transient signals. The detetion of this kind of signal has many appliations. In biologial domains,the detetion and exat loalization of transients in ECG or EEG reordings is of great importane[18,19,5℄. In [1℄, the authors detet wide-band transients that are pressure drop signals originatingfrom a developed turbulene experiment. In passive sonar problems, the detetion of transient aous-ti signals onstitutes an alternative to other lassial sonar detetion means beause of the progressrealized in reduing aousti noise generated by naval vessels. Thus the traditional means of detetionare insuÆiently reliable [6,17℄.In the problem addressed here, the signals are supposed to be embedded in a suÆiently strongadditive noise so that phenomena annot be visually deteted onsidering the observed temporalshape. The detetor proposed aims to perform better than any energy detetor so that false alarmor missed detetion situations are mitigated. In addition to severe signal-to-noise ratio ontexts, thesignals of interest su�er from a lak of information: This makes the problem very diÆult to solve.The signals to detet are poorly de�ned for the following reasons:{ Their temporal signal shapes are not exatly known,{ Their arrival times are not known and generally need to be estimated,{ Their brief existene bring redued information for their haraterization.However, we need to de�ne the objets more preisely. Many of them have an osillatory shapeyielding high peaks in their spetrum. This is espeially true for the signals we onsidered suh astransients generated by metalli shoks, raks or slams.Transient signals an therefore be desribed as models with various parameters. Friedlander andPorat in [7℄ have proposed a theoretial solution of the problem assuming the signal was omposed ofdamped parameterized sines orrupted by a white Gaussian noise. Detetors investigated are basedon a lass of linear data transforms. Atually, models are rather far from representing all the variety oftransient signals. So we intentionally hose a non parametri approah to prevent from restriting theproblem to a lass of partiular signals. Transients will then be haraterized through their statistialproperties whih ontrast with the properties of the noise.We disuss in the next setion how we already proposed a detetor based on Malvar wavelets andits working limitations for assumed white Gaussian stationary noise. Wavelet pakets are proposedinstead in more realisti situations when the noise is olored and stationary.1.2 From Malvar wavelets to wavelet paketsIn a previous work, we have shown that Malvar wavelets an suessfully be used when the noiseis stationary white and Gaussian [16℄. The basi idea onsists in disriminating the noise from thetransient signal by segmenting the observation in �ne temporal slies when a transient is present andin large ones when there is noise only. The purpose is to get the `best' segmentation whih is adaptedto a desired riterion. Atually, the segmentation orresponds to seleting a basis among the set ofall possible bases whih is related to a orresponding partition in the time-frequeny plane.The riterion to hoose the best basis is based on the Gaussianity oeÆients: When two adjaentsegments have Gaussian oeÆients, they are merged, otherwise they are kept separated. Determi-nation of the Gaussianity of the wavelet oeÆients is done using Higher-Order Statistis. When the3



noise is white stationary, the oeÆients remain white stationary so that statistis an be estimatedby replaing mathematial expetations with average omputing. When the noise is olored, waveletoeÆients in the same segment annot be onsidered stationary so that the estimation is not orret.For that reason, the `split and merge temporal slies' riterion that is used for the best basis searh,fails to give good results. To irumvent this problem, we propose to work in the frequeny domainusing wavelet pakets. The best basis is hosen in the same way: Merging `Gaussian frequeny bands'.In this ase, the estimation proess is orret beause the oeÆients in the same frequeny band arestationary. This point is desribed further in the paper. �g.1The proedure used to searh for the best basis is shematially desribed in the �gure 1 for thetwo ases desribed below. In the �rst ase depited in [16℄, the best basis is initialized with a setof Malvar wavelets supported on minimal equally temporal slies. The merging riterion is appliedon pairs of adjaent slies. It leads to the merging of the slies aording to the Gaussianity ofthe wavelet oeÆients in eah slie. When merging, onsidered wavelets are replaed by the samenumber of twie longer supported wavelets. In the example of �gure 1, the third slie is supposedto have nonGaussian oeÆients. The �rst step merges the slies 1-2, 5-6 and 7-8. In a seond step,the proedure leads to the merging of the last two slies obtained in the �rst step. The best basis isreahed.In the seond ase (�gure 1b), the proess is exatly the same exept the signal is initially seg-mented in equal frequeny bands. The merging riterion is applied to adjaent frequeny bands.The time-frequeny plane evolves aording to the frequeny variable whih is \ative" in the tiling.Inversely, the time variable passively reats beause frequeny segmentation imposes the tiling in thetemporal domain.Considering the detetion problem, the purpose, however, is to get a time dependent detetionstatisti. The obtained time frequeny plane tiling atually orresponds to a set of admissible waveletsonstituting a basis. The signal is projeted on eah element of this basis produing deompositionoeÆients. To return to a single temporal urve, a de-noising proedure setting Gaussian oeÆientsto zero is performed. A denoised signal is reonstruted from the retained oeÆients. After that, astandard detetion algorithm is applied.The exat proedure of detetion is detailed in setion 3. Studies of performane are desribed.The method is illustrated in setion 4 with the detetion of a srew bolt that has been forgottenin nulear plant pipings.In the setion hereafter, we briey introdue wavelet pakets de�ned as an extension of the mul-tiresolution analysis priniples. We want to explain their onstrution as well as the oeÆient ompu-tation. Before that, we give a justi�ation in the use of adapted wavelets for the problem of transientdetetion. 4



2 Using Wavelet Pakets for detetion2.1 Interest of adapted wavelet transformsIn a detetion problem, time-frequeny representations are used to distribute the energy of a signalon the time-frequeny plane, in suh a way that relevant information an be extrated to make agood detetion. The results generally depend on the retained parameters and on the method itselfused as a time-frequeny representation.For example, disrete windowed Fourier `bases' tile the time-frequeny plane in regular ells whihall have the same unertainties. Disrete wavelet bases tile the time-frequeny plane more naturally,aording to the evolution veloity of phenomena. A low frequeny needs to be observed on a long timeto be orretly estimated whereas a high frequeny an rapidly hange at any time. Therefore, time-frequeny loalization naturally depends on the `observation sale'. However, these deompositionsimpose a �xed tiling shape in the time-frequeny plane, independent of the observation. Moreover,hoosing the analysis window size or the deomposition depth is more or less done empirially. Onthe other hand, it is possible, using adapted wavelet transforms, to obtain adapted tilings in thetime-frequeny plane, automatially aording to the observation. �g.2In a detetion problem, the idea is to adapt the time-frequeny tiling to the signature of the signalsof interest. Considering �gure 2, the pattern represented on the left orresponds to a transient signal ina ontinuous short time Fourier representation. An adapted wavelet transform using wavelet paketsas depited in panel () allows the time-frequeny pattern to be insulated with an appropriate tiling.In pratie, the signal is of ourse strongly polluted and seeking for an adapted wavelet transformwill perform a better detetion, if ahievable.The key point is to obtain a tiling showing a `pre-detetion' of the events. A time-frequeny tiling isassoiated to a retained wavelet basis among all the possible wavelet deomposition bases. Basially,a basis is onstituted by some admissible elements in a set of wavelet pakets. Wavelet pakets andtheir properties are now presented.
2.2 De�nitions and propertiesWe introdue wavelet pakets as an extension of the multiresolution analysis (MRA). This math-ematial formalism has been developed for fast omputation of the disrete wavelet transform o-eÆients [14℄. The MRA is built on two time series �lters hn and gn. The onstrution of waveletfamilies as well as the oeÆient omputation rely on these single sequenes.From hn and gn, we need to de�ne the two operators H and G as �lters on the digital signal xn:(Hx)n = Pk hkxn�k(Gx)n = Pk gkxn�k:5



When x is a funtion of the ontinuous variable t, we de�ne:(Hx)(t) = Pk hkx(t� k)(Gx)(t) = Pk gkx(t� k):With these onventions, the lassial sale and wavelet funtions read:� = �H� = �G�:where � is a ompression operator applied on a ontinuous funtion f(t) suh as: �f(t) = p2f(2t).Wavelet pakets are reated by further applying the operators either on � or on  . It produes thein�nity  0;  1;  2; : : : of wavelets indexed by the arrangement f 2 N de�ned as: 2f = �H f 2f+1 = �G f with  0 = �H 0:Note that  0 = � and  1 =  . The family f f(t�p); p 2 Z; f 2 Ng onstitutes an orthonormal basisof L2(R) [20℄ (The sequenes fhng and fgng are alled quadrature mirror �lters).In the frequeny domain, the family f fg, where  f (�) stands for the Fourier transform of  f(t),ats as a olletion of subband �lters (see �gure 3b for f = 4). �g.3We now shift and sale the  f (t) to obtain multisale wavelet pakets: s;f;p(t) = 2� s2 f (2�st� p); s; p 2 Z; f 2 N :The operatorsH and G an again be used to express wavelet pakets from one sale to the followingone. We note the deimation operator as (# x)n = x2n andH/ the operatorH for the inverse sequeneh�n. The reursive expressions are derived: s+1;2f;p = (# H/ s;f;:)p s+1;2f+1;p = (# G/ s;f;:)p:Note that inrementing the sale modi�es the `frequeny index' f beause inreasing the saleorresponds to a �ner frequeny analysis and authorizes a greater number of frequenies. In thetime/frequeny plane, applying # H/ and # G/ `splits' the initial band into two subbands whihdoubles the frequeny resolution as illustrated in �gure 4. The inverse `merging' operator merges twoadjaent frequeny bands in a single larger one (�gure 5). �g.4�g.5In this kind of diagram, the entire time-frequeny ell information is supposed to be arried bythe wavelet oeÆient, whih is the inner produt of  s;f;p(t) with the signal x(t):WPs;f;p = hx;  s;f;pi in the L2(R) sense.Remarkably, the wavelet oeÆients an be reursively evaluated from the sale s to the next one6



s+ 1 in the same way it an be done with the wavelet funtions:WP s+1;2f;p = (# H/ WP s;f;:)pWP s+1;2f+1;p = (# G/ WP s;f;:)p:In the merging proess, oeÆients are reonstruted by the following relation:WPs;f;p = (H "WPs+1;2f;:)p + (G "WPs+1;2f+1;:)pwhere the interpolation operator ats like (" x)2n = xn and (" x)2n+1 = 0. Sine wavelets areorthonormal, it is possible to easily reonstrut a signal from the oeÆients and to obtain �lteredversions of the original signal at frequeny f and sale s, suh that xsf(t) = PpWP s;f;p s;f;p(t).A wavelet paket basis of L2(R) an be onstruted by appropriately seleting a set of waveletsby their triplets (s; f; p) among the whole olletion f s;f;p(t); s; p 2 Z and f 2 Ng. The indies s; fmust be seleted suh that dyadi disjoint intervals Isf = h f2s ; f+12s i f 2 Z; s 2 Z over the entire realpositive frequeny axis. Then the funtions  f (2�st � p); p 2 Z suh that [s;fIsf = R+ onstitutean orthonormal basis of L2(R). Let us denote B all the possible onstrutible bases derived from theadmissible sets in T = f(s; f; p)= [s;f [2�sf; 2�s(f + 1)℄ = R+ ; p 2 Zg. Then the signal x(t) reads:x(t) = X(s;f;p)2T WP s;f;p s;f;p(t):This relation not only stands for an expansion of the signal on the f s;f;p(t); (s; f; p) 2 T g familybut also expresses a signal reonstrution from a set of wavelet oeÆients.Pratially, for an N = 2L points digital signal xn, the number of oeÆients at a given frequenyband is sale dependent. At a sale depth s, we have f = 0; : : : ; 2s � 1 frequeny indies and p =0; : : : ; 2L�s ell positions equally distributed on the time axis. Globally, the number of oeÆientsin the time-frequeny plane is always the same (i.e. N the sample number of the original signal)whatever the adapted tiling onsidered.We now explain how to obtain the best adapted wavelet basis.2.3 Towards the `best' adapted wavelet basisThe key point in the searh for the best basis results in the ability of making a basis evolve towardsthe `best' one by iteratively substituting elements of the basis with other admissible elements. Forexample, the f s;f(p); p = 0::2L�sg wavelets an be substituted by the funtions f s+1;2f+�(p); � =0; 1 and p = 0::2L�s2 g. In the manipulation, the number of wavelets is unhanged for the basis.This operation a�ets the time-frequeny tiling by splitting or merging frequeny bands whenhanging the sale parameter. The deision of modifying or not the initial basis at eah step is takenaording to a riterion. Pratially, we need to start with a given initial basis. The basis is omposedof a set of wavelets with the same largest given sale. In the time-frequeny plane, it orresponds tosliing the Nyquist band in equal frequeny bands with the desired �nest width. The split and mergepriniple is only applied in the merge sense and selets the frequeny bands to be merged, from the�nest ones to the largest ones. 7



The `split and merge' algorithm ompares a funtion evaluated on the oeÆients of two adjaentfrequeny bands. Traditional funtions suh as Shannon entropy, onentration in lp or logarithm ofenergy are used. These funtions stand for an information measure and the aim is to onstrut abasis with the minimum ost, i.e. to minimize the total information measure.Let us all M an information ost funtional omputed on the wavelet paket oeÆients:MfWPs;f;pg = X(s;f)2B IfjWP s;f(p)jgfor a hosen f(s; f; p)g family. Here I is a real valued additive information measure. The best basis isobtained by minimizingMfWPg. This orresponds to hoosing the appropriate sequene of (s; f; p)indies in B neessary to over the time-frequeny plane. The minimization is made reursively.Considering two sequenes of oeÆients fWPs;2f(p)g and fWPs;2f+1(p)g at a �xed sale s andfrequeny f , and the sequene overing the same frequeny band at sale s � 1 fWPs�1;f(p)g, theriterion must deide whih oeÆient sets must be kept for the `best' deomposition. The hoie ofminimum information ost is generally onsidered whih provides the following deision riterion:8>>>>><>>>>>: If IfWPs;2f(p)g+ IfWPs;2f+1(p)g < IfWPs�1;f(p)gthen keep the oeÆients WPs;2f(p) and WPs;2f+1(p) for the wavelet deompositionOtherwise replae the oeÆients WPs;2f(p) and WPs;2f+1(p) by the oeÆients WPs�1;f(p):For eah deision, the minimum ost must be kept.This deision riterion is built under the idea of oding or ompression appliations, where the in-formation must be arried by the minimum number of oeÆients. Remember that we want to detettransient signals whih is not neessarily ompatible with a onstrution in a minimum ost sense.The purpose in the ase of detetion is quite di�erent: The riterion must realize the segmentationthat makes the desired signals learly appear in the time-frequeny representation.The next part desribes the riterion we propose for that purpose.3 Proedure of detetion and performaneThe proedure of detetion is based on a best basis searh proedure whih is able to inrease thesignal to noise ratio by an appropriate time frequeny tiling.3.1 Searhing for the best basis and de-noisingThe noise is supposed to be stationary. Transients are often osillating produing some large oef-�ients in a wavelet deomposition. Therefore, the amplitudes of the oeÆients are rather far frombeing smoothly distributed. By ontrast, the noise samples are Gaussian distributed when observedfor a suÆiently long time [3℄. The disrimination between transients and the noise an thereforebe reated using a Gaussianity measure. The presene of a transient will generate nonGaussian8



oeÆients at some frequeny bands where the transient exists. On the other hand, Gaussian oef-�ients will represent noise only ases. Thus a natural idea onsists in merging the frequeny bandswhih have the same Gaussian nature. Finally, the proedure `merge frequeny bands when they areGaussian' reveals transients by showing a �ne frequeny segmentation for nonGaussian events.The problem now is to get a Gaussianity measure. Higher Order Statistis are traditionally used toaomplish this aim. We must onsider a normalized measure beause the Gaussianity measure mustnot depend on the signal energy at eah frequeny band. We want to solve the problem of detetionfor stationary olored noise. A good andidate is the kurtosis whih is the normalized version of thefourth order umulant [13℄. Gaussian proess theoretially have a kurtosis value that equals zero.One ould have hosen a funtional of various Gaussianity measures. For example, using bothskewness and kurtosis permits one to take into aount the asymmetry and the tail behavior of theprobability density funtion of the oeÆients. However in this work, we have only kept a kurtosisestimator to measure the Gaussianity.Theoretially, measuring the Gaussianity for a set of oeÆients onsists of omparing the kurtosisvalue with zero. In pratie, the kurtosis is estimated and its value is authorized to exist in a on-�dene interval whih is onditioned by the probability properties of the estimator. An asymptotiregime ould lead to a probability density funtion estimator, but experimental onditions are notasymptoti. So we need to frame the estimator by another way, for example using the Bienaym�e-Thebyhev inequality. Given a desired on�dene perentage, the estimator an be framed betweentwo values depending on the �rst statistis of the estimator. In the ase where the N oeÆientsWPs;f;p are white and Gaussian, bias and variane of the kurtosis estimator k4 are evaluated as8><>: B(k4) = �6=NV ar(k4) = 24=Nwhen the kurtosis is lassially omputed by a statistial estimation of the mean ask4(WPs;f) = E[WPs;f4℄�E[WPs;f2℄�2 � 3 = N PNp=1WPs;f(p)4�PNp=1WPs;f(p)2�2 � 3:The Bienaym�e-Thebyhev inequality allows a Gaussian estimator to move between �q24=N=p1� �+6=N and q24=N=p1� � + 6=N with an � authorized on�dene perentage value. This onditionuses the �rst estimator statistis of the kurtosis whih have been analytially evaluated when thesamples are white and Gaussian. In the present ase, the signal samples are Gaussian and orrelated.The wavelet oeÆients learly stay Gaussian when applying the linear wavelet transform. Moreover,wavelets and wavelet pakets an be onsidered as good deorrelators, if the number of vanishingmoments of the mother wavelet is suÆiently high. Assuming this ondition is realized, the oeÆ-ients an be onsidered as nearly white, whih justi�es the appliation of the Bienaym�e-Thebyhevinequality given above. More preisely, the observed deorrelation proess is not the same for all thewavelet oeÆients. Atually, the seond order oeÆient moments whih are a measure of the white-ness are linked to the frequeny loalization of the wavelet pakets, also depending on the fhn; gngsequenes used ([15℄).Note that an unbiased version of the kurtosis estimator an be derived using k-statistis [12℄: Thekurtosis is alulated using unbiased estimations of the umulants of order 2 and 4. Its variane is9



given by V ar(k4unbiased) = 24N(N � 1)2(N � 3)(N � 2)(N + 3)(N + 5)for an N samples sequene. Choosing or not a biased estimator has a minor inuene on the perfor-manes in the present ase. The simple test jk4j < q24=N=p1� � is retained for the Gaussianitymeasure.In pratie, the best basis searh strategy onsists of hoosing a maximal wavelet deompositiondepth of the signal. This maximal depth nlevel de�nes the �nest bandwidth available for the deom-position as 2nlevel�1 � fs, where fs stands for the frequeny sampling. An initial basis omposed ofthe wavelets at the greatest resolution level is arbitrarily seleted. At this level, frequeny bands aremerged or not aording to the diagnosis given by the Bienaym�e-Thebyhev inequality. It meansthat two omponents of the basis  s;2f;p and  s;2f+1;p an be replaed by the admissible wavelet s�1;f;p. The merging test is repeated at eah resolution level s on adjaent pairs indexed by 2fand 2f + 1 with f 2 [0; 2s�1 � 1℄, up to the root orresponding to the entire temporal signal. Theproedure leads to the seletion of the triplets f(s; f; p) suh that (s; f; p) 2 B�g where B� standsfor the searhed `best' basis in all the admissible bases of B.In the operation, the ontrast between Gaussian and nonGaussian regions is enhaned in thetime-frequeny representation. For the purpose of detetion, the idea is to keep only nonGaussianoeÆients whih allows to get rid of the greatest part of the disturbing noise. This lassial tehniqueis alled de-noising and onsists in setting to zero all the wavelet oeÆients whose magnitude is belowan appropriate threshold. The method used here is quite di�erent in so far as the whole oeÆientsin the same frequeny band are set to zero or not aording to the Gaussianity property. We haveproposed to measure the Gaussianity with the kurtosis of the oeÆients at eah frequeny band.So in a de-noising proedure, all the oeÆients representing the deomposition in a same frequenyband are set to zero or not aording to the Gaussianity of the band.How an the de-noising threshold be hosen ? Only the �nest frequeny bands atually reveal loalnonGaussianities. The other larger bands are not relevant for making a deision on the Gaussianitynature beause of the onstraining dyadi struture of the deomposition. The de-noising thresholdis naturally set as the Byenaym�e-Thebyhev bound evaluated for the �nest frequeny band.For an N = 2L samples observed signal x, the threshold therefore reads:� = 1p1� �% :s 24Nmin where Nmin = 2L�nlevel:The threshold depends on the number of points at the �nest frequeny band whih is in relation tothe number of deomposition levels nlevel.Other kinds of thresholding tehniques exist. They orrespond to di�erent strategies whih arenot appropriate for the problem disussed in this paper. Here we operate in the sense of detetion.It onsists of di�erentiating Gaussian and nonGaussian areas and this strategy leads to an adaptedthresholding method with a natural thresholding value.A validation of this approah is given in the paragraph 3.3, with a set of omparison and per-formane tests. An illustration on real signals is proposed in the next paragraph. The detetion10



proedure is more preisely desribed.3.2 Illustration with real signalsThe two omponents signal + noise have been reorded independently. This allows to generatenoisy realizations of the transient with a desired signal-to-noise ratio. �g.6We have retained a set of four transient signals stemming from real experiments in underwateraoustis. These signals depited in �gure 6 have in ommon a brief existene and present one orseveral narrow bands. The peaks haraterize osillatory responses of the material or struture aftera shok given to generate transient signals (See [16℄ for a preise desription of their generation). Asthese signals look rather omplex in the frequeny domain, the signal-to-noise ratio has been de�nedas the energy ratio on the support of the transient, as explained in [2℄. �g.7The noise has been diretly reorded in the Mediterranean sea at a 16 kHz sampling frequeny.The noise is olored with high energy in the low frequenies, presenting a -6 dB/otave spetralderease up to about 1500 Hz (�gure 7). The kurtosis estimated beyond 20000 points is less than0.05.We have generated a realization of the transient `manhole over shok' embedded in the sea noiseat -6 dB. The detetion sheme we propose is illustrated with the panels of �gure 8. �g.8The proedure of detetion is the following, assuming the parameters have been �xed (deompo-sition depth nlevel, on�dene perentage �, wavelet order):{ Calulates all the wavelet oeÆients of the N points signal up to nlevel. The oeÆients are storedin a deomposition tree.{ Initialize the best basis with the nodes of the deomposition tree at the deepest level.{ Apply the merging riterion from the leafs to the root, using the riterion `If two adjaent frequenybands have Gaussian oeÆients, then merge the bands, otherwise let them be separated'. Thisoperation leads to seleting the best deomposition basis whih retains some nodes in the tree. Thepanel C gives a time-frequeny representation of the best deomposition aording to the kurtosisriterion. The spetrogram is given in panel B for omparison.{ Keep the frequeny bands whih are nonGaussian, i.e. haraterized by an estimated kurtosis valueless than the �xed threshold 1p1��% :q2nlevel 24N . The oeÆients in the other Gaussian bands areset to zero.{ Reonstrut the N points temporal signal.{ Apply a `standard' transient detetor, for instane an adaptive energy detetor estimated at eahinstant k by de2;k =\e2;k�1 � �(\e2;k�1 � x2k). The adaptive step � ontrols the onvergene rate.Notie that the low frequeny areas whih are highly energeti have been merged in a singlelarge frequeny band beause of the Gaussian nature of the noise in this frequeny zone. On theother hand, the interesting region is greatly enhaned by an adapted �ne segmentation around thefrequeny pulses produed by the transient appearane.The panel F learly shows the detetion inability of the adaptive energy on the raw signal. Byontrast, the de-noising proedure leads to an obvious peak in the detetion urve.11



This simple example shows quite good results ompared with the lassial adaptive energy de-tetor. Other tehniques based on HOS or WT are also available. We ompare in setion 3.3.2 theperformanes of the proposed hybrid detetor with existing HOS or WT based detetors. In setion3.3.3, we point out the eÆieny of our kurtosis riterion best basis searh by omparing its perfor-manes with the other lassial riteria. A study of performanes as a funtion of the parameters hasbeen arried out in the setion hereafter. This study is realized on the four test transients.
3.3 Comparison and performaneThe omparison between detetion methods is made in terms of performane ROC urves (ReeiverOperating Charateristis). Experimental studies of performanes are arried out with Monte-Carlosimulations. The exat proedure is explained in [16℄.
3.3.1 Choosing the parametersThe purpose of this study is the following:{ To obtain suitable values for a orret detetion.{ To know the parameters that may inuene the quality of detetion.For a �xed SNR, we have onsidered for eah 4096 samples test transient depited in �gure 6 a setof di�erent values for the three following parameters:{ The depth of deomposition de�ning the �nest possible bandwidth in the deomposition has beenset to the di�erent following values nlevel = f4,5,6g. Inreasing the value of this parameter allowsto more preisely selet or disriminate the frequenies. On the other hand the dereasing numberof samples leads to non suÆiently reliable estimations for orret deisions.{ The order of the Daubehies wavelet has been experimented to the values order = f2,8,16,32g.This value ontrols the number of vanishing moments of the Daubehies wavelet whih is relatedto the regularity of the wavelet.{ The frequeny band merging deision furnished by the kurtosis based riterion has been madeaording to three on�dene perentage values f85%,90%,95%g. The on�dene perentage inu-enes the segmentation rate.The results of the simulation are presented in the array given below.12



nlevel=4 nlevel=5 nlevel=6Spool 85%(SNR=-6dB) 90% order=895%Bottle 85%(SNR=-6dB) 90%95% order=32Manhole over shok 85%(SNR=-6dB) 90% order=3295%Impulsive shok 85%(SNR=-2dB) 90% order=1695%For larity reasons, we only give the parameter values that produe the best results, for eah testtransient. The performane evaluations are made through experimental ROC urves omparisons.Pratially, the relative variations of the performanes are rather small. The searh for the bestperformanes is not an obvious exerie and the results are ertainly not highly signi�ant.Nevertheless, we notie that the value nevel=5 is the best one exept for the manhole over shokwhere nlevel=6 is better. For a 6 kHz sampling frequeny, this orresponds to a �nest bandwidthequal to 94 Hz. A good frequeny resolution is indeed neessary to orretly disriminate the variousfrequenies present in the manhole over shok as observed in the �gure 6.Conerning the wavelet order, the e�et of this parameter is almost insigni�ant on the qualityof detetion. Nevertheless, the order must be suÆiently high to whiten the noise spetrum. For analready white noise it has no e�et sine wavelets are orthonormal. When the noise is olored witha orrelation funtion �x(t), a simple omputation leads to:E[POsfpPO�sfp0℄ = 2s Z (�x(2st) ?  f (t� p)) : f (t� p0)dt:As s (i.e. the deomposition level) inreases, the orrelation funtion narrows and tends to at as aneutral element in the onvolution. The expression restrits to the Dira funtion Æ(p � p0). In thesame manner, when the regularity of  f is inreased by hoosing higher orders of the Daubehieswavelet, the orrelation funtion has less e�et on the onvolution produt beause the waveletsupport enlarges with the wavelet order.In [15℄, Pastor & Gay have theoretially proved that the wavelet oeÆient sequenes tend to bewhitened with the deomposition level and the �lter regularity. More preisely, they have shown thatthe whitening was not the same for all the wavelet pakets beause the seond order of the oeÆientswhih is a whitening measure depends on the frequeny loalisation of the wavelet pakets.13



For the greatest part of the experimented transients, the most suitable on�dene perentagevalue seems to be 90 %. For the bottle transient, the results are better if the on�dene perentagevalue reahes 95 %. The bottle presents peaks in high frequenies whih are loated in a at areaof the noise spetrum. The danger is to segment the low frequenies bands too muh beause of theimportant energy utuations in this area. A higher on�dene perentage favours a frequeny bandmerging and is more appropriate.A brief omparison with other detetors is proposed in the next setion: The performane are �rstexposed for a single HOS based method and in a seond time for a WT based method.3.3.2 Comparison with HOS and WTMeasuring a distane from Gaussianity An interesting detetor proposed by Hinih in [11,10℄aims to detet a deviation from Gaussianity by a bispetral measure on temporal bloks. The bispe-trum is a third-order statisti (2D Fourier transform of the triorrelation) whih theoretially equalsto zero. The test evaluates the energy of the bispetrum modulus estimated in its prinipal domainon a temporal blo. For a nonGaussian stationary signal, the test should equal to zero. Anothertest estimates the bispetrum in an area whih is outside its prinipal domain. Its values equal tozero only if the signal is non-stationary and nonGaussian. In this ase, a orret estimation of thebispetrum needs the signal to be sampled at least three times its highest frequeny. Otherwise thetest may not be orret beause it an not disern bispetrum samples due to non-stationarity fromsamples due to overlapping. �g.9We have evaluated the performanes of the two real transient signals `manhole over shok' and`impulsive shok' embedded in real noise respetively at -6 dB and -2 dB (�gure 9). The ROC urvesshow that the hybrid approah HOS-WT performs better than the bispetral detetor for these twotransients. Indeed, for small probability of false alarm (say 2%) gains of about 15% are reahed inprobability of detetion.The bispetrum method does not intrinsially realize a loal time and frequeny analysis sine thetest is evaluated on an entire temporal blok and a set of bifrequenies de�ned in a global area.Loal time-frequeny �ltering The seond approah studied relies on analysis tools spei� fornon-stationary signals: The idea is to alulate a time frequeny representation and to estimate atest on this representation. In this sense, Frish & Messer in [8℄ have proposed a detetor designedlike a mathed �ltering in the wavelet transform domain. They use a set of transient models. TheGeneralized Likelihood Ratio Test derived gives a measure of ressemblane by loally omparing thesignal with eah model of the library. The omparison is made with a salar produt between the4 wavelet oeÆients patterns of the signal and the model over the time-sale plane. The patternrepresents a loal time sale area in the representation. The salar produt is high when the patternsare �tting.Like lassial mathed �ltering, the method gives very good results as long as the funtions in thelibrary are `near' from the transient. The method is not robust and annot be employed beause itwould restrit the study to some spei� kinds of transients.Other HOS or WT methods obviously exist but piking up a few of them show that onsidering14



the tools independently is not optimal. Wavelet pakets allow to merge both approahes and tosearh for example the most nonGaussian basis. We analyse in the next setion the performane ofthe de-noising algorithm when lassial best basis searh riteria are used.3.3.3 What about the other lassial best basis searh proedures ?Classial best basis searh proedures rely on a riterion whose purpose is to minimize a basisonstrution ost. The approah proposed in this artile is quite di�erent beause the riterion isbuilt with a detetion goal. What is at stake is to deide whether or not samples are Gaussian and tokeep nonGaussian oeÆients. This detetion formulation naturally leads to an automati de-noisingthreshold.None of the existing ost funtions have been used for detetion. Indeed initial purpose wasompression involving an information measure realized by entropy, logarithmi energy or lp norm.Instead of minimizing a ost funtional allowing to get the `heapest' basis in terms of oding, onean imagine to searh for the `most nonGaussian' basis [4℄. This an be done by hoosing the basiswhih maximizes the kurtosis of the oeÆients.At this point, the proposed thresholding value an be used to get rid of the Gaussian frequenybands in the obtained time-frequeny tiling. Experiments show that results are as good as the pro-posed detetion method exept for very low SNR. For frequeny multi-omponent transients, thedetetion driven basis searh method gives better results (�gure 10). �g.10After performane and omparison results, we propose a real ase study enountered in an in-dustrial ontext. The signals presented and analyzed for this illustration have been furnished by theFrenh National Eletriity Company that we gratefully aknowledge.4 Appliation to missing bolt detetion in nulear plantsThe �rst appliation depited in paragraph 3.2 allowed to validate the algorithm through simula-tions and performane urves. Experiments were ontrolled by embedding real transients in reordedsea noise. Beyond these simulated situations we tested the method on a real problem of detetionappearing in nulear plant pipings. Sensors plaed on the pipes sometimes detet hits in the innersides of pipes produed by any forgotten or detahed objet. For example the wandering bodiesdeteted in this appliation has been identi�ed as srew bolts whih have been forgotten after pipeleaning operations. Atually, suh problems oasionally appear in nulear plants and are of greatimportane. Indeed the wandering bodies an ause damage whih requires repair and neessitatesshutting the plant down. This produes important osts thus requiring most orret detetions aspossible.The existing method based on a spetral substration su�ers from a too signi�ant false alarmrate at the �xed detetion rate. The reason is the following: Energy utuations are deteted asthey should not. The uid irulating in the pipes produes hydrauli noise whih is atually subjetto some energy utuations along the time. The proposed detetion method essentially takes intoaount the statistial properties of the noise along the time. In the present ase, the hydrauli noiselooks Gaussian and stays Gaussian whatever its power may be. �g.1115



A wandering bodies signal is presented �gure 11 (panel A). The signal is sampled at a rate of50 kHz. The spetrogram of the signal appears in panel B. It is alulated on 256 points segmentswith 50% overlapping. Segments are weighted with Hanning windows. Transient events an learlybe seen in the signal around 1 seond. Four narrow bands an be seen in the spetrogram (at about3, 6, 10 and 11 kHz). These bands orrespond to hydrauli noise due to the uid. In some partiularworking onditions, uid irulating generates frequeny bands in the pipes ating as a wave guide.The 3 kHz frequeny band is the most powerful and its energy utuates a lot along the time. Thishides the presene of transients whih are diÆult to be seen in the time domain. By ontrast, themost powerful transients are learly depited by the spetrogram. However, we an wonder if othersrew bolts signatures are present in the signal.The time frequeny representation obtained with the desribed algorithm is shown in panel C.The deomposition depth is set to 6 (i.e. 64 frequeny hannels). Bands have been merged aordingto their oeÆients Gaussianity with a 90% on�dene made deision. A suÆient regular wavelethas been hosen suh as a Daubehies one onstruted on a 16-taps �lter. The same representationafter thresholding is represented in panel D. The kurtosis urve plotted at the right have permittedto retain the nonGaussian frequeny bands. It is very interesting to see that the powerful frequenybands at 3, 10 and 11 kHz have been onsidered as Gaussian by the algorithm and then have beeneliminated. The reonstruted signal is shown in panel E. An adaptive detetor is then applied onthat signal. It is shown in panel F where we also plot the adaptive energy before any proessing foromparison (signal have been normalized in energy). We an see that the false alarm before proessinghave been eliminated, at the instant 0.1 seond. The false alarm may be due to the high amplitude ofthe 3 kHz band at this instant. Note also the spetaular gain obtained in the detetion, by ontrastbetween the urves. Furthermore, a transient at 1.1 seond is deteted by the hybrid detetor whereasit is not seen by the energy on the raw signal. The proposed detetor on this example dereases thefalse alarm rate and reveals a miss detetion not solved by the energy detetor.5 ConlusionIn this paper we use an adaptive time-frequeny plane segmentation for a transient detetionproblem. We take advantage of the segmentation exibility proposed by the wavelet pakets theoryto �nd the `most adapted' basis among a library of possible wavelet paket bases.The segmentation proess is guided by a detetion purpose: Trying to make transients emergefrom the noise in the time-frequeny representation. The disrimination is based on the knowledgeof the signals we study: The wavelet oeÆients of the transient signals are nonGaussian whereasthe oeÆients of the noise are Gaussian. The derived riterion merges Gaussian frequeny bands.The simulation results in terms of ROC urves show that the ombination of HOS tools with time-frequeny representations is eÆient. They also show the importane of the time-frequeny planesegmentation in the transient detetion problem.Let us reall the key-parameters in the proposed algorithm. The results essentially depend onthe on�dene value attributed to the deision riterion. It de�nes the segmentation tendeny byfailitating the merging or not. Above all, the de-noising proedure used is partiularly interestingbeause the threshold is automatially �xed by the on�dene value and the hosen deompositiondepth. Finally the algorithm an be onsidered as an automati band-pass �ltering.16



Beyond the beginning appliations onsidered in passive sonar, we have shown interesting resultsappearing in an industrial ontext. The algorithm an be used both as a detetion method and as ade-noising method. In the wandering bodies problem, the main objetive is to make lear disturbingsituations. However the other de-noising appliation is also very useful for an event lassi�ation. Thelassi�ation allows to identify the ause of the deteted hits and then to evaluate the seriousness ofthe situation.Other appliations may be onsidered. For example radio astronomy reordings are perturbed bypowerful interferenes stemming from satellite ommuniations. Some of the perturbations an bemodeled as unknown pure frequenies. The urrent methods detet the appearane of suh interfer-enes and then stop the reordings - the method is named time-blanking. Our detetor ould detetthe disturbing frequeny bands whih are nonGaussian. On the ontrary Gaussian omponents wouldbe kept in the de-noising proedure so that radio astronomi reordings would not stop.Beside other new appliations, future works onern the extension of the algorithm to a `doubletree' method: It allows to selet the best basis among a set of best bases found when the initial signalis time slied [9℄. A binary primary tree is build. It segments the initial signal up to a ertain level inthe time domain . On eah node, a wavelet paket deomposition tree is developed in whih a bestbasis is seleted. Eah node of the primary tree is then a�eted with its best basis onstrution ost.The �nal best basis is seleted with the searh algorithm in the primary tree. This method needs yetto be adapted for a detetion purpose.Referenes[1℄ P. Abry and P. Flandrin. Multiresolution Transient Detetion. In IEEE-SP International Symposiumon Time-Frequeny and Time-Sale Analysis, pages 225{228, Philadelphia, USA, Otobre 1994.[2℄ P.-O. Amblard and Ph. Ravier. Experimental performane analysis of an on-line transient detetor. InIEEE Signal Proessing Workshop on Higher-Order Statistis, pages 171{175, Barelona, Spain, 1995.[3℄ P. L. Brokett, M. J. Hinih, and G. R. Wilson. Nonlinear and non-gaussian oean noise. Journal ofAoustial Soiety of Ameria, 82(4):1386{1394, Otober 1987.[4℄ J.B. Bukheit and D.L. Donoho. Time-frequeny tilings whih best expose the non-Gaussian behaviorof a stohasti proess. In IEEE-SP International Symposium on Time-Frequeny and Time-SaleAnalysis, pages 1{4, Paris, Frane, June 1996.[5℄ G. Carrault, L. Senhadji, J. Bellanger, G. Passariello, and F. Mora. Analyse et repr�esentation partransform�ee en ondelettes d'un signal ECG. In Colloque sur le Traitement du Signal et des Images,GRETSI, pages 141{144, Juan-Les-Pins, Frane, 1991.[6℄ L. Duboisset-Chareyre. Analyse bispetrale de signaux r�eels. Appliation �a la d�etetion de signauxtransitoires. PhD thesis, INP Grenoble, 1997.[7℄ B. Friedlander and B. Porat. Performane Analysis of Transient Detetors Based on a Class of LinearData Transforms. IEEE Transations on Information Theory, 38(2):665{673, 1992.[8℄ M. Frish and H. Messer. The use of the Wavelet Transform in the Detetion of an Unknown TransientSignal. IEEE Transations on Information Theory, 38(2):892{897, Marh 1992.[9℄ C. Herley, J. Kova�evi�, K. Ramhandran, and M. Vetterli. Tilings of the time-frequeny plane:Constrution of arbitrary orthogonal bases and fast tiling algorithms. IEEE Transations on SignalProessing, 41(12):3341{3359, Deember 1993. 17
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