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Abstract

Approachability has become a standard tool in analyzingnleg algorithms in the adversarial
online learning setup. We develop a variant of approacityalbir games where there is ambiguity
in the obtained reward that belongs to a set, rather thargt®esingle vector. Using this variant
we tackle the problem of approachability in games with partionitoring and develop simple and
efficient algorithms (i.e., with constant per-step comitigxfor this setup. We finally consider
external and internal regret in repeated games with pamigalitoring, for which we derive regret-
minimizing strategies based on approachability theory.

Warning! A corrigendum for this article has been issued at the address
http://hal.archives-ouvertes.fr/hal -00617554

1 Introduction

Blackwell's approachability theory and its variants hasdiee a standard and useful tool in analyzing online
learning algorithms (Cesa-Bianchi and Lugosi, 2006) agdrihms for learning in games (Hart and Mas-
Colell, 2000, 2001). The first application of Blackwell'smpachability to learning in the online setup is
due to Blackwell himself in Blackwell (1956b). Numerous @tltontributions are summarized in Cesa-
Bianchi and Lugosi (2006). Blackwell’s approachabilitgtiy enjoys a clear geometric interpretation that
allows it to be used in situations where online convex opation or exponential weights do not seem to be
easily applicable and, in some sense, to go beyond the nzation of the regret and/or to control quantities
of a different flavor; e.g., in Mannor et al. (2009), to minzaithe regret together with path constraints,
and in Mannor and Shimkin (2008), to minimize the regret ilmga whose stage duration is not fixed.
Recently, it has been shown that approachability and lowetdgarning are equivalent in the sense that
efficient reductions exist from one to the other (Abernetigle 2011). Another recent paper (Rakhlin et al.,
2011) showed that approachability can be analyzed from #nepective of learnability using tools from
learning theory.

In this paper we consider approachability and online |legyniith partial monitoring in games against
Nature. In partial monitoring the decision maker does navkhow much reward was obtained and only gets
a (random) signal whose distribution depends on the acfidineodecision maker and the action of Nature.
There are two extremes of this setup that are well studied.th@rone extreme we have the case where
the signal includes the reward itself (or a signal that candsal to unbiasedly estimate the reward), which is
essentially the celebrated bandits setup. The other egti®the case where the signal is not informative (i.e.,
it tells the decision maker nothing about the actual rewdntdioed); this setting then essentially consists of
repeating the same situation over and over again, as nanat@n is gained over time. We consider a setup
encompassing these situations and more general ones, ¢éh tia signal is indicative of the actual reward,
but is not necessarily a sufficient statistics thereof. Tiffedlty is that the decision maker cannot compute
the actual reward he obtained nor the actions of Nature.

*CNRS — Ecole normale supérieure, Paris — INRIA, within thggrt-team CLASSIC



Regret minimization with partial monitoring has been staddin several papers in the learning theory
community. Piccolboni and Schindelhauer (2001), Mannar @himkin (2003), Cesa-Bianchi et al. (2006)
study special cases where an accurate estimation of thedswWar worst-case rewards) of the decision
maker is possible thanks to some extra structure. A geneilypwith vanishing regret is presented in
Lugosi et al. (2008). This policy is based on exponentialghts and a specific estimation procedure for
the (worst-case) obtained rewards. In contrast, we proyigeoachability-based results for the problem of
regret minimization. On route, we define a new type of apprahiity setup, with enables to re-derive the
extension of approachability to the partial monitoring teeesalued setting proposed by Perchet (2011a).
More importantly, we provide algorithms for this approdgiity problem that are more efficient in the sense
that, unlike previous works in the domain, their complexstyonstant over all steps. Moreover, their rates
of convergence are, as in Blackwell (1956b) but for the firsetin this general framework, independent of
the game at hand.

The paper is organized as follows. In Section 2 we recall soaséc facts from approachability theory.
In Section 3 we propose a novel setup for approachabilityee “robust approachability,” where instead of
obtaining a vector-valued reward, the decision maker abtaiset, that represents the ambiguity concerning
his reward. We provide a simple characterization of apgrabte convex sets and an algorithm for the set-
valued reward setup. In Section 4 we show how to apply thestadpproachability framework to the repeated
vector-valued games with partial monitoring. We providénapge and constructive algorithm for this setup.
Previous results for approachability in this setup werlegithon-constructive (Rustichini, 1999) or were
highly inefficient as they relied on some sort of lifting tethpace of probability measures on mixed actions
(Perchet, 2011a) and typically required a grid that is peegively refined (leading to a step complexity that
is exponential in the numb@r of past steps). In Section 5 we apply our results for bothraatend internal
regret minimization with partial monitoring. In both casasr proofs are simple, lead to algorithms with
constant complexity at each step, and are accompanied atéh.rOur results for external regret have rates
similar to Lugosi et al. (2008), but our proof is direct aneigler. For internal regret minimization we present
the first algorithm not relying on a grid being refined overdiand the first convergence rates.

2 Some basic facts from approachability theory

In this section we recall the most basic versions of BlacKsvapproachability theorem for vector-valued
payoff functions.

We consider a vector-valued game between two players, sidecnaker (first player) and Nature (second
player), with respective finite action setsand 3, whose cardinalities are referred to &5 and Nz. We
denote byl the dimension of the reward vector and eqRipwith the 2—norm|| - ||,,. The payoff function of
the first player is given by a mapping : A x B — R%, which is multi-linearly extended ta\ (A) x A(B),
the set of product-distributions over x 5.

We consider two frameworks, depending on whether pure oednéctions are taken.

Pure actions taken and observed. We denote byA;, As, ... and By, B, ... the actions in4 and B
sequentially taken by each player; they are possibly giverabdomized strategies, i.e., the actiohsand
B, were obtained by random draws according to respective pilityalistributions denoted by, € A(A)
andy, € A(B). For now, we assume that the first player has a full monitooihthe pure actions taken
by the opponent player: at the end of roundvhen receiving the payoff.( A, B;), the pure actiorB; is
revealed to him.

Definition 1 A setC C R? is m—approachable with pure actioifishere exists a stratedyof the first player
such that for all strategies of the second player,

limsup inf =0 a.s.

T—o0 ceC

1 T
C— T Zm(At,Bt)
t=1

That is, the first player has a strategy that ensures that thegage of his vector-valued payoffs converges to
the setC.

2

Mixed actions taken and observed. In this case, we denote by, xo, ... andy,, vy,, ... the actionsin
A(A) andA(B) sequentially taken by each player. We also assume a fulltoramg for the first player: at
the end of round, when receiving the payoff(x;, y,), the mixed actiony, is revealed to him.

The original definition given by Blackwell requires unifditynw.r.t. the strategy set of the opponent. We ignore the
uniformity to avoid excessive nomenclature.



Definition 2 In this context, a sef C R? is m—approachable with mixed actioifghere exists a strategy of
the first player such that for all strategies of the second/efa

1 X
Cc— T Zm(mt;yt)
t=1

limsup inf =0 a.s.

T—o00 ceC

Necessary and sufficient condition for approachability. For closed convex sets there is a simple charac-
terization of approachability that is a direct consequesfadbe minimax theorem; the condition is the same
for the two settings, whether pure or mixed actions are takehobserved.

Theorem 3 (Blackwell 1956a, Theorem 3)A closed convex s&t C R? is approachable (with pure or
mixed actions) if and only if

Vy e A(B), 3z € A(A), m(z,y) €C.

In the latter case, an explicit strategy achieves the falhgaconvergence rates. We denoteMya bound in
norm overm, i.e.,

(a’geaj(XBHm(a,b) H2 <M.

With mixed actions taken and observed, for all strategigh®Eecond player, with probability 1,

T
c— E ﬂft, yt

<2M

2
With pure actions taken and observed, for &l (0,1) and for all strategies of the second player, with
probability at leastl — 4,

inf
ceC

<—(1+2\/T/6)

3

The proofis provided in Appendix B.1 for completeness.

An associated strategy (that is efficient depending on the genetry of C).  Blackwell suggested a simple
strategy with a geometric flavor. (This strategy can be etedhfrom the proof of Theorem 3 provided in
appendix.)

Play an arbitraryc,. Fort > 1, given the vector-valued quantities

t t
Z (137-, 7' or Z m‘l‘;yr I

depending on whether pure or mixed actions are taken andvaaseompute the projectian (in £2—norm)
of m; onC. Find a mixed actiom, ., that solves the minimax equation

H~|>—l
w|>—

. o 1
i (= cm(z,y)). W

where( -, -) is the Euclidian inner product iR¢. The minimax problem above is easily seen to be a (scalar)
zero-sum game and is therefore efficiently solvable usirg, énear programming: the associated com-
plexity is polynomial inN 4 and Nz. All in all, this strategy is efficient as soon as the comgated of the
required projections ontd in #2—norm can be performed efficiently.

In the case when pure actions are taken and observed, it@migins to drawd,, ; at random according
toxTiqg.

3 Robust approachability

In this section we extend the results of the previous set¢tiget-valued payoff functions. To this end, we
denote byS (R?) the set of all subsets &? and consider a set-valued payoff functian A x B — S(R?).

3



Pure actions taken and observed. At each round, the players choose simultaneously respective actions
A, € AandB; € B, possibly at random according to mixed distributiasandy,. Full monitoring still
takes place for the first player: he observgsat the end of round. However, as a result, the first player
gets thesubsetn(A,, B;) as a payoff. This models the ambiguity or uncertainty asgediwith some true
underlying payoff gained.

We extendm multi-linearly toA(A) x A(B) and even ta\ (A x B), the set of joint probability distribu-
tions onA x B3, as follows. Let

K= ('uaab)(a,b)GAxB

be such a joint probability distribution; them(y) is defined as a finite convex combinatfasf subsets of

R,
m ,LL) = Z Zﬂa,bm(a, b)

acAbeB
Wheny is the product-distribution of some € A(A) andy € A(B), we use the notatiom () = m(x, y).

We denote by
1 T
T = ;&At,&)

the empirical distribution of the pai(si;, B;) of actions taken during the firgtrounds and will be interested

in the behavior of
T
Zm Ay, By),

which can also be rewritten here in a compact wa’jﬁasT), by linearity of the extension afi.

’ﬂ |

Definition 4 LetC C R? be some set is m—approachable with pure actions if there exists a strateighe
first player such that for all strategies of the second player

limsup  sup 1nf lc—d|l, =0 a.s.
T—oo  dem(rr) ¢€

That is, wherC is m—approachable with pure actions, the first player has aeglyahat ensures that the
average of the sets of payoffs converges to th€ s#ie setsn(nr) are included irer—neighborhoods af,
where the sequence of tends almost-surely to.

Mixed actions taken and observed. At each round, the players choose simultaneously respective mixed
actionse; € A(A) andy, € A(B). Full monitoring still takes place for the first player: hesebvegy, at the
end of round; he however gets the subse{z., y,) as a payoff (which, again, accounts for the uncertainty).

The product-distribution of two elemenis = (x,)qca € A(A) andy = (yp)oes € A(B) will be
denoted byr ® y; it gives a probability mass af,,y, to each paifa, b) € A x B. We consider the empirical
joint distribution of mixed actions taken during the fifsrounds,

1 T
= T Z Tt & yt B}
t=1
and will be interested in the behavior of

| I
Zm (¢, yy)

t:l
which can also be rewritten here in a compact way@sr ), by linearity of the extension afu.

Definition 5 LetC C R? be some set] is m—approachable with mixed actions if there exists a stratefgy
the first player such that for all strategies of the second/pta

limsup  sup inf |[c—d||, =0 a.s.
T—o00 dem(vr) ceC

%For two setsS, T anda € [0, 1], the convex combinationS + (1 — «)T is defined as

{as+(1—a)t, se Sandt € T}.



A useful continuity lemma.  Before proceeding we provide a continuity lemma. It can ernsulated
as indicating that for all joint distributions andv over A x B, the setm(u) is contained in &/ || — v||,—
neighborhood ofrn(v), where M is a bound in/?—norm on7; this is a fact that we will use repeatedly
below.

Lemma 6 Letyp andr be two probability distributions oved x B. We assume that the set-valued function
m is bounded in norm by/, i.e., that there exists a real numb&f > 0 such that

V(a,b) € Ax B, sup ||d|l, < M.
dem(a,b)

Then
sup  inf [ld—cll, <M |p—v], < My/NaNsllu— v, ,

dem(p) cem(v)

where the norms in the right-hand side are respectively trand/2—norms between probability distributions.

Proof: Let d be an element afu(u); it can be written as
d=2_ D abbus
acAbeB
for some element$, , € m(a,b). We consider
=22 Vasbus,
acAbeB

which is an element afi(v). Then by the triangle inequality,

Z Z (,ua.,b - Va,b)oa,b g Z Z |/La,b - Va,b| Hea,bHQ g M Z Z |,ua.,b - Va,b| .

acAbeB 9 acAbeB acAbeB

ld —cll, =

This entails the first claimed inequality. The second onleve from an application of the Cauchy-Schwarz
inequality. ]

Necessary and sufficient condition for approachability. We state the condition in the theorem below, as
well as the associated convergence rates. Explicit siest@an be deduced from the proof, which is based
on Theorem 3; these strategies are efficient as soon as fwaEo /2—norm onto the sef defined in (3)
can be computed efficiently. The latter fact depends on thgeietive geometries ofi andC.

Theorem 7 Suppose that the set-valued functiaris bounded in norm by/. A closed convex s€tC R?
is approachable (with pure or mixed actions) if and only i flollowing robust approachability condition is
satisfied,

Vy e A(B), Jx € A(A), m(x,y) CC. (RAC)
In the latter case, the following convergence rates are @il by a strategy constructed in the proof. With
mixed actions taken and observed, for all strategies of dvetsd player, with probability 1,

2M
sup inf |lc—d|, < —=+/NaNg.
dem(vr) ¢€C ? \/T

With pure actions taken and observed, for &l (0,1) and for all strategies of the second player, with
probability at leastl — §,

sup 1161£ lc—d, < %\/NANB (1 + 2\/1n(2/6)).

dem(nr) © \/T

Proof: Condition (RAC) is necessarylf the condition does not hold, then there exigtse A(B) such that
for everyx € A, the setm(x, y,) is not included irC, i.e., it contains at least one point not@n We then
define a mappind : A(A) — R by

Vo e A(A), D(z)= sup in(f: le —d||, -

dem(z,y,) °€

SinceC is closed, distances of given individual points@re achieved; therefore, by the choiceygf we
getthatD(z) > O forall z € A(A).



We now show thaD is continuous on the compact s&t.A); it thus attains its minimum, whose value
we denote byDn,;, > 0. More precisely, it suffices to show that for all ' € A(A), the condition
le" — x|, <eimpliesthatD(x) — D(x’) < Me. Indeed, fixd > 0 and letds , € m(x,y,) be such that

D(x) < inf [ —dsa[, +4. (2)
By Lemma 6 (with the choiceg = = ® y, andv = a’ ® y,) there existsils ,» € m(x’,y,) such that
| ds,z — ds,a' || , < Me + 6. The triangle inequality entails that
, tMe+34.

(IIEIEHC — d§_]z H2 g (lrel£|| Cc — d(;_’z/

Substituting in (2), we get that
D(@) < Me +26 + inf | ¢ — ds o
ce

, S Me+25+ D(x'),

which, lettingé — 0, proves our continuity claim.
Assume now that the second player chooses at each rpuedy, as his mixed action. In the case of
mixed actions taken and observed, denoting

L T
ETZT;%&,

we get that, = Ty ® y,,, and hence, for all strategies of the first player and fof'al 1,
sup inf |lc —d|, = D(T1) = Dmin >0,
dem(vr) ¢€C
which shows thaf is not approachable. The case of pure actions taken andvwelldsritreated similarly, with
the sole addition of a concentration argument. By repeaged af the Hoeffding-Azuma inequality together
with an application of the Borel-Cantelli lemméy = ||7r — vr||; — 0 almost surely a§’ — oco. By
applying Lemma 6 as above, we get

sup ing lc—d|l, > sup ing llc—d|l, — Mér > Dmin — Mor;
ce

dem(nr) €€ dem(vr)
we simply take théim inf in the above inequalities to conclude the argument. ]
Proof: Condition (RAC) is sufficient. We first show that there exists a strategy of the first playeh shat,

for all strategies of the opponent player, the sequefee$ or (v7) of the empirical distributions of actions
converge to the set

C={peAAxB): mu)CC} (3)
in 2—norm, at the rates prescribed by Theorem 3.
To do so, we identify probability distributions ovelr x B with vectors inR**5 and consider the vector-
valued payoff function
m: (a,b) eEAXB+— 5(,171,) S RAXB,
which we extend multi-linearly té\ (A) x A(B). We have that

T T
1 1
=5 til m(Ag, B) and VT = tgl m(zs, Y,)

and we therefore only need to show thats m—approachable (with pure or mixed actions).
Sincem is a linear function om\(A x B) and( is convex, the sef is convex as well. In addition,

sinceC is closed( is also closed. We can therefore apply the original versfaheapproachability theorem
(stated in Theorem 3). The desired existence result foltherefore from the fact that by assumption, for all
y € A(B), there exists some € A(A) such thafu = m(x, y), the product-distribution betweesandy,
belongs ta’, as it satisfiesn(1) = m(z,y) C C.

Let P5 denote the projection operator ordo We therefore have proved the existence of explicit (and

possibly efficient) strategies—along the lines of the omesgnted around (1)—such that, for all strategies
of the second player, with probability— 4,

er = HWT — Ps(mr) H2 = iréfgllﬂzr —ully < %(1 + \/21H(2/5)),

2
and with probability 1, £/, := H” — Ps(v H = inf lvp — pll, < ——.
p y 1, er T — Pg(vr) , u€5||T s JT

Lemma 6 entails that the séts(wr) are included inV/ /N 4N ep—neighborhoods afi (P(7r)), and

thus, by definition o, in M+/NiNg er—neighborhoods af. A similar statement holds for the sets the sets
m(vr) and this completes the proof. ]



4 Application to games with partial monitoring

A repeated vector-valued game with partial monitoring isatlibed as follows (see, e.g., Mertens et al., 1994,
Rustichini, 1999 and the references therein). The playave hespective finite action sefsand 7. We
denote byr : 7T x J — R the vector-valued payoff function of the first player andeext it multi-linearly

to A(Z) x A(J). Ateach round, players simultaneously choose their astipg Z and.J; € J, possibly at
random according to probability distributions denotedbye A(Z) andg, € A(J). Atthe end of a round,
the first player does not observeor r(I;, J;) but only a signal. There is a finite st of possible signals;
the feedbackS; that is given to the first player is drawn at random accordinthe distributionH (I;, J;),
where the mappindl : Z x J — A(H) is known by the first player.

Example 1 Examples of such partial monitoring games are provided ly, €esa-Bianchi et al. (2006,
Section 2), among which we can cite the apple tasting prokieenabel-efficient prediction constraint, and
the multi-armed bandit settings.

Some additional notation will be useful. We denotefbyhe norm of (the linear extension of)

R= max [r@5),-

The cardinalities of the finite sefs 7, and# will be referred to asVz, N7, and/Ny.
Definition 1 can be extended as follows in this setting; thi aew ingredient is the signaling structure,
the aim is unchanged.

Definition 8 LetC C R be some set is r—approachable for the signaling structufé if there exists a
strategy of the first player such that for all strategies @& fecond player,

1 T
C — T ZT(It, Jt)
t=1 2

That is, the first player has a strategy that ensures that gwpience of his average vector-valued payoffs
converges to the sé€t even if he only observes the random sigrfalas a feedback.

limsup inf =0 a.s.

T—o0 ceC

A necessary and sufficient condition ferapproachability with the signaling structukewas stated and
proved by Perchet (2011a); we therefore need to indicateemder contribution lies. First, both proofs
are constructive but our strategy can be efficient (as sosoa® projection operator can be efficiently
implemented) whereas the one of Perchet (2011a) relies xiliaay strategies that are calibrated and that
require a grid that is progressively refined to be so (leatting step complexity that is exponential in the
numberT of past steps). Second, we are able to exhibit convergentes rdhird, as far as elegancy is
concerned, our proof is short, compact, and more direct tharone of Perchet (2011a), which relied on
several layers of complicated notions (internal regretrtipl monitoring, calibration of auxiliary strategies,
etc.).

To recall the mentioned approachability condition of Petq®2011a) we need some additional notation:

for all ¢ € A(J), we denote byl (q) the element inA(#)7 defined as follows. For all € Z, its i—th
component is given by the following convex combination aflpability distributions ovet,

jeg
Finally, we denote byF the set of feasible vectors of probability distribution®o# :
F={H@: acaw}.

A generic element ofF will be denoted byc € F. The necessary and sufficient condition exhibited
by Perchet (2011a) for the-approachability of for the signaling structur& can now be recalled.

Condition 1 The signaling structuré?, the vector-payoff function, and the se€ satisfy
Vge A(J), 3pe A(D), Vg € A(J), H(q)=H(d) = r(p,g)eC.
Defining the set-valued functian, for all p € A(Z) ando € F, by
m(p,o) = {r(p,q'): q € A(J) such that[;'(q’) =0},
the condition can be equivalently reformulated as
Vo e F, dp € A(D), m(p,o) CC.



This condition is necessary. The next two sections show (in a constructive way and by coathg
strategies) that Condition 1 is sufficient ferapproachability of closed convex sétgiven the signaling
structure H. That this condition is necessary was already proved inHeer@2011a); a slightly simpler
argument can however be found in Appendix A.1.

4.1 Approachability for deterministic feedback signals oty depending on outcome

In this section, we assume thAt is of the following form: it only contains Dirac masses, ahdge Dirac
massed (i, j) only depend or. Put differently, the signalS; are deterministic functions of the actiofis
we thus denote by : J — H the function such that, = h(J;) for all ¢ and extend it linearly ta\ (7).
The condition stated above takes the following simpler féwa assume with no loss of generality that all
elements irH are associated with at least one actjon .7, so thatF can be identified with):

VoeA(H), Ip e A(T), m(p,o) CC, 4)

where
m(p,o) = {r(p,d'): ¢ € A(J)suchthat(q')=0c}.
The fact thapp ando are unrelated in the definition above entails @mais linear, i.e., that for alp € A(Z)

ando € A(H),
m(pv J) = Z Z DiOs m(lv 5) .
i€Z s€EH
In addition,7 is also bounded in norm bi2. Therefore, we are exactly in the setting of Section 3.

Theorem 9 A closed conve# is r—approachable for the signaling structukgf and only if (4) holds. In this
case, there exists an explicit strategy to do so, at theviatig rate: for all 7', with probability at leasti — §,

T
c— %Zr([t,Jt) < \2/—];«/NINH (1 + 2\/1n(2/5)).

t=1

inf
ceC

Proof: We need only to show that the stated condition entails agbiadzlity. Since by definition ofz and
because of the particular signaling structlre

1 & 1 &
?ZT(It;Jt) S ?Zm(ft,st),
t=1 t=1
it is enough to show that is m—approachable (when the sign&lsare observed, which is the case). But
Theorem 7 indicates that this is the case when (4) holds. ]

The efficiency of the obtained strategy depends on the régpgeometries ofn andC, as was indicated
before the statement of Theorem 7.

4.2 Approachability with general signaling structures

In this section we consider the case where the signal steiiglgeneral. We start from a technical lemma
that is needed to show thai(p, o) can be written as finite convex combination of sets of the formma(i, b).
We then describe a (possibly) efficient strategy for apgrahbdity followed by convergence rate guarantees.

4.2.1 A preliminary technical result.

With general signaling structures is not linear, it only satisfies that for ghl € A(Z), all pairso, o’ € F,
and alla € [0, 1],
Oém(p, U) + (1 - Oé) m(pv UI) < m(pv oo + (1 - a)OJ) )
with a strict inclusion in general. (Specific examples camptmvided.) Therefore, a direct appeal to Theo-
rem 7 is not possible anymore.
However, a similar linearity property on a lifted finite setgiven by the geometric lemma stated below.
It follows from an application of Rambau and Ziegler (1996 pdsition 2.4), which entails that sinéé is

linear on the polytopé\(.7), its inverse applicatio/ ! is a piecewise linear mapping &f into the subsets
of A(J); the detailed proof can be found in Appendix A.2.

Lemma 10 There exist a finite subsBtC F and a mappingp : 7 — A(B) such that
VoeF, Vpe A(D), m(p,a):ZZpﬂI)b(a)m(i,b),
i€Z beB

where we denoted the convex weight veétar) € A(B) by (@b(a))beg.

8



Parametersan integer block lengtti, > 1, an exploration parameterc [0, 1], a strategyl for m—approachability of
Notation u € A(Z) is the uniform distribution oveE, P denotes the projection operatorfh-norm of R**Z onto F
Initialization: compute the finite s¢f and the mappin@ : 7 — A(B) of Lemma 10, pick an arbitrarg, € A(Z)

For all blocksn =1, 2,.. .,
1. definep,, = (1 — ) xn +yu;
2. forroundst = (n— 1)L +1, ..., nL,

2.1 drawn an actiod; € Z at random according tp,, ;
2.2 getthe signab;;

3. form the estimated vector of probability distribution®psignals,

nL
G - % o Lisi=syliri=iy :
t=(n—1)L+1 Plon (4,8)ETXH
4. compute the projectiod, = Pr(Gy);

5. chooser, 1 = \I/(ml, ®(01), ..., Tn, @(En)).

Figure 1: The proposed strategy, which plays in blocks.

Definition 11 We denote byn the linear extension ta\(Z x B) of the restriction ofn to Z x 3, so that for
all p e A(Z) ando € F,

m(p, o) = m(p, ®(0)).

Remark 1 The proofshows tha is piecewise linear on a finite decompositiornAfit is therefore Lipschitz
on F. We denote by:4 its Lipschitz constant with respect to th&-norm.

4.2.2 Construction of a strategy to approacit.

The approaching strategy for the original problem is based strategy? for m—approachability of’,
provided by Theorem 7 and thus solving repeatedly minimablems of the form (1). We therefore first
need to prove the existence of suctra

Lemma 12 Under Condition 1, the closed convex gt approachable.

Proof: We show that Condition (RAC) in Theorem 7 is satisfied, thathiat for ally € A(B), there exists a
p € A(Z) such thatn(p, y) C C. By linearity ofm (for the following equality) and by definition ofz (for
the following inclusion),

m(p,y) =Y ypm(p,b) C m(p, Zybb)-

beB bes
The existence of the desireds therefore ensured by Condition 1, applied with= , -z vy b. |

We consider the strategy described in Figure 1. It forcefoeafion at ay rate, as is usual in situations
with partial monitoring. One of its key ingredient, that ditionally unbiased estimators are available, is
extracted from Lugosi et al. (2008, Section 6): in blacke consider

e I =s I =1
Ht — {Si=s}H{I:=i} c RHXI;
P1;n

averaging over the respective random drawd;0and S; according top,, and H (I, J;), i.e., taking the
conditional expectatiofi; with respect tg,, and.J;, we get

E.[H,] = H(5},). (5)

©



This is why, by concentration-of-the-measure argumentillbe able to show that fof. large enoughg,,
is close toH (q,,), where
nL

d=7 > ©)

t=(n—1)L+1

Actually, sinceF C A(H)%, we have a natural embedding &finto R?**Z and we can definé’x, the
convex projection operator onts (in /2—norm). Instead of using directly,, we consider in our strategy
o, = Pr(5,), which is even closer téf (q,, ).

4.2.3 Performance guarantee.

We provide a performance bound for fixed parameteand L tuned as functions df. The proofis provided
in Appendix A.3. Adaptation td" — oo can be performed either by resorting to a standard doulicig t
(see, e.g., Cesa-Bianchi and Lugosi 2006, page 17) or bygdikne-varying parameters andL;.

Theorem 13 Under the assumptions of Lemma 12, consider the strategigafé=1, run with parameters
~ € [0,1] and L > 1 and fed with a strategy for m—approachability of, provided by the indicated lemma.
Then, for all roundd” > L + 1 and with probability at least — §,

. 2L 111((2T)/(L5))
inf < ?R+4R — 7

+2vR +
ceC

1 T
C — T;T(It,Jt)

2R
N

9Nz . 2NzNyT 1Nz, 2NgNyT
R Ny /N 1 Az e )
+ ke Ny I(\/VL "5 3T 1o

In particular, for all T’ > 1, the choices of. = [7%/°] and~y = T'~'/5 imply that with probability at least

1—96,
1 < T T
_1 ~1/5 L 425 L
c T;:lr(lt,Jt) 2 < D(T =+ 1n5>

for some constanil depending only o and on the gamér, H) at hand.

inf
ceC

The efficiency of the strategy of Figure 1 depends on whethean be fed with an efficient approach-
ability strategy¥, which in turn depends on the respective geometries a@ndC, as was indicated before
the statement of Theorem 7. (Note that the projection ghian be performed in polynomial time, as the
latter closed convex set is defined by finitely many linearst@ints, and that the computationiafcan be
performed beforehand.)

5 Application to regret minimization

In this section we analyze external and internal regretmization in repeated games with partial monitor-
ing from the approachability perspective. Using the resdéveloped for vector-valued games with partial
monitoring, we show how to—in particular—minimize regnmetioth setups.

5.1 External regret

We consider in this section the framework and aim introdume&ustichini (1999) and studied, sometimes
in special cases, by Piccolboni and Schindelhauer (200&pndr and Shimkin (2003), Cesa-Bianchi et al.
(2006), Lugosi et al. (2008). We show that our general sfsatan be used for regret minimization.

Scalar payoffs are obtained (but not observed) by the fiesgtgul the payoff function is a mapping
7 x J — R; we still denote byR a bound onjr|. We define in this section

1 T
7200
t=1

as the empirical distribution of the actions taken by thesdmlayer. The external regret of the first player
at roundl” equals by definition

T
1
R$'= max (, ) r(It, Jt)
peA(I)PP ; tyJt

10



wherep : A(Z) x F is defined as follows: for app € A(Z) ando € F,

p(p,o) = min {r(p, q) : gsuch that[;'(q) = 0} .

The functionp is continuous in its first argument and therefore the suprenmuthe defining expression of
R&%is a maximum.

We recall briefly why, intuitively, this is the natural notiaf external regret to consider in this case.
Indeed, the first term in the definition &X' is (close to) the worst-case average payoff obtained by tthte fi
player when playing consistently a mixed actipragainst a sequence of mixed actions inducing the same
laws on the signals.

The following result is an easy consequence of Theorem 1i8,@lained below; it corresponds to the
main result of Lugosi et al. (2008), with the same convergeate but with a different strategy. (However,
Perchet 2011b, Section 2.3 exhibited an efficient stratefieaing a convergence rate of order'/?, which
is optimal; a question is thus whether the rates exhibit&thimorem 13 could be improved.)

Corollary 14 For all T', the first player has a strategy such that, for all strategiéthe second player and

with probability at leastl — 4,
R < O <T1/5,/1n§ + T2/ %)

for some constarifl depending only on the gante H) at hand.

The proof below is an extension to the setting of partial raririg of the original proof and strategy
of Blackwell (1956b) for the case of external regret unddérrhwnitoring: in the case of full monitoring the
vector-payoff function- and the sef considered in our proof are equal to the ones considereddmkiell.

Proof: As usual, we embed\(7) into R7 so that in this proof we will be working in the vector space
R x RY. We consider the convex sétand the vector-valued payoff functigrrespectively defined by

c={aerxaw): 2> max oo @)} and 260)= |G,

PEA(T) J

forall (i,5) € Z x J. We now show thaf is r—approachable fof, i.e., by the results of Section 4, that
Condition 1 is satisfied. To do so, we associate with gaeh/A(7) an element(q) € A(Z) such that

¢(q) € argmax p(p, H(q)) .
PEA(T)

Then, given any; € A(7), we note that for ali’ satisfyingH (q') = H(q), we have, by definition of,

r(o(a), ¢') = p(s(q), H(q)) = prggé)p(p, H(q)),

which shows that (¢(q), ¢’) € C. The required condition is thus satisfied.

To exhibit the convergence rates, we use the fact that th@imgp

€A — JH
g€ AWJ) — max p(p, H(q))
is Lipschitz, with Lipschitz constant iff—norm denoted by, ,; this fact is proved below. Now, the regret is

non positive as soons {s:thl r(I, Ji)/T belongs tcC; we therefore only need to consider the case when
this average is not id. In the latter case, we denote byr, g, ) its projection inf>—norm ontoC. We have
first that the defining inequality @f is an equality on its border, so that

Fr= max p(p,H(qT)) ;

11



and second, that

T
1
R = (p.H(@r)) - I, J;)
7 Jmax p\p,H ;r 0 i
T
< | max p(p,H@T)) — max p(p E(&T)) + | Fp — er(]t,Jt)
PEA(T) PEA(T) T~

T

T — %tzlr(]t, Jt)
T

Z (It Jt)
T
T

Cc — Z It, Jt

The rates follow from the ones indicated in Theorem 13.

It only remains to prove the indicated Lipschitzness. (Apdchitzness statements that follow will be
with respect to thé?—norm.) We prove that, = Rxe+/Nz N7 Np. On the one hand, for eveiye Z, the
mappingsy € A(J) — H(i, q) are\/Ns—Lipschitz as the{H (¢, j)||, are bounded by 1 for ajl. Thus, the

mappingg € A(J) — H(q) is /Nz N —Lipschitz. On the other hand, we have by definition that for a
p € A(Z) ando € F,

/N

Ly |lar —ar|, +

N
—

V2 max{L,, 1} H [ gT
T

2

= V2 maX{LP, 1} ilelg

2

p(p, o) = min m(p, (),
and that (by Remark 1) the mappinge F — ®(o0) is ke—Lipschitz; this entails, by Lemma 6, that for all
p € A(Z), the mappingr € F — p(p, o) is R/ N rke—Lipschitz. In particular, since the latter Lipschitz
constant is independent pf the mappingr € F — maxyea(z) p(P, 0) is R/ Np re—Lipschitz as well.

Combining the two Lipschitz mappings yields yet anotherscipitz mapping, whose Lipschitz constant is
the product of the Lipschitz constants of the base two mayspin |

5.2 Internal / swap regret

Foster and Vohra (1999) defined internal regret with full itamng as follows. A player has no internal
regret if, for every action € Z, he has no external regret on the stages when this specifio agtas played.
In other wordsj is the best response to the empirical distribution of aatithe other player on these stages.

With partial monitoring, the first player evaluates his plyim some pessimistic way through the function
p defined above. This function is not linear ov&(Z) in general (it is concave), so that the best responses
are not necessarily pure actions Z but mixed actions, i.e., elementsA{Z). Following Lehrer and Solan
(2007) we therefore should partition the stages not depgnati the pure actions actually played but on the
mixed actiongp, € A(Z) used to draw them. To this end, it is convenient to assumettileastrategies of
the first player need to pick these mixed actions in a finite flossibly thin) grid ofA(Z), which we denote
by {pg, g € g}, whereg is a finite set. At each round, the first player picks an in@gxc G and uses
the distributionp, to draw his action/;. Up to a standard concentration-of-the-measure argumenill
measure the payoff at rounavith r(p,, J;) rather than with-(I;, J;).

For eachy € G, we denote byVr(g) the number of stages ifl, ..., T’} for which we had?; = g and,
wheneveiNr(g) > 0,

aT,g Z 6-]1 .

th =g
We definegr , is an arbitrary way wheiNr(g) = 0. The internal regret of the first player at roufids

measured as ©
Nr(g ~ .
le ’. gaGXQ T (p(pg/7 H(qT,g)) - T(pga qT,g)) .

Actually, our proof technique rather leads to the minirmimabf some swap regret (see Blum and Mansour,
2007 for the definition of swap regret in full monitoring):

o 5 N1l <max o(py-H(n,)) - r(pg,aT,g)) |

'eg
geg g

12



Again, the following bound on the swap regret easily folldwsm Theorem 13; the latter constructs a
simple and direct strategy to control the swap regret, thas the internal regret. It therefore improves on
the results of Lehrer and Solan (2007), Perchet (2009), tticles which presented complicated strategies
to do so (strategies based on auxiliary strategies usingdatat needs to be refined over time and whose
complexities is exponential in the size of these grids). &beer, we provide convergence rates.

Corollary 15 For all T', the first player has an explicit strategy such that, for athgegies of the second
player and with probability at least — 9,

R < O <T_1/51/1n§ + 17725 h%)

for some constarifl depending only on the gante, H) at hand and on the size of the finite gfid

The proof of this corollary is based on ideas similar to thesounsed in the proof of Corollary 14; it is
deferred to Appendix A.4.
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A Appendix beyond the COLT page limit

A conference version of this paper was published irRleeeedings of the Twenty-Fourth Annual Conference
on Learning TheoryCOLT'11); this appendix details some material which wédisdgd at in this conference
version but could not be published therein because of the |irad.

A.1 Proof of Condition 1 being necessary for approachabiliy

When Condition 1 is not satisfied, there exists a veetpe F such that for allp € A(Z), there exists a
o(p) € A(J) such thatH (¢(p)) = oo andr(p, ¢(p)) ¢ C. We denote by ' (oy) the set of allg such
thatﬁ(q) = 09. We will consider a small subclass of the possible strasegfi¢he second player: only those
which prescribe him to play at each round the same elemeﬁrd(ao). We will show that for all strategies
of the first player, there exists a strategy of the secondeplaf/the form mentioned above such that, with

somepositiveprobability,
T

1
C — T ZT(It, Jt)

t=1

limsup inf
T— 00 ceC

>0. (7)

2
We first note that by concentration of the measure (by the fidmgf-Azuma inequality and the Borel-
Cantelli lemma), ifg € H~*(00) is the element repeatedly played by the second player,

=0 a.s. (8)
2

1 & 1 &
Th_I};o H T ZT(L&,‘I) -7 ZT(L&, Ji)
t=1 t=1
Now, all considered strategies of the second player arstinduishable to the first player, since they all
induce the same vectey of probability distributions over signals. Therefore, the of

1 T
B :_§ 5
pr thl I

only depends ofi’ ando (and on the strategy of the first player). We denot®hythe common expectation

of the p;- as theq vary in H=1(0); the expectation has to be understood with respect to thitiaayx
randomizations taken (to draw the pure actions from the daationsp, andg and to draw the signals).

We denote byl the Euclidian distance to the closed convexsétis a continuous and convex function
(see Boyd and Vandenberghe 2004, Example 3.16). In patidtils bounded on the set of all feasible payoff
vectorsr(p, q), asp andq vary. By the dominated convergence theorem and in view oft¢®rove (7) it
thus suffices to show that for all strategies of the first platreere exists a strategy of the second player in

H~(00) such that

inf

limsup E
ceC

T—o0

1 T
c— f Zr(Itv q)
t=1

T—o0

] = limsup E[dc(r(f)T,q))] >0.
2
By Jensen’s inequality,

£[ac(9r.0)] > (o[ or0]) = o).

By the Bolzano-Weierstrass property, for all strategietheffirst player, the sequence of thg has values
in the compact spaci(Z); thus, it admits a converging subsequence, which we derygig sy and whose
limit point we denote by . (This limit point depends solely on the strategy of the fistyer and orvy.)
By consideringy = ¢(ﬁoo) and putting the pieces together, we get that

lim sup E[dc (T(pT,q))} >limsup dc (r(m(mq)) =dc (r(ﬁwqﬁ(ﬁm))) >0,
since by definition ofy, the vector (P, ¢(P..)) is notin the closed convex sét

A.2 Proof of Lemma 10

Proof: Rambau and Ziegler (1996, Proposition 2.4) state that sthée linear on the polytopé\ (7 ), its
inverse applicatior/ ! is a piecewise linear mapping &f into the subsets of\(7), which means that
there exists a finite decomposition Bfinto polytopes{ P, . .., Px } each on whichH ~! is linear. Up to a
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triangulation (see, e.g. Goodman and O’Rourke 2004, Chag)ewe can assume that eahis a simplex.
Denote by, C F the set of vertices aPy; then, the finite subset stated in the lemma is

K
B= B,
k=1

the set of all vertices of all the simplices.

Fix anyo € F. It belongs to some simple®;, so that there exists a convex decomposition=
Zbegk Ay b; this decomposition is unique within the simplBx. If o belongs to two different simplices, then
it actually belongs to their common face and the two possibmpositions coincide (some coefficiehis
in the above decomposition are null). All in all, with eacke F, we can associate a uniqgue decomposition

in BB,
o= Z@b(a)b,

beB

where the coeﬁicienté@b(a))beg form a convex weight vector ovés, i.e., belong toA(B); in addition,
®y(0) > 0only if b € By, wherek is such that € Py.

SinceH ! is linear on each simpleR,, ..., Py, we therefore get
H (o)=Y @y(0) H(b).
beB

Finally, the result is a consequence of the fact that

ﬁﬂn0)=f(p,§WUD==TGx§:¢MU)§WM),

beB
which implies, by linearity of-, that
(p,0) = > ®y(0)r(p, H(B)) = 3 @y(o) (P, b)
beB beB

The proof is concluded by noting that by definition, forale 7, the applicationg € A(Z) — m(p, o) are
linear. |

A.3 Proof of Theorem 13

Proof: We writeT asT = NL + k whereN is an integer an@ < k£ < L — 1 and will show successively
that (possibly with overwhelming probability only) the fmlving statements hold.

1< 1 ML
T > el ) is close to ~7 vl ) ©)
t=1 =1
1 X% 1
NI Z 1y, Jt) is close to v Z (Pps @) ; (10)
t=1 el
1 Y 1 X
~ > 1P @) is close to = S (@, @,) (11)
n=1 el
L\ 1 _
N Z r(@n, Gy,) belongs to the set N Zm(mm H(@n)) :
n=1 el
1 al ~ 1 N _
NZm(wn, H(an)) is equal to the set NZ%(%, @(H(an))) :
n=1 1
1 N ~ 1 N
N Zﬁ(wm @(H(&n))) is close to the set > ﬁ(mm @(3n)) , (12)
n=1 e
1 N
N > ﬁ(wn, ‘1>(3n)) is closetothe set  C; (13)
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where we recall that the notati@y, was defined in (6). Actually, we will show below the numbertates
ments only; the first unnumbered statement is immediate éwéhny definition ofr and the second one
follows from Definition 11.

Step 1: the term(9). A direct calculation decomposing the sum o¥%&elements into a sum over the
N L first elements and thie remaining ones shows that

T NL
1 1 k 1 1 2k 2L
— I - — I < — NL)=—=R< —R.
T;T(t,eft) NL;T( ¢ Jt) i R( +< ) ) TR TR

T NL T
Step 2: the term (10).  We note that by definindt; the conditional expectation with respect to
(I1,S1,J1)s -, (It—1, St—1, J:—1) and.J;, which fixes the values of the lap{ of I; and the value of/;, we

have
Et[ (Itw]t)] = 7(p}, Jt) -

We note that by definition of the forecastgt, = p,, if ¢ belongs to the:—th block. By a version of the
Hoeffding-Azuma inequality for sums of Hilbert space-vadumartingale differences provedi€hen and
White (1996, Lemma 3.2), we therefore get that with proligtal leastl — ¢,

NL
1 In(2/0)
ﬁtz r(l, i) = Zj Pn Q) ‘ SAR\ ——

Step 3: the term(11). Since by definitiop,, = (1 — v) x,, + 7 u, we get

1 N N
N Z T\Pn>s qn Z wn’ qn
n=1 n=1

Step 4: the term(12). We fix a given blockn. It can be extracted from Lugosi et al. (2008, proof of
Theorem 6.1) that with probability —

-~ 2N. 2Nz N 1IN 2Nz N
\anH(an>H2<szH< 2, Wl 1z, H> s

1) 3~yL é
(For the sake of completeness this extracted statementisvan proved again in Appendix B.2 below.)
Since® is Lipschitz (see Remark 1), with Lipschitz constant#r-norm denoted by:.s, we get that with
probability1 — 4,

2N 2NN 1N 2NN
o) - (@) |, < nov/em ([ 2 3, 202N,

< 2vR.
2

By a union bound, the above bound holds for all bloeks- 1,..., N with probability at leastt — N§.
Finally, an application of Lemma 6 shows that

N

NZ <a:n, ( qn))) is in ae—neighborhood (if2—norm) of Zﬁ(mn, ),

where

2N- 2NN 1N 2Nz N-
er = R/ Ny X H@\/NIN'H< I i_ H+§—zl 1—6 H)

Step 5: the term(13). SinceC is m—approachable and by definition of the choices ofithen Figure 1,
we get by Theorem 7, with probability 1,

N
1 — 2R 2R
— = > (@0, @) | < SV N2Ns < —==—=/Nz N5,
c Nn_1m<:13 @)HQ ~ VN TIRSAAAL

inf
ceC

sinceT/L< N+k/L<N+1.
The proof is concluded by putting the pieces together, thdoka triangle inequality, by noting that
T/L < N + 1, and by consideringé/T < §/(N + 1) instead of. |

3We use the fact thayu e ™ < e"*/2 forall u > 0.
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A.4  Proof of Corollary 15

We provide here the existence proof of strategies minirgitive swap regret. The proof follows the same
lines as the one of Corollary 14.

Proof: In this proof we will be working in the vector spac(& X Rj)g. We first extend linearly: from
A(T) x A(J) to A(Z) x RY and extend also continuously (but not linearty) G x A(J) — Rinto a
mapping : G x RY — R as follows: for allg € G andv € RY,

0 if Hle =0,
((pyv) = ||v||1p<pg, <| : )) it Jloll, > 0.
1

The convex sef and the vector-valued payoff functierare then respectively defined by

C= {(zg,vg) € (Rx R;Z)g : Vgeg, zg> II}gé(C(pg/,’Ug)}
9

and, forall(g,j) € G x J,

35 Igr=g}
To show that is r—approachable, we associate with egch A(7) an elemeny*(q) € G such that

. rp 7j Iy
I(g,j): [ ( g ) {9'=g} ‘| )
9'€g

9% (q) € argmaxp(pg, ﬁ(q)) )
geg

Then, given any € A(J), we note that for aly’ satisfyingﬁ(q’) = ﬁ(q), the components of the vector
T(g*(q), q’) are all null but the ones correspondingitdq), for which we have

max((py,q') = rg{lggp(pgrﬁ(q')) = rg{lggp(pguﬁ(q)) - p(pgqq),ﬁ(q)) <7(Pg(q) d)

where the last line is by definition ¢f Thereforeg(g*(q), q’) € C. The required condition in Lemma 12
and Theorem 13 is thus satisfied, hence the desired appiubtyha

We now exhibit the convergence rates. As in the proof of Garpll4, we need only to consider the
case wherezt 1r(It, J¢)/T is not inC, for otherwise, the swap regret is non positive. We denote by

(71,9, U7.9)gec the projection in?—norm of >, r(I, J;) /T ontoC, and bydr,, = (Nr(g)/T) Gr., the
realized frequency of playing eaghe G. Since the projection lies on the bordertfwe have that for all
geaqg,

g = g{}g&(C(pg/, ’UT79) .

We will prove below that
veRI — ma , U
+ s C(pg:v)

is L¢—Lipschitz, for some constadi: > 0. Then, as for the external regret,

R = Y NTT(g) <maxp(pg ,H(aTyg)) - T(pg,aTyg))

g9'€eg
9€g

= 5 (s Bra) (o, 1))

geg
< 3 |spctor5ra) a5+ sl 500 )
S Z(LC ” %Tvg — Uy ” o T ’ g — T(pg’ %Tag) D
geg
T 1 )
< W/2Ng maX{LC, 1} H e } Z (Is, Jt)
ge t:l 2

v/2Ng maX{LC, 1} (Helg

)

2

1 T
¢c— 7 ;dlt,Jt)
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where we denoted byg the cardinality ofG. Resorting to the convergence rate stated in Theorem 13
concludes the proof, up to the stated Lipschitzness wfhich we now prove.

It suffices to show that for all fixed elemenise A(Z), the functionsy € RY — ((p, v) are Lipschitz,
with a Lipschitz constant that is independenpof

Consider two elements, v’ € RY. If ||v'|| = 0 and|v||, > 0, then

~ v
p|\p, H < )
( oll,

In the case where bothandv’ are non zero,

C(pa U) - C(pv ’U/>

|vmex (|h)>nvanxﬁ(ﬁ%ﬁ>
|vn1P<p,ﬁ<Wﬁj)>p<p,ﬁ(wjh)> +amh|vwop<p,ﬁ(wjh)>.

Therefore, by using the Lipschitzness proved at the endeoptbof of Corollary 14, by two applications of
the triangle inequality, and by noting thiat|, < |- ||; < vNg |- |5, we get

¢(p, ) = C(p, )| = [C(p,v)| = v, S Rl = Rllv =2, .

v v’
|C(p,v)—((p,v')| < vl Ly *W Jr||"’*7’I||1R
1112
v
< /+ (1 _ |v/|||1 ) ’U/ +R /Nj ||’U _UIHQ
v
< (Lot BYNG ) o =0/l Ly |1 = 15k 1]
gl
< (Lo + RYNg) o = vlly + L [0/l I\HH,f
< (Lo+ BYNg) o = v/ll, + Ly llo = v/l
< (Lp+ B+ L)VN7) o =ll,
We therefore proved the required Lipschitzness, with @mdi = L, + (R+ L,)/N. |
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B Proofs of results extracted from other works

The proofs below reproduce arguments that were publistemivblere; we rewrite them with our notation
only for the convenience of the readers and to make this gafpeself-contained.

B.1 Proof of the basic approachability results

This material is standard and can be found, e.g., in CesaeBiand Lugosi (2006, Section 7.7 and Exer-
cise 7.23).

Proof: (of Theorem 3) Sincec; is the projection ofn, on the closed convex sét with respect to the
¢2—norm, the following geometric property is satisfied:
Veel, (My —cty,c—ep) <0

By assumption, for every € A(B), there existsc € A(A) such thatn(z,y) € C; therefore, the above-
stated geometric property implies that

max min {(m; — ¢, m(x,y) —c;) < 0.
yGA(B)zeA(A)< ¢ e U@, Y) — ) S

By von Neumann’s minimax theorem,

max  min (M — ¢, m(x,y) —¢) = min - max (M — ¢, m(x,y) —¢) <O0.
%) iR, (e — oo (@, y) — ) = mip, max, (M=o, mi@y) — e

In view of the defining minimax choice af;; € A(A), the above inequality yields that for al, €
A(B),
(Mg — cg, m(xyq1,2041) — cr) <O (15)

In the rest of the proof, we choossH to be eithery,  , or iz, ,, depending on whether mixed or pure
actions are taken and observed; in particular, we have tinétireg

t
N 1
my = g ;m(mr,z-,—) .

Straightforward calculation show that

=
T/T\lt-q—l = H—szl m(wT;ZT)
t t
1 1 1
= H—lm($t+17zt+1 + ;;m Ty, 2r) — T 1) ;m(a’razr)
~ 1 ~

= my+ H—l(m($t+1azt+1) - mt) .

Denote by ' R R
dy = (Helg e —mully = [ler — M,

the /2—distance ofn; to C. Now, for allt > 1

2
d?ﬂ < llee = mtﬂ”i = ‘ (Ct - ﬁ”bt) + t+1 (”A”Lt - m($t+1,Zt+1))
2
~ 2 ~
= llee — mell3 + t+—1<mt — by M(Ty41, Ze41) — M)
. 2
|72 = m(@es1, ze41) ||
(t+1)2
2 2
= (1 - tJr—l) llee — ﬁlt”i +t+—1 (My — ct, M(Tiq1, Ze41) — Ct)
=@ <0 by (15)

e = m(@ii1, 2000) ||
(t+1)2
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By the triangle inequality,
~ 2
Hmt — m(Tig1, Ze41) H2 < AM?;

2 4M?
d7q < (1 ) d? +

thus, we proved that

Ct41 t+ 17
Since
2 1+ 1 7(t+1)2—2(t+1)+t7t271+t<1
t+1) ¢t (t+1)2 t(t+1)2 St + 12 Tt

a simple induction argument yields th& < 4M?2/T for all T > 1; which concludes the proof in the case
of mixed actions taken and observed.

In the case of pure actions taken and observed, we need amadbconcentration argument. We denote
by E, the conditional expectation at roungvith respect taB, and thex,, A,, By, wherel < s <t—1;we
have

Et [m(At, Bt)] = m(mt, Bt) = m(a:t, Zt) .

In addition, the quantitiesn(x, z;) — m(A;, B;) are bounded in norm bg)M. By the version of the
Hoeffding-Azuma inequality for sums of Hilbert space-vadumartingale differences already used in the
proof of Theorem 13, we therefore have that foriall> 1, with probability at least — 6,

1 & 1<
} T Zm(At;Bt) - T Zm(wtazt)
t=1 t=1

which, combined with the deterministic bound @n, entails, still with probability at least — 4,

‘ < 107,/ G/
T

)

T
1 2M
i - < == .
(1:22 ¢c— ;:1 m(As, By) ’2 < \/T<1+2\/ln(2/6))
This concludes the proof. ]

B.2 Proof of a concentration argument
We re-prove here the inequality (14), that is directly ectied from Lugosi et al. (2008, Section 6). Again,
this is only for the sake of self-containment.

Proof: Forall (i, j) € T x J, the quantityH (, j) is a probability distribution ovek{; we denote by, (i, j)
the probability mass that it puts on some elemeat?.
We consider a fixed block. Equation (5) indicates that for each p@irs) € Z x H,

nL

I =s I =1 .
I A 0)

t=(n—1)L+1 PIin

is a sum ofL elements of a martingale difference sequence. The conditi@riances of the increments are

bounded by
Lis,—stLir=iy \°
(M) gQLEt[H{h:i}}: 1 ;
Prin pi,n b

E¢

since by definition of the strategy,, = (1 — v) ,, + v u, we have thap, ,, > v/Nz, which shows that the
sum of the conditional variances is bounded by

nL

I _S]I =1 LN
() L
t=(n—1)L+1 Prin v

The Bernstein-Freedman inequality (see Freedman 1975g&-Bianchi et al. 2006, Lemma A.1) therefore
indicates that with probability at least— §,

nL nL

1 Lis,=alyr,=iy 1 .
Z Z - = Z Z HS(Zv ‘]t)

t=(n—1)L+1 Prin t=(n—1)L+1

Nz 2 1Nz 2
<2 Zmiy s Zms,
L5 T35S

= H.(i,4,) by (6)
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Therefore, by summing the above inequalities overZ ands € H, we get (after a union bound) that with
probability at least — Nz N34,

~ ~ 2Nz 2 1Nz, 2
_H H < /NN e M AN
HU (q") 2 g H( ~vL n5+3’yLn5)
Finally, sinces,, is the projection in thé>—norm ofz,, onto the convex sef, to Whichfi(ijn) belongs, we
have that N N
Han B H(a") Hz S Hgn - H(a") HQ ’
and this concludes the proof. |
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