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Abstract

Approachability has become a standard tool in analyzing learning algorithms in the adversarial
online learning setup. We develop a variant of approachability for games where there is ambiguity
in the obtained reward that belongs to a set, rather than being a single vector. Using this variant
we tackle the problem of approachability in games with partial monitoring and develop simple and
efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider
external and internal regret in repeated games with partialmonitoring, for which we derive regret-
minimizing strategies based on approachability theory.

1 Introduction

Blackwell’s approachability theory and its variants has become a standard and useful tool in analyzing online
learning algorithms (Cesa-Bianchi and Lugosi, 2006) and algorithms for learning in games (Hart and Mas-
Colell, 2000, 2001). The first application of Blackwell’s approachability to learning in the online setup is
due to Blackwell himself in Blackwell (1956b). Numerous other contributions are summarized in Cesa-
Bianchi and Lugosi (2006). Blackwell’s approachability theory enjoys a clear geometric interpretation that
allows it to be used in situations where online convex optimization or exponential weights do not seem to be
easily applicable and, in some sense, to go beyond the minimization of the regret and/or to control quantities
of a different flavor; e.g., in Mannor et al. (2009), to minimize the regret together with path constraints,
and in Mannor and Shimkin (2008), to minimize the regret in games whose stage duration is not fixed.
Recently, it has been shown that approachability and low regret learning are equivalent in the sense that
efficient reductions exist from one to the other (Abernethy et al., 2011). Another recent paper (Rakhlin et al.,
2011) showed that approachability can be analyzed from the perspective of learnability using tools from
learning theory.

In this paper we consider approachability and online learning with partial monitoring in games against
Nature. In partial monitoring the decision maker does not know how much reward was obtained and only gets
a (random) signal whose distribution depends on the action of the decision maker and the action of Nature.
There are two extremes of this setup that are well studied. Onthe one extreme we have the case where
the signal includes the reward itself (or a signal that can beused to unbiasedly estimate the reward), which is
essentially the celebrated bandits setup. The other extreme is the case where the signal is not informative (i.e.,
it tells the decision maker nothing about the actual reward obtained); this setting then essentially consists of
repeating the same situation over and over again, as no information is gained over time. We consider a setup
encompassing these situations and more general ones, in which the signal is indicative of the actual reward,
but is not necessarily a sufficient statistics thereof. The difficulty is that the decision maker cannot compute
the actual reward he obtained nor the actions of Nature.

Regret minimization with partial monitoring has been studied in several papers in the learning theory
community. Piccolboni and Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006)
study special cases where an accurate estimation of the rewards (or worst-case rewards) of the decision
maker is possible thanks to some extra structure. A general policy with vanishing regret is presented in
Lugosi et al. (2008). This policy is based on exponential weights and a specific estimation procedure for
the (worst-case) obtained rewards. In contrast, we provideapproachability-based results for the problem of
regret minimization. On route, we define a new type of approachability setup, with enables to re-derive the
extension of approachability to the partial monitoring vector-valued setting proposed by Perchet (2011a).
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More importantly, we provide algorithms for this approachability problem that are more efficient in the sense
that, unlike previous works in the domain, their complexityis constant over all steps. Moreover, their rates
of convergence are, as in Blackwell (1956b) but for the first time in this general framework, independent of
the game at hand.

The paper is organized as follows. In Section 2 we recall somebasic facts from approachability theory.
In Section 3 we propose a novel setup for approachability, termed “robust approachability,” where instead of
obtaining a vector-valued reward, the decision maker obtains a set, that represents the ambiguity concerning
his reward. We provide a simple characterization of approachable convex sets and an algorithm for the set-
valued reward setup. In Section 4 we show how to apply the robust approachability framework to the repeated
vector-valued games with partial monitoring. We provide a simple and constructive algorithm for this setup.
Previous results for approachability in this setup were either non-constructive (Rustichini, 1999) or were
highly inefficient as they relied on some sort of lifting to the space of probability measures on mixed actions
(Perchet, 2011a) and typically required a grid that is progressively refined (leading to a step complexity that
is exponential in the numberT of past steps). In Section 5 we apply our results for both external and internal
regret minimization with partial monitoring. In both casesour proofs are simple, lead to algorithms with
constant complexity at each step, and are accompanied with rates. Our results for external regret have rates
similar to Lugosi et al. (2008), but our proof is direct and simpler. For internal regret minimization we present
the first algorithm not relying on a grid being refined over time and the first convergence rates.

2 Some basic facts from approachability theory

In this section we recall the most basic versions of Blackwell’s approachability theorem for vector-valued
payoff functions.

We consider a vector-valued game between two players, a decision maker (first player) and Nature (second
player), with respective finite action setsA andB, whose cardinalities are referred to asNA andNB. We
denote byd the dimension of the reward vector and equipR

d with theℓ2–norm‖ · ‖2. The payoff function of
the first player is given by a mappingm : A× B → R

d, which is multi-linearly extended to∆(A) ×∆(B),
the set of product-distributions overA× B.

We consider two frameworks, depending on whether pure or mixed actions are taken.

Pure actions taken and observed. We denote byA1, A2, . . . andB1, B2, . . . the actions inA andB
sequentially taken by each player; they are possibly given by randomized strategies, i.e., the actionsAt and
Bt were obtained by random draws according to respective probability distributions denoted byxt ∈ ∆(A)
andyt ∈ ∆(B). For now, we assume that the first player has a full monitoringof the pure actions taken
by the opponent player: at the end of roundt, when receiving the payoffm(At, Bt), the pure actionBt is
revealed to him.

Definition 1 A setC ⊆ R
d is m–approachable with pure actionsif there exists a strategy1 of the first player

such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
At, Bt

)
wwwww

2

= 0 a.s.

That is, the first player has a strategy that ensures that the average of his vector-valued payoffs converges to
the setC.

Mixed actions taken and observed. In this case, we denote byx1, x2, . . . andy1, y2, . . . the actions in
∆(A) and∆(B) sequentially taken by each player. We also assume a full monitoring for the first player: at
the end of roundt, when receiving the payoffm(xt,yt), the mixed actionyt is revealed to him.

Definition 2 In this context, a setC ⊆ R
d ism–approachable with mixed actionsif there exists a strategy of

the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
xt,yt

)
wwwww

2

= 0 a.s.

1The original definition given by Blackwell requires uniformity w.r.t. the strategy set of the opponent. We ignore the
uniformity to avoid excessive nomenclature.
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Necessary and sufficient condition for approachability. For closed convex sets there is a simple charac-
terization of approachability that is a direct consequenceof the minimax theorem; the condition is the same
for the two settings, whether pure or mixed actions are takenand observed.

Theorem 3 (Blackwell 1956a, Theorem 3)A closed convex setC ⊆ R
d is approachable (with pure or

mixed actions) if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

In the latter case, an explicit strategy achieves the following convergence rates. We denote byM a bound in
norm overm, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6 M .

With mixed actions taken and observed, for all strategies ofthe second player, with probability 1,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
xt,yt

)
wwwww

2

6
2M√
T

.

With pure actions taken and observed, for allδ ∈ (0, 1) and for all strategies of the second player, with
probability at least1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
At, Bt

)
wwwww

2

6
2M√
T

(
1 + 2

√
ln(2/δ)

)
.

The proof is provided in Appendix B.1 for completeness.

An associated strategy (that is efficient depending on the geometry of C). Blackwell suggested a simple
strategy with a geometric flavor. (This strategy can be extracted from the proof of Theorem 3 provided in
appendix.)

Play an arbitraryx1. Fort > 1, given the vector-valued quantities

m̂t =
1

t

t∑

τ=1

m(xτ , Bτ ) or m̂t =
1

t

t∑

τ=1

m(xτ ,yτ ) ,

depending on whether pure or mixed actions are taken and observed, compute the projectionct (in ℓ2–norm)
of m̂t onC. Find a mixed actionxt+1 that solves the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct,m(x,y)

〉
, (1)

where〈 · , · 〉 is the Euclidian inner product inRd. The minimax problem above is easily seen to be a (scalar)
zero-sum game and is therefore efficiently solvable using, e.g., linear programming: the associated com-
plexity is polynomial inNA andNB. All in all, this strategy is efficient as soon as the computations of the
required projections ontoC in ℓ2–norm can be performed efficiently.

In the case when pure actions are taken and observed, it only remains to drawAt+1 at random according
toxt+1.

3 Robust approachability

In this section we extend the results of the previous sectionto set-valued payoff functions. To this end, we
denote byS

(
R

d
)

the set of all subsets ofRd and consider a set-valued payoff functionm : A×B → S
(
R

d
)
.

Pure actions taken and observed. At each roundt, the players choose simultaneously respective actions
At ∈ A andBt ∈ B, possibly at random according to mixed distributionsxt andyt. Full monitoring still
takes place for the first player: he observesBt at the end of roundt. However, as a result, the first player
gets thesubsetm(At, Bt) as a payoff. This models the ambiguity or uncertainty associated with some true
underlying payoff gained.

We extendm multi-linearly to∆(A)×∆(B) and even to∆(A×B), the set of joint probability distribu-
tions onA× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B
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be such a joint probability distribution; thenm(µ) is defined as a finite convex combination2 of subsets of
R

d,
m(µ) =

∑

a∈A

∑

b∈B

µa,b m(a, b) .

Whenµ is the product-distribution of somex ∈ ∆(A) andy ∈ ∆(B), we use the notationm(µ) = m(x,y).
We denote by

πT =
1

T

T∑

t=1

δ(At,Bt)

the empirical distribution of the pairs(At, Bt) of actions taken during the firstT rounds and will be interested
in the behavior of

1

T

T∑

t=1

m(At, Bt) ,

which can also be rewritten here in a compact way asm(πT ), by linearity of the extension ofm.

Definition 4 LetC ⊆ R
d be some set;C ism–approachable with pure actions if there exists a strategy of the

first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(πT )

inf
c∈C

‖c− d‖2 = 0 a.s.

That is, whenC is m–approachable with pure actions, the first player has a strategy that ensures that the
average of the sets of payoffs converges to the setC: the setsm(πT ) are included inεT–neighborhoods ofC,
where the sequence ofεT tends almost-surely to0.

Mixed actions taken and observed. At each roundt, the players choose simultaneously respective mixed
actionsxt ∈ ∆(A) andyt ∈ ∆(B). Full monitoring still takes place for the first player: he observesyt at the
end of roundt; he however gets the subsetm(xt,yt) as a payoff (which, again, accounts for the uncertainty).

The product-distribution of two elementsx = (xa)a∈A ∈ ∆(A) andy = (yb)b∈B ∈ ∆(B) will be
denoted byx⊗y; it gives a probability mass ofxayb to each pair(a, b) ∈ A×B. We consider the empirical
joint distribution of mixed actions taken during the firstT rounds,

νT =
1

T

T∑

t=1

xt ⊗ yt ,

and will be interested in the behavior of
1

T

T∑

t=1

m(xt,yt) ,

which can also be rewritten here in a compact way asm(νT ), by linearity of the extension ofm.

Definition 5 Let C ⊆ R
d be some set;C is m–approachable with mixed actions if there exists a strategyof

the first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 = 0 a.s.

A useful continuity lemma. Before proceeding we provide a continuity lemma. It can be reformulated
as indicating that for all joint distributionsµ andν overA× B, the setm(µ) is contained in aM ‖µ− ν‖1–
neighborhood ofm(ν), whereM is a bound inℓ2–norm onm; this is a fact that we will use repeatedly
below.

Lemma 6 Letµ andν be two probability distributions overA× B. We assume that the set-valued function
m is bounded in norm byM , i.e., that there exists a real numberM > 0 such that

∀(a, b) ∈ A× B, sup
d∈m(a,b)

‖d‖2 6 M .

Then
sup

d∈m(µ)

inf
c∈m(ν)

‖d− c‖2 6 M ‖µ− ν‖1 6 M
√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively theℓ1 andℓ2–norms between probability distributions.
2For two setsS, T andα ∈ [0, 1], the convex combinationαS + (1− α)T is defined as

{
αs+ (1− α)t, s ∈ S andt ∈ T

}
.
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Proof: Let d be an element ofm(µ); it can be written as

d =
∑

a∈A

∑

b∈B

µa,b θa,b

for some elementsθa,b ∈ m(a, b). We consider

c =
∑

a∈A

∑

b∈B

νa,b θa,b ,

which is an element ofm(ν). Then by the triangle inequality,

‖d− c‖2 =

wwwww
∑

a∈A

∑

b∈B

(
µa,b − νa,b

)
θa,b

wwwww
2

6
∑

a∈A

∑

b∈B

∣∣µa,b − νa,b
∣∣ ‖θa,b‖2 6 M

∑

a∈A

∑

b∈B

∣∣µa,b − νa,b
∣∣ .

This entails the first claimed inequality. The second one follows from an application of the Cauchy-Schwarz
inequality.

Necessary and sufficient condition for approachability. We state the condition in the theorem below, as
well as the associated convergence rates. Explicit strategies can be deduced from the proof, which is based
on Theorem 3; these strategies are efficient as soon as projections in ℓ2–norm onto the set̃C defined in (3)
can be computed efficiently. The latter fact depends on the respective geometries ofm andC.

Theorem 7 Suppose that the set-valued functionm is bounded in norm byM . A closed convex setC ⊆ R
d

is approachable (with pure or mixed actions) if and only if the following robust approachability condition is
satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (RAC)

In the latter case, the following convergence rates are achieved by a strategy constructed in the proof. With
mixed actions taken and observed, for all strategies of the second player, with probability 1,

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 6
2M√
T

√
NANB .

With pure actions taken and observed, for allδ ∈ (0, 1) and for all strategies of the second player, with
probability at least1− δ,

sup
d∈m(πT )

inf
c∈C

‖c− d‖2 6
2M√
T

√
NANB

(
1 + 2

√
ln(2/δ)

)
.

Proof: Condition (RAC) is necessary.If the condition does not hold, then there existsy0 ∈ ∆(B) such that
for everyx ∈ A, the setm(x,y0) is not included inC, i.e., it contains at least one point not inC. We then
define a mappingD : ∆(A) → R by

∀x ∈ ∆(A), D(x) = sup
d∈m(x,y0)

inf
c∈C

‖c− d‖2 .

SinceC is closed, distances of given individual points toC are achieved; therefore, by the choice ofy0, we
get thatD(x) > 0 for all x ∈ ∆(A).

We now show thatD is continuous on the compact set∆(A); it thus attains its minimum, whose value
we denote byDmin > 0. More precisely, it suffices to show that for allx, x′ ∈ ∆(A), the condition
‖x′ − x‖1 6 ε implies thatD(x)−D(x′) 6 Mε. Indeed, fixδ > 0 and letdδ,x ∈ m(x,y0) be such that

D(x) 6 inf
c∈C

wwc− dδ,x
ww

2
+ δ . (2)

By Lemma 6 (with the choicesµ = x ⊗ y0 andν = x
′ ⊗ y0) there existsdδ,x′ ∈ m(x′,y0) such thatwwdδ,x − dδ,x′

ww
2
6 Mε+ δ. The triangle inequality entails that

inf
c∈C

wwc− dδ,x
ww

2
6 inf

c∈C

wwc− dδ,x′

ww
2
+Mε+ δ .

Substituting in (2), we get that

D(x) 6 Mε+ 2δ + inf
c∈C

wwc− dδ,x′

ww
2
6 Mε+ 2δ +D(x′) ,

which, lettingδ → 0, proves our continuity claim.
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Assume now that the second player chooses at each roundyt = y0 as his mixed action. In the case of
mixed actions taken and observed, denoting

xT =
1

T

T∑

t=1

xt ,

we get thatνt = xT ⊗ y0, and hence, for all strategies of the first player and for allT > 1,

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 = D(xT ) > Dmin > 0 ,

which shows thatC is not approachable. The case of pure actions taken and observed is treated similarly, with
the sole addition of a concentration argument. By repeated uses of the Hoeffding-Azuma inequality together
with an application of the Borel-Cantelli lemma,δT = ‖πT − νT ‖1 → 0 almost surely asT → ∞. By
applying Lemma 6 as above, we get

sup
d∈m(πT )

inf
c∈C

‖c− d‖2 > sup
d∈m(νT )

inf
c∈C

‖c− d‖2 −MδT > Dmin −MδT ;

we simply take thelim inf in the above inequalities to conclude the argument.

Proof: Condition (RAC) is sufficient. We first show that there exists a strategy of the first player such that,
for all strategies of the opponent player, the sequences(πT ) or (νT ) of the empirical distributions of actions
converge to the set

C̃ =
{
µ ∈ ∆(A × B) : m(µ) ⊆ C

}
(3)

in ℓ2–norm, at the rates prescribed by Theorem 3.
To do so, we identify probability distributions overA×B with vectors inRA×B and consider the vector-

valued payoff function
m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ R

A×B ,

which we extend multi-linearly to∆(A)×∆(B). We have that

πT =
1

T

T∑

t=1

m(At, Bt) and νT =
1

T

T∑

t=1

m(xt,yt)

and we therefore only need to show thatC̃ ism–approachable (with pure or mixed actions).
Sincem is a linear function on∆(A × B) andC is convex, the set̃C is convex as well. In addition,

sinceC is closed,̃C is also closed. We can therefore apply the original version of the approachability theorem
(stated in Theorem 3). The desired existence result followstherefore from the fact that by assumption, for all
y ∈ ∆(B), there exists somex ∈ ∆(A) such thatµ = m(x,y), the product-distribution betweenx andy,
belongs toC̃, as it satisfiesm(µ) = m(x,y) ⊆ C.

Let PC̃ denote the projection operator ontõC. We therefore have proved the existence of explicit (and
possibly efficient) strategies—along the lines of the ones presented around (1)—such that, for all strategies
of the second player, with probability1− δ,

εT :=
wwwπT − PC̃(πT )

www
2
= inf

µ∈C̃
‖πT − µ‖2 6

2√
T

(
1 +

√
2 ln(2/δ)

)
,

and with probability 1, ε′T :=
wwwνT − PC̃(νT )

www
2
= inf

µ∈C̃
‖νT − µ‖2 6

2√
T

.

Lemma 6 entails that the setsm(πT ) are included inM
√
NANB εT–neighborhoods ofm

(
PC̃(πT )

)
, and

thus, by definition of̃C, in M
√
NANB εT–neighborhoods ofC. A similar statement holds for the sets the sets

m(νT ) and this completes the proof.

4 Application to games with partial monitoring

A repeated vector-valued game with partial monitoring is described as follows (see, e.g., Mertens et al., 1994,
Rustichini, 1999 and the references therein). The players have respective finite action setsI andJ . We
denote byr : I × J → R

d the vector-valued payoff function of the first player and extend it multi-linearly
to∆(I)×∆(J ). At each round, players simultaneously choose their actionsIt ∈ I andJt ∈ J , possibly at
random according to probability distributions denoted bypt ∈ ∆(I) andqt ∈ ∆(J ). At the end of a round,
the first player does not observeJt or r(It, Jt) but only a signal. There is a finite setH of possible signals;
the feedbackSt that is given to the first player is drawn at random according to the distributionH(It, Jt),
where the mappingH : I × J → ∆(H) is known by the first player.
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Example 1 Examples of such partial monitoring games are provided by, e.g., Cesa-Bianchi et al. (2006,
Section 2), among which we can cite the apple tasting problem, the label-efficient prediction constraint, and
the multi-armed bandit settings.

Some additional notation will be useful. We denote byR the norm of (the linear extension of)r,

R = max
(i,j)∈I×J

wwr(i, j)
ww

2
.

The cardinalities of the finite setsI, J , andH will be referred to asNI , NJ , andNH.
Definition 1 can be extended as follows in this setting; the only new ingredient is the signaling structure,

the aim is unchanged.

Definition 8 Let C ⊆ R
d be some set;C is r–approachable for the signaling structureH if there exists a

strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

= 0 a.s.

That is, the first player has a strategy that ensures that the sequence of his average vector-valued payoffs
converges to the setC, even if he only observes the random signalsSt as a feedback.

A necessary and sufficient condition forr–approachability with the signaling structureH was stated and
proved by Perchet (2011a); we therefore need to indicate where our contribution lies. First, both proofs
are constructive but our strategy can be efficient (as soon assome projection operator can be efficiently
implemented) whereas the one of Perchet (2011a) relies on auxiliary strategies that are calibrated and that
require a grid that is progressively refined to be so (leadingto a step complexity that is exponential in the
numberT of past steps). Second, we are able to exhibit convergence rates. Third, as far as elegancy is
concerned, our proof is short, compact, and more direct thanthe one of Perchet (2011a), which relied on
several layers of complicated notions (internal regret in partial monitoring, calibration of auxiliary strategies,
etc.).

To recall the mentioned approachability condition of Perchet (2011a) we need some additional notation:
for all q ∈ ∆(J ), we denote byH̃(q) the element in∆(H)I defined as follows. For alli ∈ I, its i–th
component is given by the following convex combination of probability distributions overH,

H̃(q)i = H(i, q) =
∑

j∈J

qjH(i, j) .

Finally, we denote byF the set of feasible vectors of probability distributions overH:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element ofF will be denoted byσ ∈ F . The necessary and sufficient condition exhibited
by Perchet (2011a) for ther–approachability ofC for the signaling structureH can now be recalled.

Condition 1 The signaling structureH , the vector-payoff functionr, and the setC satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .

Defining the set-valued functionm, for all p ∈ ∆(I) andσ ∈ F , by

m(p, σ) =
{
r(p, q′) : q

′ ∈ ∆(J ) such thatH̃(q′) = σ
}
,

the condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C .

This condition is necessary. The next two sections show (in a constructive way and by constructing
strategies) that Condition 1 is sufficient forr–approachability of closed convex setsC given the signaling
structureH . That this condition is necessary was already proved in Perchet (2011a); a slightly simpler
argument can however be found in Appendix A.1.
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4.1 Approachability for deterministic feedback signals only depending on outcome

In this section, we assume thatH is of the following form: it only contains Dirac masses, and these Dirac
massesH(i, j) only depend onj. Put differently, the signalsSt are deterministic functions of the actionsJt;
we thus denote byh : J → H the function such thatSt = h(Jt) for all t and extend it linearly to∆(J ).
The condition stated above takes the following simpler form(we assume with no loss of generality that all
elements inH are associated with at least one actionj ∈ J , so thatF can be identified withH):

∀σ ∈ ∆(H), ∃p ∈ ∆(I), m(p, σ) ⊆ C , (4)

where
m(p, σ) =

{
r(p, q′) : q

′ ∈ ∆(J ) such thath(q′) = σ
}
.

The fact thatp andσ are unrelated in the definition above entails thatm is linear, i.e., that for allp ∈ ∆(I)
andσ ∈ ∆(H),

m(p, σ) =
∑

i∈I

∑

s∈H

pi σs m(i, s) .

In addition,m is also bounded in norm byR. Therefore, we are exactly in the setting of Section 3.

Theorem 9 A closed convexC is r–approachable for the signaling structureh if and only if (4) holds. In this
case, there exists an explicit strategy to do so, at the following rate: for allT , with probability at least1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6
2R√
T

√
NINH

(
1 + 2

√
ln(2/δ)

)
.

Proof: We need only to show that the stated condition entails approachability. Since by definition ofm and
because of the particular signaling structureh,

1

T

T∑

t=1

r(It, Jt) ∈ 1

T

T∑

t=1

m(It, St) ,

it is enough to show thatC is m–approachable (when the signalsSt are observed, which is the case). But
Theorem 7 indicates that this is the case when (4) holds.

The efficiency of the obtained strategy depends on the respective geometries ofm andC, as was indicated
before the statement of Theorem 7.

4.2 Approachability with general signaling structures

In this section we consider the case where the signal structure is general. We start from a technical lemma
that is needed to show thatm(p, σ) can be written as afiniteconvex combination of sets of the formm(i, b).
We then describe a (possibly) efficient strategy for approachability followed by convergence rate guarantees.

4.2.1 A preliminary technical result.
With general signaling structures,m is not linear, it only satisfies that for allp ∈ ∆(I), all pairsσ, σ′ ∈ F ,
and allα ∈ [0, 1],

αm(p, σ) + (1− α)m(p, σ′) ⊆ m(p, ασ + (1− α)σ′) ,

with a strict inclusion in general. (Specific examples can beprovided.) Therefore, a direct appeal to Theo-
rem 7 is not possible anymore.

However, a similar linearity property on a lifted finite set is given by the geometric lemma stated below.
It follows from an application of Rambau and Ziegler (1996, Proposition 2.4), which entails that sincẽH is
linear on the polytope∆(J ), its inverse applicatioñH−1 is a piecewise linear mapping ofF into the subsets
of ∆(J ); the detailed proof can be found in Appendix A.2.

Lemma 10 There exist a finite subsetB ⊆ F and a mappingΦ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑

i∈I

∑

b∈B

pi Φb(σ)m(i, b) ,

where we denoted the convex weight vectorΦ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B

.

Definition 11 We denote bym the linear extension to∆(I × B) of the restriction ofm to I × B, so that for
all p ∈ ∆(I) andσ ∈ F ,

m(p, σ) = m
(
p, Φ(σ)

)
.

Remark 1 The proof shows thatΦ is piecewise linear on a finite decomposition ofF ; it is therefore Lipschitz
onF . We denote byκΦ its Lipschitz constant with respect to theℓ2–norm.
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Parameters: an integer block lengthL > 1, an exploration parameterγ ∈ [0, 1], a strategyΨ for m–approachability ofC
Notation: u ∈ ∆(I) is the uniform distribution overI, PF denotes the projection operator inℓ2–norm ofRH×I ontoF
Initialization: compute the finite setB and the mappingΦ : F → ∆(B) of Lemma 10, pick an arbitraryx1 ∈ ∆(I)

For all blocksn = 1, 2, . . .,

1. definepn = (1− γ)xn + γ u;

2. for roundst = (n− 1)L+ 1, . . . , nL,

2.1 drawn an actionIt ∈ I at random according topn;
2.2 get the signalSt;

3. form the estimated vector of probability distributions over signals,

σ̃n =



 1

L

nL∑

t=(n−1)L+1

I{St=s}I{It=i}

pIt,n





(i,s)∈I×H

;

4. compute the projection̂σn = PF

(
σ̃n

)
;

5. choosexn+1 = Ψ
(
x1, Φ

(
σ̂1

)
, . . . , xn, Φ

(
σ̂n

))
.

Figure 1: The proposed strategy, which plays in blocks.

4.2.2 Construction of a strategy to approachC.
The approaching strategy for the original problem is based on a strategyΨ for m–approachability ofC,
provided by Theorem 7 and thus solving repeatedly minimax problems of the form (1). We therefore first
need to prove the existence of such aΨ.

Lemma 12 Under Condition 1, the closed convex setC is approachable.

Proof: We show that Condition (RAC) in Theorem 7 is satisfied, that is, that for ally ∈ ∆(B), there exists a
p ∈ ∆(I) such thatm(p,y) ⊆ C. By linearity ofm (for the following equality) and by definition ofm (for
the following inclusion),

m(p,y) =
∑

b∈B

yb m(p, b) ⊆ m

(
p,
∑

b∈B

yb b

)
.

The existence of the desiredp is therefore ensured by Condition 1, applied withσ =
∑

b∈B yb b.

We consider the strategy described in Figure 1. It forces exploration at aγ rate, as is usual in situations
with partial monitoring. One of its key ingredient, that conditionally unbiased estimators are available, is
extracted from Lugosi et al. (2008, Section 6): in blockn we consider

Ĥt =
I{St=s}I{It=i}

pIt,n
∈ R

H×I ;

averaging over the respective random draws ofIt andSt according topn andH(It, Jt), i.e., taking the
conditional expectationEt with respect topn andJt, we get

Et

[
Ĥt

]
= H̃

(
δJt

)
. (5)

This is why, by concentration-of-the-measure argument, wewill be able to show that forL large enough,̃σn

is close toH̃
(
q̂n

)
, where

q̂n =
1

L

nL∑

t=(n−1)L+1

δJt
. (6)

Actually, sinceF ⊆ ∆(H)I , we have a natural embedding ofF into R
H×I and we can definePF , the

convex projection operator ontoF (in ℓ2–norm). Instead of using directlỹσn, we consider in our strategy
σ̂n = PF

(
σ̃n

)
, which is even closer toH

(
q̂n

)
.
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4.2.3 Performance guarantee.
We provide a performance bound for fixed parametersγ andL tuned as functions ofT . The proof is provided
in Appendix A.3. Adaptation toT → ∞ can be performed either by resorting to a standard doubling trick
(see, e.g., Cesa-Bianchi and Lugosi 2006, page 17) or by taking time-varying parametersγt andLt.

Theorem 13 Under the assumptions of Lemma 12, consider the strategy of Figure 1, run with parameters
γ ∈ [0, 1] andL > 1 and fed with a strategyΨ for m–approachability ofC, provided by the indicated lemma.
Then, for all roundsT > L+ 1 and with probability at least1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6
2L

T
R + 4R

√
ln
(
(2T )/(Lδ)

)

T
+ 2γR+

2R√
T/L− 1

√
NINB

+RκΦNH

√
NI

(√
2NI

γL
ln

2NINHT

Lδ
+

1

3

NI

γL
ln

2NINHT

Lδ

)
.

In particular, for all T > 1, the choices ofL =
⌈
T 3/5

⌉
andγ = T−1/5 imply that with probability at least

1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant� depending only onC and on the game(r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an efficient approach-
ability strategyΨ, which in turn depends on the respective geometries ofm andC, as was indicated before
the statement of Theorem 7. (Note that the projection ontoF can be performed in polynomial time, as the
latter closed convex set is defined by finitely many linear constraints, and that the computation ofm can be
performed beforehand.)

5 Application to regret minimization

In this section we analyze external and internal regret minimization in repeated games with partial monitor-
ing from the approachability perspective. Using the results developed for vector-valued games with partial
monitoring, we show how to—in particular—minimize regret in both setups.

5.1 External regret

We consider in this section the framework and aim introducedby Rustichini (1999) and studied, sometimes
in special cases, by Piccolboni and Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al.
(2006), Lugosi et al. (2008). We show that our general strategy can be used for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player: the payoff functionr is a mapping
I × J → R; we still denote byR a bound on|r|. We define in this section

q̂T =
1

T

T∑

t=1

δJT

as the empirical distribution of the actions taken by the second player. The external regret of the first player
at roundT equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T

))
− 1

T

T∑

t=1

r(It, Jt) ,

whereρ : ∆(I)×F is defined as follows: for allp ∈ ∆(I) andσ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such thatH̃(q) = σ

}
.

The functionρ is continuous in its first argument and therefore the supremum in the defining expression of
Rext

T is a maximum.
We recall briefly why, intuitively, this is the natural notion of external regret to consider in this case.

Indeed, the first term in the definition ofRext
T is (close to) the worst-case average payoff obtained by the first

player when playing consistently a mixed actionp against a sequence of mixed actions inducing the same
laws on the signals.
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The following result is an easy consequence of Theorem 13, asis explained below; it corresponds to the
main result of Lugosi et al. (2008), with the same convergence rate but with a different strategy. (However,
Perchet 2011b, Section 2.3 exhibited an efficient strategy achieving a convergence rate of orderT−1/3, which
is optimal; a question is thus whether the rates exhibited inTheorem 13 could be improved.)

Corollary 14 For all T , the first player has a strategy such that, for all strategiesof the second player and
with probability at least1− δ,

Rext
T 6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant� depending only on the game(r, H) at hand.

The proof below is an extension to the setting of partial monitoring of the original proof and strategy
of Blackwell (1956b) for the case of external regret under full monitoring: in the case of full monitoring the
vector-payoff functionr and the setC considered in our proof are equal to the ones considered by Blackwell.

Proof: As usual, we embed∆(J ) into R
J so that in this proof we will be working in the vector space

R× R
J . We consider the convex setC and the vector-valued payoff functionr respectively defined by

C =

{
(z, q) ∈ R×∆(J ) : z > max

p∈∆(I)
ρ
(
p, H̃(q)

)}
and r(i, j) =

[
r(i, j)
δj

]
,

for all (i, j) ∈ I × J . We now show thatC is r–approachable forH , i.e., by the results of Section 4, that
Condition 1 is satisfied. To do so, we associate with eachq ∈ ∆(J ) an elementφ(q) ∈ ∆(I) such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given anyq ∈ ∆(J ), we note that for allq′ satisfyingH̃(q′) = H̃(q), we have, by definition ofρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,

which shows thatr
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

To exhibit the convergence rates, we use the fact that the mapping

q ∈ ∆(J ) 7−→ max
p∈∆(I)

ρ
(
p, H̃(q)

)

is Lipschitz, with Lipschitz constant inℓ2–norm denoted byLρ; this fact is proved below. Now, the regret is
non positive as soons as

∑T
t=1 r(It, Jt)/T belongs toC; we therefore only need to consider the case when

this average is not inC. In the latter case, we denote by(r̃T , q̃T ) its projection inℓ2–norm ontoC. We have
first that the defining inequality ofC is an equality on its border, so that

r̃T = max
p∈∆(I)

ρ
(
p, H̃

(
q̃T

))
;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T

))
− 1

T

T∑

t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T

))
− max

p∈∆(I)
ρ
(
p, H̃

(
q̃T

))∣∣∣∣+
∣∣∣∣∣ r̃T − 1

T

T∑

t=1

r(It, Jt)

∣∣∣∣∣

6 Lρ

wwq̂T − q̃T

ww
2
+

∣∣∣∣∣ r̃T − 1

T

T∑

t=1

r(It, Jt)

∣∣∣∣∣

6
√
2 max

{
Lρ, 1

}
wwwww

[
r̃T
q̃T

]
− 1

T

T∑

t=1

r(It, Jt)

wwwww
2

=
√
2 max

{
Lρ, 1

}
inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

.

11



The rates follow from the ones indicated in Theorem 13.
It only remains to prove the indicated Lipschitzness. (All Lipschitzness statements that follow will be

with respect to theℓ2–norm.) We prove thatLρ = RκΦ

√
NINJNB. On the one hand, for everyi ∈ I, the

mappingsq ∈ ∆(J ) 7→ H(i, q) are
√
NJ –Lipschitz as the‖H(i, j)‖2 are bounded by 1 for allj. Thus, the

mappingq ∈ ∆(J ) 7→ H̃(q) is
√
NINJ –Lipschitz. On the other hand, we have by definition that for all

p ∈ ∆(I) andσ ∈ F ,
ρ(p, σ) = min m

(
p,Φ(σ)

)
,

and that (by Remark 1) the mappingσ ∈ F 7→ Φ(σ) is κΦ–Lipschitz; this entails, by Lemma 6, that for all
p ∈ ∆(I), the mappingσ ∈ F 7→ ρ(p, σ) is R

√
NB κΦ–Lipschitz. In particular, since the latter Lipschitz

constant is independent ofp, the mappingσ ∈ F 7→ maxp∈∆(I) ρ(p, σ) is R
√
NB κΦ–Lipschitz as well.

Combining the two Lipschitz mappings yields yet another Lipschitz mapping, whose Lipschitz constant is
the product of the Lipschitz constants of the base two mappings.

5.2 Internal / swap regret

Foster and Vohra (1999) defined internal regret with full monitoring as follows. A player has no internal
regret if, for every actioni ∈ I, he has no external regret on the stages when this specific action i was played.
In other words,i is the best response to the empirical distribution of actionof the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in some pessimistic way through the function
ρ defined above. This function is not linear over∆(I) in general (it is concave), so that the best responses
are not necessarily pure actionsi ∈ I but mixed actions, i.e., elements of∆(I). Following Lehrer and Solan
(2007) we therefore should partition the stages not depending on the pure actions actually played but on the
mixed actionspt ∈ ∆(I) used to draw them. To this end, it is convenient to assume thatthe strategies of
the first player need to pick these mixed actions in a finite (but possibly thin) grid of∆(I), which we denote
by
{
pg, g ∈ G

}
, whereG is a finite set. At each round, the first player picks an indexGt ∈ G and uses

the distributionpGt
to draw his actionIt. Up to a standard concentration-of-the-measure argument,we will

measure the payoff at roundt with r
(
pGt

, Jt
)

rather than withr(It, Jt).
For eachg ∈ G, we denote byNT (g) the number of stages in{1, . . . , T } for which we hadGt = g and,

wheneverNT (g) > 0,

q̂T,g =
1

NT (g)

∑

t:Gt=g

δJt
.

We defineq̂T,g is an arbitrary way whenNT (g) = 0. The internal regret of the first player at roundT is
measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Actually, our proof technique rather leads to the minimization of some swap regret (see Blum and Mansour,
2007 for the definition of swap regret in full monitoring):

Rswap
T =

∑

g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Again, the following bound on the swap regret easily followsfrom Theorem 13; the latter constructs a
simple and direct strategy to control the swap regret, thus also the internal regret. It therefore improves on
the results of Lehrer and Solan (2007), Perchet (2009), two articles which presented complicated strategies
to do so (strategies based on auxiliary strategies using a grid that needs to be refined over time and whose
complexities is exponential in the size of these grids). Moreover, we provide convergence rates.

Corollary 15 For all T , the first player has an explicit strategy such that, for all strategies of the second
player and with probability at least1− δ,

Rswap
T 6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant� depending only on the game(r, H) at hand and on the size of the finite gridG.

The proof of this corollary is based on ideas similar to the ones used in the proof of Corollary 14; it is
deferred to Appendix A.4.
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A Appendix beyond the COLT page limit

An conference version of this paper was published in theProceedings of the Twenty-Fourth Annual Con-
ference on Learning Theory(COLT’11); this appendix details some material which was alluded at in this
conference version but could not be published therein because of the page limit.

A.1 Proof of Condition 1 being necessary for approachability

When Condition 1 is not satisfied, there exists a vectorσ0 ∈ F such that for allp ∈ ∆(I), there exists a
φ(p) ∈ ∆(J ) such thatH̃

(
φ(p)

)
= σ0 andr

(
p, φ(p)

)
6∈ C. We denote bỹH−1(σ0) the set of allq such

thatH̃(q) = σ0. We will consider a small subclass of the possible strategies of the second player: only those
which prescribe him to play at each round the same element ofH̃−1(σ0). We will show that for all strategies
of the first player, there exists a strategy of the second player of the form mentioned above such that, with
somepositiveprobability,

lim sup
T→∞

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

> 0 . (7)

We first note that by concentration of the measure (by the Hoeffding-Azuma inequality and the Borel-
Cantelli lemma), ifq ∈ H̃−1(σ0) is the element repeatedly played by the second player,

lim
T→∞

wwwww
1

T

T∑

t=1

r(It, q)−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

= 0 a.s. (8)

Now, all considered strategies of the second player are indistinguishable to the first player, since they all
induce the same vectorσ0 of probability distributions over signals. Therefore, thelaw of

p̂T =
1

T

T∑

t=1

δIt

only depends onT andσ0 (and on the strategy of the first player). We denote bypT the common expectation
of the p̂T as theq vary in H̃−1(σ0); the expectation has to be understood with respect to the auxiliary
randomizations taken (to draw the pure actions from the mixed actionspt andq and to draw the signals).

We denote bydC the Euclidian distance to the closed convex setC; it is a continuous and convex function
(see Boyd and Vandenberghe 2004, Example 3.16). In particular, it is bounded on the set of all feasible payoff
vectorsr(p, q), asp andq vary. By the dominated convergence theorem and in view of (8), to prove (7) it
thus suffices to show that for all strategies of the first player, there exists a strategy of the second player in
H̃−1(σ0) such that

lim sup
T→∞

E

[
inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, q)

wwwww
2

]
= lim sup

T→∞
E

[
dC

(
r
(
p̂T , q

))]
> 0 .

By Jensen’s inequality,

E

[
dC

(
r
(
p̂T , q

))]
> dC

(
E

[
r
(
p̂T , q

)])
= dC

(
r
(
pT , q

))
.

By the Bolzano-Weierstrass property, for all strategies ofthe first player, the sequence of thepT has values
in the compact space∆(I); thus, it admits a converging subsequence, which we denote by pϕ(T ) and whose
limit point we denote byp∞. (This limit point depends solely on the strategy of the firstplayer and onσ0.)
By consideringq = φ

(
p∞

)
and putting the pieces together, we get that

lim sup
T→∞

E

[
dC

(
r
(
p̂T , q

))]
> lim sup

T→∞
dC

(
r
(
pϕ(T ), q

))
= dC

(
r
(
p∞, φ

(
p∞

)))
> 0 ,

since by definition ofφ, the vectorr
(
p∞, φ(p∞)

)
is not in the closed convex setC.

A.2 Proof of Lemma 10

Proof: Rambau and Ziegler (1996, Proposition 2.4) state that sinceH̃ is linear on the polytope∆(J ), its
inverse applicatioñH−1 is a piecewise linear mapping ofF into the subsets of∆(J ), which means that
there exists a finite decomposition ofF into polytopes{P1, . . . , PK} each on whichH̃−1 is linear. Up to a

14



triangulation (see, e.g. Goodman and O’Rourke 2004, Chapter 14), we can assume that eachPk is a simplex.
Denote byBk ⊆ F the set of vertices ofPk; then, the finite subset stated in the lemma is

B =

K⋃

k=1

Bk ,

the set of all vertices of all the simplices.
Fix any σ ∈ F . It belongs to some simplexPk, so that there exists a convex decompositionσ =∑

b∈Bk
λb b; this decomposition is unique within the simplexPk. If σ belongs to two different simplices, then

it actually belongs to their common face and the two possibledecompositions coincide (some coefficientsλb

in the above decomposition are null). All in all, with eachσ ∈ F , we can associate a unique decomposition
in B,

σ =
∑

b∈B

Φb(σ) b ,

where the coefficients
(
Φb(σ)

)
b∈B

form a convex weight vector overB, i.e., belong to∆(B); in addition,
Φb(σ) > 0 only if b ∈ Bk, wherek is such thatσ ∈ Pk.

SinceH̃−1 is linear on each simplexP1, . . . , PK , we therefore get

H̃−1(σ) =
∑

b∈B

Φb(σ) H̃
−1(b) .

Finally, the result is a consequence of the fact that

m(p, σ) = r
(
p, H̃−1(σ)

)
= r

(
p,
∑

b∈B

Φb(σ) H̃
−1(b)

)
,

which implies, by linearity ofr, that

m(p, σ) =
∑

b∈B

Φb(σ) r
(
p, H̃−1(b)

)
=
∑

b∈B

Φb(σ)m(p, b) .

The proof is concluded by noting that by definition, for allσ ∈ F , the applicationsp ∈ ∆(I) 7→ m(p, σ) are
linear.

A.3 Proof of Theorem 13

Proof: We writeT asT = NL + k whereN is an integer and0 6 k 6 L − 1 and will show successively
that (possibly with overwhelming probability only) the following statements hold.

1

T

T∑

t=1

r(It, Jt) is close to
1

NL

NL∑

t=1

r(It, Jt) ; (9)

1

NL

NL∑

t=1

r(It, Jt) is close to
1

N

N∑

n=1

r
(
pn, q̂n

)
; (10)

1

N

N∑

n=1

r
(
pn, q̂n

)
is close to

1

N

N∑

n=1

r
(
xn, q̂n

)
; (11)

1

N

N∑

n=1

r
(
xn, q̂n

)
belongs to the set

1

N

N∑

n=1

m
(
xn, H̃

(
q̂n

))
;

1

N

N∑

n=1

m
(
xn, H̃

(
q̂n

))
is equal to the set

1

N

N∑

n=1

m

(
xn, Φ

(
H̃
(
q̂n

)))
;

1

N

N∑

n=1

m

(
xn, Φ

(
H̃
(
q̂n

)))
is close to the set

1

N

N∑

n=1

m
(
xn, Φ

(
σ̂n

))
; (12)

1

N

N∑

n=1

m
(
xn, Φ

(
σ̂n

))
is close to the set C ; (13)
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where we recall that the notation̂qn was defined in (6). Actually, we will show below the numbered state-
ments only; the first unnumbered statement is immediate by the very definition ofm and the second one
follows from Definition 11.

Step 1: the term (9). A direct calculation decomposing the sum overT elements into a sum over the
NL first elements and thek remaining ones shows that

wwwww
1

T

T∑

t=1

r(It, Jt)−
1

NL

NL∑

t=1

r(It, Jt)

wwwww
2

6 R

(
k

T
+

(
1

NL
− 1

T

)
NL

)
=

2k

T
R 6

2L

T
R .

Step 2: the term (10). We note that by definingEt the conditional expectation with respect to
(I1, S1, J1), . . ., (It−1, St−1, Jt−1) andJt, which fixes the values of the lawp′

t of It and the value ofJt, we
have

Et

[
r(It, Jt)

]
= r(p′

t, Jt) .

We note that by definition of the forecaster,p
′
t = pn if t belongs to then–th block. By a version of the

Hoeffding-Azuma inequality for sums of Hilbert space-valued martingale differences proved in3 Chen and
White (1996, Lemma 3.2), we therefore get that with probability at least1− δ,

wwwww
1

NL

NL∑

t=1

r(It, Jt)−
1

N

N∑

n=1

r
(
pn, q̂n

)
wwwww

2

6 4R

√
ln(2/δ)

T
.

Step 3: the term(11). Since by definitionpn = (1− γ)xn + γ u, we get
wwwww

1

N

N∑

n=1

r
(
pn, q̂n

)
− 1

N

N∑

n=1

r
(
xn, q̂n

)
wwwww

2

6 2γR .

Step 4: the term (12). We fix a given blockn. It can be extracted from Lugosi et al. (2008, proof of
Theorem 6.1) that with probability1− δ,

wwwσ̂n − H̃
(
q̂n

)www
2
6
√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
. (14)

(For the sake of completeness this extracted statement is however proved again in Appendix B.2 below.)
SinceΦ is Lipschitz (see Remark 1), with Lipschitz constant inℓ2–norm denoted byκΦ, we get that with
probability1− δ,

wwwΦ
(
σ̂n

)
− Φ

(
H̃
(
q̂n

))www
2
6 κΦ

√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
.

By a union bound, the above bound holds for all blocksn = 1, . . . , N with probability at least1 − Nδ.
Finally, an application of Lemma 6 shows that

1

N

N∑

n=1

m

(
xn, Φ

(
H̃
(
q̂n

)))
is in aεT–neighborhood (inℓ2–norm) of

1

N

N∑

n=1

m
(
xn, Φ

(
σ̂n

))
,

where

εT = R
√
NH × κΦ

√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
.

Step 5: the term(13). SinceC ism–approachable and by definition of the choices of thexn in Figure 1,
we get by Theorem 7, with probability 1,

inf
c∈C

wwwwwc−
1

N

N∑

n=1

m
(
xn, Φ

(
σ̂n

))
wwwww

2

6
2R√
N

√
NINB 6

2R√
T/L− 1

√
NINB ,

sinceT/L 6 N + k/L 6 N + 1.
The proof is concluded by putting the pieces together, thanks to a triangle inequality, by noting that

T/L 6 N + 1, and by consideringLδ/T 6 δ/(N + 1) instead ofδ.

3We use the fact that
√
u e−u

6 e−u/2 for all u > 0.
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A.4 Proof of Corollary 15

We provide here the existence proof of strategies minimizing the swap regret. The proof follows the same
lines as the one of Corollary 14.

Proof: In this proof we will be working in the vector space
(
R × R

J
)G

. We first extend linearlyr from
∆(I) × ∆(J ) to ∆(I) × R

J
+ and extend also continuously (but not linearly)ρ : G × ∆(J ) → R into a

mappingζ : G × R
J
+ → R as follows: for allg ∈ G andv ∈ R

J
+ ,

ζ(pg,v) =





0 if ‖v‖1 = 0,

‖v‖1 ρ

(
pg, H̃

(
v

‖v‖1

))
if ‖v‖1 > 0.

The convex setC and the vector-valued payoff functionr are then respectively defined by

C =

{
(zg,vg) ∈

(
R× R

J
+

)G
: ∀ g ∈ G, zg > max

g′∈G
ζ
(
pg′ ,vg

)}

and, for all(g, j) ∈ G × J ,

r(g, j) =

[
r
(
pg, j

)
I{g′=g}

δj I{g′=g}

]

g′∈G

.

To show thatC is r–approachable, we associate with eachq ∈ ∆(J ) an elementg⋆(q) ∈ G such that

g⋆(q) ∈ argmax
g∈G

ρ
(
pg, H̃(q)

)
.

Then, given anyq ∈ ∆(J ), we note that for allq′ satisfyingH̃(q′) = H̃(q), the components of the vector
r
(
g⋆(q), q′

)
are all null but the ones corresponding tog⋆(q), for which we have

max
g′∈G

ζ
(
pg′ , q′

)
= max

g′∈G
ρ
(
pg′ , H̃

(
q
′
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q
))

= ρ
(
pg⋆(q), H̃

(
q
))

6 r
(
pg⋆(q), q

′
)
,

where the last line is by definition ofρ. Therefore,r
(
g⋆(q), q′

)
∈ C. The required condition in Lemma 12

and Theorem 13 is thus satisfied, hence the desired approachability.

We now exhibit the convergence rates. As in the proof of Corollary 14, we need only to consider the
case where

∑T
t=1 r(It, Jt)/T is not in C, for otherwise, the swap regret is non positive. We denote by

(r̃T,g , ṽT,g)g∈G the projection inℓ2–norm of
∑T

t=1 r(It, Jt)/T ontoC, and byv̂T,g =
(
NT (g)/T

)
q̂T,g the

realized frequency of playing eachg ∈ G. Since the projection lies on the border ofC, we have that for all
g ∈ G,

r̃T,g = max
g′∈G

ζ
(
pg′ , ṽT,g

)
.

We will prove below that
v ∈ R

J
+ 7−→ max

g∈G
ζ
(
pg,v

)

isLζ–Lipschitz, for some constantLζ > 0. Then, as for the external regret,

R
swap
T =

∑

g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))

=
∑

g∈G

(
max
g′∈G

ζ
(
pg′ , v̂T,g

)
− r
(
pg, v̂T,g

))

6
∑

g∈G

(∣∣∣∣max
g′∈G

ζ
(
pg′ , v̂T,g

)
−max

g′∈G
ζ
(
pg′ , ṽT,g

)∣∣∣∣+
∣∣ r̃T,g − r

(
pg, v̂T,g

)∣∣
)

6
∑

g∈G

(
Lζ

wwv̂T,g − ṽT,g

ww
2
+
∣∣ r̃T,g − r

(
pg, v̂T,g

)∣∣
)

6
√
2NG max

{
Lζ, 1

}
wwwww

[
r̃T,g

ṽT,g

]

g∈G

− 1

T

T∑

t=1

r(It, Jt)

wwwww
2

=
√
2NG max

{
Lζ, 1

}
inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

,
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where we denoted byNG the cardinality ofG. Resorting to the convergence rate stated in Theorem 13
concludes the proof, up to the stated Lipschitzness ofζ, which we now prove.

It suffices to show that for all fixed elementsp ∈ ∆(I), the functionsv ∈ R
J
+ 7→ ζ(p,v) are Lipschitz,

with a Lipschitz constant that is independent ofp.
Consider two elementsv, v′ ∈ R

J
+ . If ‖v′‖ = 0 and‖v‖1 > 0, then

∣∣ζ(p,v)− ζ(p,v′)
∣∣ =

∣∣ζ(p,v)
∣∣ = ‖v‖1

∣∣∣∣∣ ρ
(
p, H̃

(
v

‖v‖1

))∣∣∣∣∣ 6 R ‖v‖1 = R ‖v − v
′‖1 .

In the case where bothv andv′ are non zero,

ζ(p,v)− ζ(p,v′)

= ‖v‖1 ρ
(
p, H̃

(
v

‖v‖1

))
− ‖v′‖1 ρ

(
p, H̃

(
v
′

‖v′‖1

))

= ‖v‖1

[
ρ

(
p, H̃

(
v

‖v‖1

))
− ρ

(
p, H̃

(
v
′

‖v′‖1

))]
+
(
‖v‖1 − ‖v′‖1

)
ρ

(
p, H̃

(
v
′

‖v′‖1

))
.

Therefore, by using the Lipschitzness proved at the end of the proof of Corollary 14, by two applications of
the triangle inequality, and by noting that‖ · ‖2 6 ‖ · ‖1 6

√
NJ ‖ · ‖2, we get

∣∣ζ(p,v)− ζ(p,v′)
∣∣ 6 ‖v‖1 Lρ

wwww
v

‖v‖1
− v

′

‖v′‖1

wwww
2

+ ‖v − v
′‖1 R

6 Lρ

wwwwv − v
′ +

(
1− ‖v‖1

‖v′‖1

)
v
′

wwww
2

+R
√
NJ ‖v − v

′‖2

6

(
Lρ +R

√
NJ

)
‖v − v

′‖2 + Lρ

∣∣∣∣1−
‖v‖1
‖v′‖1

∣∣∣∣ ‖v
′‖2

6

(
Lρ +R

√
NJ

)
‖v − v

′‖2 + Lρ

∣∣∣‖v′‖1 − ‖v‖1
∣∣∣
‖v′‖2
‖v′‖1

6

(
Lρ +R

√
NJ

)
‖v − v

′‖2 + Lρ ‖v − v
′‖1

6

(
Lρ + (R + Lρ)

√
NJ

)
‖v − v

′‖2 .

We therefore proved the required Lipschitzness, with constantLζ = Lρ + (R + Lρ)
√
NJ .
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B Proofs of results extracted from other works

The proofs below reproduce arguments that were published elsewhere; we rewrite them with our notation
only for the convenience of the readers and to make this paperfully self-contained.

B.1 Proof of the basic approachability results

This material is standard and can be found, e.g., in Cesa-Bianchi and Lugosi (2006, Section 7.7 and Exer-
cise 7.23).

Proof: (of Theorem 3) Sincect is the projection ofm̂t on the closed convex setC with respect to the
ℓ2–norm, the following geometric property is satisfied:

∀ c ∈ C, 〈m̂t − ct, c− ct〉 6 0 .

By assumption, for everyy ∈ ∆(B), there existsx ∈ ∆(A) such thatm(x,y) ∈ C; therefore, the above-
stated geometric property implies that

max
y∈∆(B)

min
x∈∆(A)

〈m̂t − ct, m(x,y)− ct〉 6 0 .

By von Neumann’s minimax theorem,

max
y∈∆(B)

min
x∈∆(A)

〈m̂t − ct, m(x,y)− ct〉 = min
x∈∆(A)

max
y∈∆(B)

〈m̂t − ct, m(x,y)− ct〉 6 0 .

In view of the defining minimax choice ofxt+1 ∈ ∆(A), the above inequality yields that for allzt+1 ∈
∆(B),

〈m̂t − ct, m(xt+1, zt+1)− ct〉 6 0 . (15)

In the rest of the proof, we choosezt+1 to be eitheryt+1 or δBt+1
, depending on whether mixed or pure

actions are taken and observed; in particular, we have the rewriting

m̂t =
1

t

t∑

τ=1

m(xτ , zτ ) .

Straightforward calculation show that

m̂t+1 =
1

t+ 1

t+1∑

τ=1

m(xτ , zτ )

=
1

t+ 1
m(xt+1, zt+1) +

1

t

t∑

τ=1

m(xτ , zτ )−
1

t(t+ 1)

t∑

τ=1

m(xτ , zτ )

= m̂t +
1

t+ 1

(
m(xt+1, zt+1)− m̂t

)
.

Denote by
dt = inf

c∈C
‖c− m̂t‖2 = ‖ct − m̂t‖2

theℓ2–distance of̂mt to C. Now, for all t > 1,

d2t+1 6 ‖ct − m̂t+1‖22 =

wwww
(
ct − m̂t

)
+

1

t+ 1

(
m̂t −m(xt+1, zt+1)

)wwww
2

2

= ‖ct − m̂t‖22 +
2

t+ 1
〈m̂t − ct,m(xt+1, zt+1)− m̂t〉

+

wwm̂t −m(xt+1, zt+1)
ww2

2

(t+ 1)2

=

(
1− 2

t+ 1

)
‖ct − m̂t‖22︸ ︷︷ ︸

= d2
t

+
2

t+ 1
〈m̂t − ct,m(xt+1, zt+1)− ct〉︸ ︷︷ ︸

60 by (15)

+

wwm̂t −m(xt+1, zt+1)
ww2

2

(t+ 1)2
.
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By the triangle inequality, wwm̂t −m(xt+1, zt+1)
ww2

2
6 4M2 ;

thus, we proved that

d2t+1 6

(
1− 2

t+ 1

)
d2t +

4M2

t+ 1
.

Since (
1− 2

t+ 1

)
1

t
+

1

(t+ 1)2
=

(t+ 1)2 − 2(t+ 1) + t

t(t+ 1)2
=

t2 − 1 + t

t(t+ 1)2
6

1

t+ 1
,

a simple induction argument yields thatd2T 6 4M2/T for all T > 1; which concludes the proof in the case
of mixed actions taken and observed.

In the case of pure actions taken and observed, we need an additional concentration argument. We denote
byEt the conditional expectation at roundt with respect toBt and thexs, As, Bs, where1 6 s 6 t− 1; we
have

Et

[
m(At, Bt)

]
= m(xt, Bt) = m(xt, zt) .

In addition, the quantitiesm(xt, zt) − m(At, Bt) are bounded in norm by2M . By the version of the
Hoeffding-Azuma inequality for sums of Hilbert space-valued martingale differences already used in the
proof of Theorem 13, we therefore have that for allT > 1, with probability at least1− δ,

wwwww
1

T

T∑

t=1

m(At, Bt)−
1

T

T∑

t=1

m(xt, zt)

wwwww
2

6 4M

√
ln(2/δ)

T
,

which, combined with the deterministic bound ondT , entails, still with probability at least1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m(At, Bt)

wwwww
2

6
2M√
T

(
1 + 2

√
ln(2/δ)

)
.

This concludes the proof.

B.2 Proof of a concentration argument

We re-prove here the inequality (14), that is directly extracted from Lugosi et al. (2008, Section 6). Again,
this is only for the sake of self-containment.

Proof: For all(i, j) ∈ I ×J , the quantityH(i, j) is a probability distribution overH; we denote byHs(i, j)
the probability mass that it puts on some elements ∈ H.

We consider a fixed blockn. Equation (5) indicates that for each pair(i, s) ∈ I ×H,

nL∑

t=(n−1)L+1

(
I{St=s}I{It=i}

pIt,n
−Hs(i, Jt)

)

is a sum ofL elements of a martingale difference sequence. The conditional variances of the increments are
bounded by

Et

[(
I{St=s}I{It=i}

pIt,n

)2]
6

1

p2i,n
Et

[
I{It=i}

]
=

1

pi,n
;

since by definition of the strategy,pn = (1− γ)xn + γ u, we have thatpi,n > γ/NI , which shows that the
sum of the conditional variances is bounded by

nL∑

t=(n−1)L+1

Vart

(
I{St=s}I{It=i}

pIt,n

)
6

LNI

γ
.

The Bernstein-Freedman inequality (see Freedman 1975 or Cesa-Bianchi et al. 2006, Lemma A.1) therefore
indicates that with probability at least1− δ,

∣∣∣∣∣
1

L

nL∑

t=(n−1)L+1

I{St=s}I{It=i}

pIt,n
− 1

L

nL∑

t=(n−1)L+1

Hs(i, Jt)

︸ ︷︷ ︸
= Hs(i, q̂n

) by (6)

∣∣∣∣∣ 6
√
2
NI

γL
ln

2

δ
+

1

3

NI

γL
ln

2

δ
.
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Therefore, by summing the above inequalities overi ∈ I ands ∈ H, we get (after a union bound) that with
probability at least1−NINHδ,

wwwσ̃n − H̃
(
q̂n

)www
2
6
√
NINH

(√
2NI

γL
ln

2

δ
+

1

3

NI

γL
ln

2

δ

)
.

Finally, sincêσn is the projection in theℓ2–norm ofσ̃n onto the convex setF , to whichH̃
(
q̂n

)
belongs, we

have that wwwσ̂n − H̃
(
q̂n

)www
2
6

wwwσ̃n − H̃
(
q̂n

)www
2
,

and this concludes the proof.
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