
HAL Id: hal-00595637
https://hal.science/hal-00595637v1

Submitted on 25 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of Time in Discrete-Event Simulation of
Systems-on-Chip

Giovanni Funchal, Matthieu Moy

To cite this version:
Giovanni Funchal, Matthieu Moy. Modeling of Time in Discrete-Event Simulation of Systems-on-Chip.
MEMOCODE, Jul 2011, Cambridge, United Kingdom. �hal-00595637�

https://hal.science/hal-00595637v1
https://hal.archives-ouvertes.fr


Modeling of Time in Discrete-Event Simulation of Systems-on-Chip

Giovanni Funchal∗,† Matthieu Moy†

∗STMicroelectronics
12, rue Jules Horowitz
38019 Grenoble, France
first.last@st.com

†Verimag UMR 5104
Grenoble, F-38041, France
first.last@imag.fr

Abstract—Today’s consumer electronics industry
uses modeling and simulation to cope with the com-
plexity and time-to-market challenges of designing
high-tech devices. In such context, Transaction-Level
Modeling (TLM) is a widely spread modeling ap-
proach often used in conjunction with the IEEE
standard SystemC discrete-event simulator.

In this paper, we present a novel approach to mod-
eling time that distinguishes between instantaneous
actions and tasks with a duration. We argue that this
distinction should be natural to the user. In addition,
we show that it gives us important insight and better
comprehension of what actions can overlap in time.
We are able to exploit this distinction to parallelize
the simulation, achieving an important speedup and
exposing subtle software bugs related to parallelism.

We propose a set of primitives and discuss the de-
sign decisions, expressiveness and semantics in depth.
We present a research simulator called jTLM that
implements all these ideas.

I. Introduction

Most of the functionality of modern high-tech consumer
electronic devices is often grouped into a single integrated
circuit, which is called a system-on-chip (SoC). The
design of such systems is very complex and faces issues
such as the time-to-market pressure. To cope with these
constraints, there is a trend towards using models of the
hardware in discrete-event simulation frameworks.

We call virtual prototype a specifically designed model
of the hardware intended for development of software
before the real, physical hardware is available. Virtual
prototypes range from very high-level, application simula-
tors such as that included in the iPhone SDK [1] to ones
more targeted at low-level software development (drivers,
etc.).

A. Transaction-level modeling

Transaction-level modeling [2] is a widely used tech-
nique for designing virtual prototypes intended for early
software development. This approach tries to provide
the “right” abstraction level in the sense of keeping just
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enough details so as to maintain the behavior perceived
from a software programmer’s point-of-view in what
concerns the functionality.
Conceptually, a TLM model is a set of components,

which represent hardware blocks (typically: CPUs, DMAs,
memories, timers). The behavior is described in con-
current processes inside each component. Components
communicate through interconnections, which represent
memory-mapped buses. An interconnection transports
transactions, which are abstractions of data exchanges.

Software

CPU0

Software

CPU1

Fast interconnection

Slow interconnection

DMA

Memory

Custom
HW block

Figure 1: Conceptual view of a typical TLM model

In the industry, most TLM models are written in
SystemC [3], [4], which is a C++ simulation library
containing a cooperative, discrete-event scheduler.

B. Motivation and contributions

Previous works [5], [6] have identified some bad model-
ing practices in real-world TLM/SystemC models. Our
experience suggests that some of these bad practices may
be caused by confusion of modeling concepts inherent
to the TLM approach with their implementation in the
SystemC language.

In this context, we have developed a custom simulator
in an attempt to measure the extent to which common
modeling issues could be eliminated by providing new
primitives that best suit the programmers’ intents. We
introduced the resulting framework (jTLM ) in [7]. That
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paper focused on the study of concurrency and confronted
two modes of simulation scheduling: cooperative and
preemptive.

In this paper, we now concentrate on the modeling of
time. Typical TLM simulators such as SystemC do not
allow durations to be expressed. In other words, actions
do not “take” time, they happen instantaneously with
respect to the simulated time. Although durations can
be emulated by an instantaneous action followed (or
preceded) by a pause, we argue that this is not natural
to the user.
We introduce a novel way of modeling tasks with a

duration and show that it gives us important insight and
better comprehension of what actions can overlap. The
notion of tasks with duration should be more intuitive to
the user, since it is closer to the way the concrete system
actually behaves.

This can also be exploited during simulation in various
ways. For instance, it would be relatively easy to imple-
ment a trace back-end to rich visualization tools such as
SimVision [8], allowing them to display non-instantaneous
tasks as boxes on a time diagram.
In addition, having a clear definition of when tasks

overlap allows us to better parallelize the simulation,
achieving an important speedup and exposing more subtle
software bugs related to parallelism that could not be
detected previously.

C. Structure of the paper

To summarize, the main contribution of this paper is
an innovative notion of simulation time, for which we
provide both a clear semantics and an implementation.
This improves on existing approaches by allowing the
modeling of durations directly (i.e. not as a workaround).

The rest of the paper is structured as follows: Section II
briefly presents the jTLM simulator. We introduce the
main contribution, the notion of tasks with a duration,
first informally in Section III, then more detailed in
Section V. Section IV provides a discussion of the
motivation and consequences of our choices. Then, we
present experimental results in Section VII and related
work in Section VIII.

II. Background: Overview of jTLM

In this section, we shall present jTLM briefly through
a running example. Let us consider the virtual prototype
of a system with two processors, a shared RAM memory
and a DMA controller.

The DMA controller is a common hardware accelerator
for transferring blocks of memory without overhead to
the CPU. The software can program the DMA through
its slave port, by writing to special addresses that are
routed to registers in the DMA instead of the memory.

The DMA then performs the memory transfer through
its master port.

A. Architecture and instantiation

Figure 2 shows the architecture of the example. Com-
ponents represent the structure, and are connected by
directed ports. The components are instantiated and
connected before the simulation starts. Master ports
initiate transactions; slave ports treat the requests. The
interconnection routes transactions according to a map
that tells which addresses belong to which slave ports.

Soft0

CPU0

Soft1

CPU1

Interconnection

Memory

DMAfsm

DMA

Master port

Slave port

Behavior

Component

Interconnection

Figure 2: Our running example, a virtual platform in
jTLM

B. Describing concurrency

Concurrency inside each component is described using
“behaviors”, which are sequential action streams in the
form of a piece of code. jTLM provides two ways of
simulating concurrency: cooperative and preemptive,
detailed in [7]. We will give more details about the type
of actions that can be performed in a behavior in the
next sections.

The software in each of the processors in the example
is straightforwardly described by wrapping its code inside
a behavior. Hardware (in particular state machines), can
also be described using a behavior. In our example, part
of the DMA that is responsible for executing the transfers
is described in the DMAfsm behavior (List. 1).

C. Simulated time/ordering of actions

jTLM has a notion of simulated time that represents or
approximates the time by which actions happen on the
concrete system. Simulated time is in principle completely
disconnected from the wall-clock time, i.e. the time
taken by the simulation when running on an ordinary
computer. Figure 3 illustrates this fact by plotting both
axes perpendicularly.
Although simulation time is usually slower than wall-

clock time, it can be faster depending on the precision
of the model. In the field of wireless sensor networks, for
instance, the interesting property is usually battery life,
and therefore the simulators should be much faster than
real-time.



1 new Behavior() {
2

.

.

. while(true) {
3

.

.

.

.

.

. start.awaitEvent();
4

.

.

.

.

.

. for(int x = 0; x < transfer_size; ++x) {
5

.

.

.

.

.

.

.

.

. int buffer = master.read(from_addr + x);
6

.

.

.

.

.

.

.

.

. master.write(to_addr + x, buffer);
7

.

.

.

.

.

.

.

.

. awaitTime(4);
8

.

.

.

.

.

. }
9

.

.

. }
10 }

Listing 1: DMAfsm behavior

11 new SlavePort() {
12

.

.

. void write(int offset, int data) {
13

.

.

.

.

.

. switch(offset) {
14

.

.

.

.

.

.

.

.

. case START_TRANS:
15

.

.

.

.

.

.

.

.

.

.

.

. start.signalEvent();
16

.

.

.

.

.

.

.

.

.

.

.

. break;
.

.

.

.

.

.

.

.

. . . .

17
.

.

.

.

.

. }
18

.

.

. }

.

.

. . . .

19 }

Listing 2: DMA slave port register write
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Figure 3: Simulation time vs. wall-clock time

Time in jTLM is discrete, which means that the
simulated time “hops” from one integer value to another.
The user defines the granularity of the smallest “hop”
which we call time unit. Since the time unit can be
arbitrarily small, this does not limit the expressive power
of jTLM.
Simulated time influences the order in which actions

are observed in the simulator, i.e. an action that happens
at simulated time 5 must happen before all actions that
happen at greater simulated time. Actions at the same
instant are not ordered by simulated time. We shall see
more details in Section V.

D. Basic simulator primitives

jTLM is implemented on top of Java, which means that
everything from the Java language is directly available
to the user. In addition, jTLM introduces new actions
to Java in the form of simulator primitives.
This section recalls the basic simulator primitives,

originally introduced in [7] and very similar to those
present in SystemC. The reader might want to skip to the
Section III where we present the new primitives related
to the modeling of tasks with a duration.

• awaitTime pauses the caller for the amount of simu-
lated time specified as a parameter; and

• awaitEvent pauses until another behavior calls
signalEvent on the same event. These primitives are

directly inspired from SystemC’s wait and notify.

Our running example puts these primitives into prac-
tice in the DMAfsm behavior (List. 1); and in the register
write implementation of the DMA slave port (List. 2).

The master.read and master.write commands in the
DMAfsm behavior initiate transactions at the DMA’s
master port. On the other hand, the DMA slave port
receives transactions and implements them. Our example
has four registers: the “from” address, the “to” address,
the transfer size and the START_TRANS register. The
START_TRANS register is special in the sense that writing
any value to it starts the DMA. This is carried out using
an event.
By default, simulation time does not progress unless

the behavior is waiting (inside awaitTime or awaitEvent).
Everything else is instantaneous. At this point, the
awaitTime(4) (line 7) is the closest way to model the fact
that the reads and writes take some time (and this is
what would have been done in SystemC).

III. New primitives

A. Tasks with known duration: consumesTime

consumesTime is a new primitive that allows the modeling
of sequences of actions that take time (a task). In contrast
with awaitTime(T) that creates an interval of time during
which no action is executed, consumesTime(T) creates an
interval during which a piece of code is executed.
Fig. 4 illustrates the semantics of consumesTime(T) by

comparing three possible ways of expressing the fact
that the computation of a function f() takes 30 units
of simulation time (starting at time t = 10). The
computation of f() itself is represented in bold dashed
red.
Fig. 4a represents the state-of-the-art prior to this

paper. To model a duration, we must use an instanta-
neous task followed by a delay (f(); awaitTime(30);). In
simulation, the whole computation is executed at time
10, and the simulation time is increased afterwards.

In Figures 4b and 4d, the task is modeled using
consumesTime(30) { f(); }. In this case, each of the actions
in f() will be executed somewhere in the interval [10, 40].



However the exact “path” of time inside the task is not
precisely specified, only its duration. We represent this
fact by a“curved”line in the figure, although in simulation
the actual path will be a staircase function (because
simulated time is discrete). The minimum width of the
steps (granularity) is user-controlled by the time unit.

Two situations are worth mentioning. First, if the
computation of f() is slow, simulation time might have
to be blocked from advancing too much (at t = 40 in
Figure 4b), in order to guarantee that every action of f()
lies in the interval [10, 40].

If, for instance, the task consumesTime(30) {f();} was
followed by an instantaneous task g() (Fig. 4c), then
g() would be executed 30 units of simulated time after
the consumesTime starts, no matter how long f() takes to
execute in wall-clock time.

Second, while consumesTime(30) { f(); } allows f() to
be executed at any time in the interval [10, 40], it cannot
force the computation to last until the end of this interval.
In other words, it is also possible for the computation
of f() to finish early (at t = 30 in Figure 4d), in which
case the task will suspend while the rest of the platform
drives the advance of the simulated time, until it reaches
40.

Actually, the simulator has the freedom to execute
the actions of the task at any time within the interval,
including the particular case where the computation is
executed completely at the start of the task. In other
words, the execution of f(); awaitTime(30); is included
in the possible executions of consumesTime(30) {f();}. By
using consumesTime instead of awaitTime, we can relax the
semantics of the model where it would otherwise be over-

specified.
We can apply this primitive to the DMA example

presented in the previous section. In contrast with the
List. 1 where we had to model the time taken by the
reads and writes using instantaneous actions followed by a
wait, we can now express the fact that the DMA transfer
takes an amount of time proportional to the length of
the transfer by using a dedicated primitive. One of the
immediate advantages of this is the readability of the
code, as shown in List. 3. The rest of the advantages are
discussed in Section IV.

B. Loose timings

Loose timings [5] consists in the addition of non-
determinism to the duration of tasks or awaitTime state-
ments. This increases the faithfulness of the model when
we have only partial or imprecise knowledge of the
timings. List. 4 shows an application of loose timings
in conjunction with consumesTime to provide a ±10%
tolerance. In the simulator, this is implemented using
randomization (possibly non-uniformly distributed).

C. Tasks with unknown duration: consumesUnknownTime

consumesTime allowed modeling tasks of known duration.
There are times however when we cannot quantify in
advance the duration of an action. This can be either
because we are very early in the design-flow and such
timing information is not available, or because the
duration depends on external actions.
For instance, in a high-level model of a complex

processor with pipelines, caches, etc., it is very hard to
quantify precisely the time taken by each iteration of the
low-level software loop in List. 5. This loop implements
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Figure 4: Semantics of the new jTLM primitives



consumesTime(4 * transfer_size) {
4

.

.

. for(int x = 0; x < transfer_size; ++x) {
5

.

.

.

.

.

. int buffer = master.read(from_addr + x);
6

.

.

.

.

.

. master.write(to_addr + x, buffer);
8

.

.

. }
}

Listing 3: DMAfsm behavior using consumesTime

int t = 4 * transfer_size;
consumesTime(t * 0.9, t * 1.1) {

4
.

.

. for(int x = 0; x < transfer_size; ++x) {
5

.

.

.

.

.

. int buffer = master.read(from_addr + x);
6

.

.

.

.

.

. master.write(to_addr + x, buffer);
8

.

.

. }
}

Listing 4: Loose timings

20 while(test_and_set(x, 1)) {
21

.

.

. cpu_relax();
22 }

Listing 5: Mutex lock acquire

consumesUnknownTime {
21

.

.

. while(master.test_and_set(x, 1)) {
22

.

.

.

.

.

. Thread.yield();
23

.

.

. }
}

Listing 6: Software loop in jTLM with consumesUn-

knownTime

part of the lock acquire of a mutex. The test_and_set

instruction generates a transaction that atomically reads
the address x and replaces it with value 1. If the value
read was 0, then the lock was free and we have just
acquired it, otherwise the lock was busy and we must try
again.

It is a common practice to put a cpu_relax() instruction
in the loop, in the case the lock is found busy. This
is important for performance reasons: depending on
the processor architecture, the implementation of this
instruction might cause the processor to enter a low-
consumption mode or reduce its bus bandwidth usage.

The interesting property in the example is that the
loop will not exit until it reads x = 0. However, the write
to x is an unpredictable external action by a different
behavior. We cannot know in advance when and if the
variable x will be written. This means that there is no
a-priori bound to the time between when the polling loop
starts, and when the new value of x allows it to complete.

Of course, the intuition says that any update to x

should become visible (i.e. the behavior reading x is given
an opportunity to be executed) after a reasonable amount
of time. This is indeed the case most of the time in real
life, but modeling this requires some sort of fairness.

Having these considerations in mind, we have devised
a primitive that would fulfill our intents precisely in the
above cases. We call it consumesUnknownTime. Informally,
this primitive guarantees that the time taken by a task
is at least enough to satisfy any conditions needed to
complete the task, but not necessarily bounded. If the
conditions are never met, the task never finishes. In other
words, while consumesTime fixes the duration of the task
and lets the actions be scheduled at any time in the
specified interval, consumesUnknownTime executes the actions
contained in the task until they complete regardless of
the time they take to execute.

In the preemptive mode of jTLM [7], the software
loop of the previous example can be implemented in a

straightforward way with the help of this new primitive
(List. 6). The only thing that requires special attention
is cpu_relax, which is redirected to Java Threads’ library
yield() method.
Some may argue that polling loops are to be avoided

when possible, but real-life hardware systems sometimes
have no alternative, and the model of the system must
then use the same mechanism (e.g. if the actual software
uses polling and is embedded directly in the TLM
platform). The existence of consumesUnknownTime in jTLM
is not meant to promote polling as a synchronization
mechanism, but to allow modeling it efficiently when
needed.
Consider another example:
consumesUnknownTime {f();} g();

During the execution of the consumesUnknownTime state-
ment, simulated time is not constrained, i.e. other
behaviors are allowed to continue their execution, advance
time, etc. However, g() will always be executed after
f() completes, both in terms of simulation and of wall-
clock time. The current simulation time when g() starts
its execution is defined as the simulation time when
consumesUnknownTime {f();} completed.

As a closing remark to this section, notice that we do
not provide an implementation of consumesUnknownTime in
the cooperative mode of jTLM. Section V-D is dedicated
to this issue.

IV. Discussion

One of the fundamental ideas of jTLM is to expose
the parallelism of the simulated platform to the user, as
opposed to hiding it as it is done in traditional cooperative
discrete-event simulators. The system being simulated is
parallel (since hardware is intrinsically parallel), and it
is desirable to exploit this parallelism in the simulation.
A detailed discussion on the topic can be found in [7].

This section discusses the improvements achieved by
the new primitives proposed in this paper to two domains:



exploiting the physical parallelism of the host machine
for better parallelization, and finding more bugs early in
the systems-on-chip design-flow.

A. Better simulator parallelization

Nowadays machines are usually multi-core, and simu-
lating a concurrent system in a purely sequential way is
clearly suboptimal. Still, the current industry standard
in the domain, SystemC, cannot easily be made parallel
since the standard requires “co-routine” semantics (i.e.
cooperative multitasking thus no preemption). Previous
attempts to parallelize the execution in a semantics-
preserving way [9] showed the difficulty of the problem.
In practice, this would also be inefficient since most TLM
programs have lots of shared variables that would need
to be protected (the RAMs in particular).

Other approaches, like that in [10] and in our previous
work with jTLM [7], chose to break with co-routine
semantics. These approaches are able to parallelize the
simulation of unrelated actions occurring at the same
simulation instant. Still, none of them is able to run two
unrelated actions that happen at different simulation
times in parallel.
Unfortunately, the situation where only one process

runs at a given simulation time is quite common in TLM
models because they do not use clocks. The presence of
loose timings makes it even more common.
The new notion of tasks with a duration in jTLM

allows to overcome this limitation. Back to our running
example of Section II, suppose that CPU0 executes a
task A during interval [10, 20] and CPU1 executes a task
B during interval [15, 30]. There is an overlap between
times 15 and 20. This means that if the code of task A
is not finished when the simulation time reaches 15, then
the code of task B can start in parallel with the code
of A.
While the chance of having simultaneous, instanta-

neous actions is small, tasks with a duration have much
greater chances to overlap. Hence, the parallelism is
exploited far better, with a little help from the user.

B. Finding more bugs

In the context of virtual prototyping, it is important
to distinguish bugs of the prototype, and bugs that not
only appear on the prototype but also correspond to bugs
in the real system. In the latter case, it is desirable to
exhibit bugs as early as possible, avoiding surprises later
in the design-flow.
Cooperative multitasking completely eliminates sim-

ulation parallelism. This avoids bugs of the prototype
due to parallelism, simplifying the development, but may
also hide bugs of the real system that could otherwise
have been found. In particular, if the simulator does not
expose the parallelism of the hardware to the software,

then mis-synchronized software will run correctly on the
simulator, but fail to run on the final chip. We have
already showed in [7] how physical parallelism within a
simulation instant could exhibit software bugs. However,
previous works did not solve the problem of finding bugs
that span across instants.
Returning to our example, suppose that one of the

processors writes to a shared variable at time t = 10, and
that another reads the same variable at t = 11 without
any synchronization. This probably represents a bug in
the real system: i.e. since there is no synchronization,
nothing guarantees that the read will see the effect of the
write. In fact, the read may even return an unpredictable
value (“out-of-thin-air”) because the write may have been
buffered or still be in progress. This condition is known
as a “data-race” [11] and is very difficult to debug.
Traditional simulators, even with parallelism within

instants, would have to insert artificial synchronization at
the end of instant t = 10 in order to advance simulation
time and unblock any behaviors executing at t = 11. The
synchronization implies that, in the simulator, the write
at t = 10 is globally performed before t = 11. In other
words, the bug described above is not visible on such
simulators.
With the introduction of tasks with a duration, the

above example can be modeled by a read and a write
within overlapping tasks. Then there will be no synchro-
nization between them, and the data-race is made visible
in two ways: (1) the jTLM scheduler can choose the
order of the read and write operations, possibly leading
to different interleavings; (2) the semantics of the read
and write are the ones of concurrent read/write in the
underlying Java memory model [12]. This means that the
operations are not always atomic, and allows finding bugs
that are not exposed by simple interleaving semantics,
such as data-races.

While the (1) above could be implemented with some
effort in SystemC, the (2) is really not straightforward,
because of the complexity of modern memory models. A
detailed discussion of this issue is clearly out of the scope
of the present paper.

C. Non-reproducibility

Compared to cooperative simulators, the preemptive
mode of jTLM has a drawback in terms of reproducibility
due to the way it exploits concurrency to achieve paral-
lelism. This is not a consequence of the notion of non-
instantaneous tasks presented in this paper, but rather
inherent to jTLM [7]. We still provide a cooperative mode
for jTLM if the user needs reproducible executions.

V. Details of the semantics

By default, actions in jTLM are instantaneous. Each
of the primitives we have presented so far controls the



advance of simulated time from the point of view of
the caller. The previous sections gave the intuition of
the semantics of the primitives in the general case.
We now discuss the details of the semantics in special
circumstances.

A. awaitTime and instantaneous actions

If a behavior calls awaitTime(10) at time 0, then the
behavior cannot do any action for 10 units of time, and
its next action (f() in Fig. 5) will only begin at time
10. If any other behavior has an action at t < 10, then
this action (g()) will be simulated before f(). If there are
several instantaneous actions at the same time (f() and
h()), the simulated time cannot advance until they all
have completed.

t = 0

Wall-clock
time

Simulation
time

await(10)
f()

await(5)
g()

await(5)
h()

t = 5 t = 10

Figure 5: Semantics of awaitTime

B. consumesTime and tasks with duration

When a behavior starts at time 0 a task with the
duration of 20 time units (consumesTime(20)), all actions
that are part of that task will be simulated somewhere
between times 0 and 20, inclusive. This means that a
task with duration 0, such as consumesTime(0){x()}, is
equivalent to an instantaneous task x(); and that an
empty task, such as consumesTime(10){}, is equivalent to a
call to awaitTime(10).

Figure 6 represents two tasks that overlap over the
instant t = 20. Actions in the overlapping portion are
not ordered by simulated time, but may be ordered by
dependency (see next section). In the Fig. 6, f() and g()

are overlapping and not ordered by dependency, and thus
can be run in parallel during the simulation.

t = 0
Simulation

time

consume(20)

awaitTime(20) consume(10)

Overlap

f()

g()

t = 20 t = 30

Figure 6: Semantics of consumesTime

For the time being, nesting calls to consumesTime,
awaitTime or awaitEvent inside a consumesTime is forbidden.
We provide some ideas on how to deal with this in the
conclusion.

C. awaitEvent and signalEvent

When a behavior starts an awaitEvent, its next action
will only begin after another behavior calls signalEvent

on the same event. Simulated time can pass while the
behavior is inside awaitEvent. Once the event is signaled,
the behavior wakes up immediately and executes its next
action at the same simulated time as the notification. The
signalEvent/awaitEvent pair implies dependency, which
means that in Figure 7, even though f() and g() occur
at the same simulated time, there is no overlap.

t = 0 Simulation
time

consume(20) f()

e.await() consume(10)g()

t = 20 t = 30

e.signal()

Figure 7: Semantics of awaitEvent/signalEvent

D. consumesUnknownTime

The semantics of consumesUnknownTime is the hardest to
understand because we cannot quantify its duration in ad-
vance. While instantaneous tasks completely prevent time
from advancing, and fixed duration tasks (consumesTime)
block time from advancing too much, consumesUnknownTime
imposes no upper bound on the amount of time that
can pass. However, the lower bound is such that any
conditions needed to complete the code inside the task
must be satisfied before it can finish.
A trivial implementation that is always valid consist

in letting an infinite amount of time pass (equivalent to
awaitTime(∞)) without executing the body of the task. Of
course, we wish to avoid this kind of unrealistic executions.
In the preemptive mode of jTLM, our implementation
achieves this by relying on the fairness of the underlying
operating system. However, there is no straightforward
way to do the same thing in the cooperative mode. We
therefore do not provide an implementation of cooperative
consumesUnknownTime for the time being, but this will be
the subject of future work.

VI. jTLM implementation

The algorithm behind jTLM involves relatively tricky
synchronization at some points because of concurrency.



For brevity, we focus here only on the principle of the
algorithm, omitting low-level details.
Let B be the set of all behaviors, E be the set of all

events, and T be the time unit. The jTLM scheduler has
the following data structures: AG : T → 2B is a priority
queue implementing an agenda of behaviors waiting or
consuming time; and PB : E → 2B maps a set of pending
behaviors for each event. Additionally, the scheduler must
keep track of the current simulated time (ct ∈ T) and
integer counters for the number of behaviors running
an instantaneous section of code (bi), awaiting an event
(be) and consuming unknown time (bu). Each behavior is
associated with a semaphore used to block and unblock
it. We must also identify the calling behavior (cb ∈ B)
which invokes the primitives.

The heart of the scheduler is in the timeElapse() method,
which is called at the beginning of the simulation and
every time bi reaches zero. This method sets the current
time to the earliest deadline in AG and then either: (a)
in the preemptive mode, wakes up all behaviors with
deadline ct; or (b) in the cooperative mode, picks a
random behavior among those with deadline ct and wakes
it up. Here, “waking up” consists of incrementing bi and
releasing a semaphore to unblock the behavior. The simu-
lation ends if timeElapse() is called but AG = ∅ ∧ bu = 0.

awaitTime(t) inserts a pair (ct+t, cb) into AG, and then
decrements bi, checks if bi = 0 (in which case timeElapse()

must be called), and blocks the behavior by acquiring
a semaphore. awaitEvent(e) is similar, but increments be
instead of adding an element to AG.
In the preemptive mode, signalEvent(e) simply wakes

up all b ∈ PB(e), removing them from the set, and
decrementing be by |PB(e)|. In the cooperative mode,
we must only let one behavior run among the possible
candidates in PB(e), cb and AG(ct). To achieve this, our
(unoptimized) algorithm follows a similar procedure but
inserts {ct} ×

(

PB(e) ∪ {cb}
)

into AG and then calls
timeElapse().
Although the semantics of consumesTime and awaitTime

are very different, their implementation in preemptive
mode are very similar. The only (subtle) difference is:
before acquiring the semaphore, consumesTime first passes
control to the user code. While it is running, the pair (ct+
t, cb) previously inserted into AG acts as a “reservation”
ensuring that the simulated time does not advance more
than it should. In the cooperative mode, consumesTime(t)
randomly splits the time interval [0, t] into two calls to
awaitTime before and after executing the user code. We
use a technique based on Java’s inline unnamed functors
to implement this.
As discussed in Sec. V, we only implement

consumesUnknownTime in the preemptive mode. This im-
plementation is similar to that of consumesTime, but
increments bu instead of adding an element to AG and

decrements bu instead of acquiring the semaphore after
running the user code.

VII. Benchmarks

This paper focuses mainly on modeling issues. Never-
theless, we provide some results obtained from experi-
ments in this section. Our intention is to show to which
extent the concurrency described with the help of the
new primitives can be exploited in a parallel simulation.

For this, we need an “embarrassingly” parallel example,
which does not need to be realistic but allows us to
measure the maximum expected improvement. Our model
is organized as one main processor and 100 hardware
accelerators, each of which calculates 200 hexadecimal
digits of π using the BBP formula [13]. The main
processor assigns tasks to each accelerator in a loop,
with a small delay between each assignment, then waits
for them all to complete. We conducted our benchmarks
on a server with 32 Intel Xeon processors.
In the first version, each accelerator is implemented

with an instantaneous task followed by an awaitTime.
Because of the small delay between each assignment,
the instantaneous tasks happen at different simulation
times, so there is no overlap. One task cannot start before
the previous has completed and let the time elapse. The
computation takes 220s.

In the second version, the accelerators are implemented
using consumesTime to model the fact that each accelerator
task has a duration. The simulator knows that there is
an overlap between tasks and is able to exploit this by
running the tasks in parallel. Now, the computation takes
only 20s.

The results confirm our intuitive expectations and show
the practical benefits of consumesTime for parallelization.
In addition, we are convinced from our tests and our
experience that these primitives are natural for the user
and using them requires little effort.

VIII. Related work

A. SystemC

The SystemC [3] modeling language is the current
industry standard for developing transaction-level models.
Strictly speaking, SystemC is a C++ library that includes
a simulation scheduler and data-types specially designed
for describing hardware structures such as wires and
registers.

For describing concurrency, SystemC includes a notion
of process. The SystemC standard requires processes to
have co-routine semantics: they run in isolation and
in a cooperative manner. Each process either runs to
completion or calls at some point a primitive that
yields control back to the scheduler. In other words, the



scheduler is not able to preempt the running process. In
addition, actions of a process are always instantaneous
w.r.t. the simulated time.

In contrast, jTLM includes both a preemptive mode
and a cooperative mode [7]. In the preemptive mode,
jTLM can naturally run processes in parallel both inside
of an instant and by exploiting the notion of overlap of
tasks, as seen in Section IV.

B. SpecC

SpecC [14] is another language for system-level simu-
lation of hardware systems. Unlike SystemC and jTLM,
SpecC is implemented as a new language, not as a library.
Its underlying concepts are the usual ones in discrete-
event simulation. The semantics of SpecC do not impose
a preemptive or cooperative simulation, and the user
code is expected to work in either cases. However, the
reference implementation is cooperative.

Simulated time in SpecC is managed in a similar way to
that of SystemC, with instantaneous actions and waitfor

statements.

An interesting feature of SpecC is the notion of timing
constraints (§2.4.9 of the LRM [14]). This feature allows
the user to label arbitrary points in the execution, and
specify constraints to the difference of simulation time
between the execution of pairs of labels. This is a very
general specification mechanism, which can be used to
express constraints on independent tasks, but also on
overlapping or nested time intervals.

However, unlike the consumesTime primitive of jTLM,
this feature is only a specification mechanism: it does not
influence the behavior of the simulation. Instead, it only
allows one to check that the execution complies with
the specification. The simulation itself is still derived
from instantaneous actions spread in time with waitfor

statements.

IX. Conclusion

This paper presented a novel approach to modeling
time in discrete-event simulators of transaction-level
models of systems-on-chip. Previous works such as [3],
[14] did not distinguish between instantaneous actions
and tasks that take time.

We have proposed a notion of tasks with a duration
that we think is both intuitive and natural to the user. In
addition, we showed that this notion could be exploited:

• to enrich trace visualization tools, allowing them to
display tasks as boxes on a time diagram;

• to derive a clear definition of overlapping tasks;
• to effortlessly achieve an important simulation
speedup by enabling parallel execution of actions
occurring at different simulation times;

• to expose bugs in simulation that may correspond
to bugs in the real system, by removing the con-
straint that actions at different simulation times are
necessarily synchronized.

Furthermore, we have described our implementation
of a custom research simulator called jTLM [7]. This
allowed us to confirm the benefits of our approach both
in terms of ease of use and parallelization.

In our future work, we intend to study how these
features could be incorporated in a more complex simu-
lator such as SystemC. Another direction of future work
concerns consumesUnknownTime. It is particularly difficult to
avoid implementations of this primitive that only have
trivial executions, i.e. where some behaviors never get a
chance to run.

Finally, the last direction of work is related to the
nesting of calls to consumesTime and awaitTime. In this
sense, there are many pitfalls that should be avoided. For
instance, the naive approach could lead to the situation
in Figure 8. This figure shows a task with duration 50
and, after 40 units of time have passed, a nested task with
duration 20 starts. There is not enough time left in the
outer task to accommodate for the inner task. In this case,
we would have to either abort or violate the duration of
one of the tasks, neither of which is satisfactory.

50

40 20 ?

Figure 8: The naive semantics for nested calls to
consumesTime

One way to get around this issue is to make inner calls
suspend the outer calls for their duration as shown in
Fig. 9. To implement this, one would need to keep track
of the nesting level, in order to be able to decide when
exiting a task if there is an outer task that needs to be
resumed.

50 (+20)

40

20

10

Figure 9: Suspend semantics for nested calls to
consumesTime
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2007.

[10] Schumacher, C., Leupers, R., Petras, D. and A. Hoffmann,
“parSC: Synchronous Parallel SystemC Simulation on
Multi-Core Host Architectures,” in International Con-
ference on Hardware/Software Codesign and System
Synthesis, Oct 2010.

[11] S. V. Adve and K. Gharachorloo, “Shared memory
consistency models: A tutorial,” IEEE Computer, vol. 29,
pp. 66–76, 1995.

[12] S. Microsystems, JSR 133: Java Memory Model and
Thread Specification, 2004.

[13] D. Bailey, P. Borwein, and S. Plouffe, “On the rapid
computation of various polylogarithmic constants,”Math-
ematics of Computation, vol. 66, no. 218, pp. 903–913,
1997.
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