Sylvain Corlay 
email: sylvain.corlay@gmail.com.
  
A fast nearest neighbor search algorithm based on vector quantization

Keywords: vector quantization, fast nearest neighbor search, Voronoi diagram, Delaunay triangulation, principal component analysis

In this article, we propose a new fast nearest neighbor search algorithm, based on vector quantization. Like many other branch and bound search algorithms [1, 10], a preprocessing recursively partitions the data set into disjointed subsets until the number of points in each part is small enough. In doing so, a search-tree data structure is built. This preliminary recursive data-set partition is based on the vector quantization of the empirical distribution of the initial data-set.

Unlike previously cited methods, this kind of partitions does not a priori allow to eliminate several brother nodes in the search tree with a single test. To overcome this difficulty, we propose an algorithm to reduce the number of tested brother nodes to a minimal list that we call "friend Voronoi cells". The complete description of the method requires a deeper insight into the properties of Delaunay triangulations and Voronoi diagrams.

Introduction

The problem of nearest neighbor search, also known as the post office problem [START_REF] Knuth | Art of Computer Programming[END_REF] has been widely investigated in the area of computational geometry. It is encountered for many applications, as pattern recognition and vector quantization.

The post-office problem has been solved near optimally for the case of low dimensions. Algorithms differ on their practical efficiency on real data sets. For large dimensions, most solutions have a complexity that grows exponentially with the dimension, or require a bigger query time than the obvious brute force algorithm. In fact, it has been noticed that, if n is the size of the data set and d is the dimensionality, the best choice becomes linear search when d > K log(n) for some positive constant K which depends on the chosen algorithm. This effect is known as the curse of dimensionality.

As concerns the application to (Voronoi) vector quantization, nearest neighbor projections are recognized to represent the critical part of most codebook optimization algorithms. In this case, the big amount of nearest neighbor searches we have to do shows that a preprocessing of the data-set will be profitable if it reduces the average query time. Still, in some particular cases, the codebook is chosen so that nearest neighbor search is performed easily, (as when dealing with product quantization). Moreover, non-Voronoi quantization methods can also be designed in order to simplify the projection procedure while preserving some important properties of optimal quantizers, as the stationarity in the quadratic case.

Let us also point out that a field recently emerged under the name of dual quantization [START_REF] Pagès | Intrinsic stationarity for vector quantization: Foundation of dual quantization[END_REF][START_REF] Pagès | Sharp rate for the dual quantization problem[END_REF]. In this context, the nearest neighbor search, i.e. the location of a point in a Voronoi partition, is replaced by the analogous procedure in the Delaunay triangulation. This localization procedure in Delaunay triangulations have been widely investigated in the practical viewpoint in terms of reduction of its computational complexity. We refer to Devillers, Pion and Teillaud for a review on this subject [START_REF] Devillers | Walking in a triangulation[END_REF].

Many nearest neighbor search algorithms rely on a recursive partitioning of the data-set resulting in a search-tree data structure [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF][START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF]. The method proposed by McNames in [START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF] improved the classical Kd-tree algorithm [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF] by taking advantage of the shape of the data-set thanks to principal component analysis. The "principal axis tree" algorithm performs much faster than the classical Kd-tree when the coordinates of the data-set are correlated and it seems to take better the growth of dimensionality.

In our case, the proposed algorithm uses vector quantization as a clustering method to perform this recursive partitioning and to take advantage of the geometry of the data-set. It is classical background that when dealing with empirical distributions, the quadratic vector quantization problem is equivalent to the reduction of the intraclass inertia of the related partition, and the specification of the classical Lloyd algorithm to this case turns out to be the k-means clustering algorithm.

We will see that one draw-back of this kind of partition is that, as other tree-based search algorithms, after determining the closest neighbor of a query in a leaf-node of the tree, the procedure has to move up to the parent node and determine whether brother nodes have to be explored or not. Unlike Kd-tree and "principal axis tree", our so-called "quantization tree" can't eliminate several brother nodes by with a single test. This is the motivation for the development of our friend node algorithm.

The paper is organized as follows. Section 1 is devoted to classical definitions and notations related to vector quantization. The link with the classification problem is pointed out. Section 2 recalls in mind some definitions of computational geometry which will be useful in the sequel. As both the fields of vector quantization and algorithmic geometry deal with the notion of Voronoi diagram, we apply ourselves to distinguish the corresponding definitions and notations. Section 3 makes a brief presentation of both the Kd-tree [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF] and "principal axis tree" [START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF] algorithms. We deal with some optimizations that will be applicable with our quantization tree. Section 4 presents the "crude" quantization tree, i.e. without using any friend node algorithm. It is presented as the natural counterpart these two branch and bound algorithms with a quantization based partition of the data-set. Section 5 presents the friend node algorithm which was discussed above. Finally, the last section provides some performance comparisons between the different algorithms on various data-sets.

Vector quantization and Voronoi tessellations

We consider (Ω, A, P) a probability space and E a (real) finite dimensional Euclidean space. The principle of a random variable X taking its values in E is to approach X by a random variable Y taking a finite number of values in E.

Definition 1 (quantizer). In this surrounding, the discrete random variable Y is a quantizer of X. (1)

If X ∈ L p ,
Definition 2 (Voronoi partition). Consider N ∈ N * , Γ = {γ 1 , • • • , γ N } ⊂ E and let C = {C 1 , • • • , C N } be a Borel partition of E. C is a Voronoi partition associated with Γ if ∀i ∈ {1, • • • , N }, C i ⊂ {ξ ∈ E, |ξ -γ i | = min j∈{1,••• ,N } |ξ -γ j |}. If C = {C 1 , • • • , C N } is a Voronoi partition associated with Γ = {γ 1 , • • • , γ N }, it is clear that ∀i ∈ {1, • • • , N }, γ i ∈ C i . C i is called Voronoi slab associated with γ i in C and γ i is the center of the slab C i . We denote C i = slab C (γ i ). For every a ∈ Γ, W (a|Γ) is the closed subset of E defined by W (a|Γ) = ß y ∈ E, |y -a| = min γ∈Γ |y -γ| ™ . Definition 3 (Nearest neighbor projection). Consider Γ ⊂ E a finite subset of E. A nearest neighbor projection onto Γ is an application Proj Γ that satisfies ∀x ∈ E, x -Proj Γ (x) = min γ∈Γ |x -γ|.
To be more precise, if Proj Γ is a measurable nearest neighbor projection onto Γ, there exists a Voronoi

partition C = {C 1 , • • • , C N } associated to Γ such that Proj Γ = N i=1 γ i 1 Ci .
Proposition 1.1. Let X be an E-valued L p random variable, and Y taking its values in the settled point set

Γ = {y 1 , • • • , y N } ⊂ E where N ∈ N. Set " X Γ the random variable defined by " X Γ := Proj Γ (X)
where Proj Γ is a nearest neighbor projection on Γ, called a Voronoi Γ-quantizer of X. Then we clearly have X -"

X Γ ≤ |X -Y | a.s.. Hence X -" X Γ p ≤ X -Y p .
A consequence of this proposition is that solving the minimization problem (1) amounts to solving the simpler minimization problem

min { X -Proj Γ (X) p , Γ ⊂ E, card(Γ) ≤ N } . (2) 
The quantity X -Proj Γ (X) p is called the mean L p -quantization error. When this minimum is reached, we refer to L p -optimal quantization. The problem of the existence of a minimum have been investigated for decades on its numerical and theoretical aspects in the finite dimensional case [START_REF] Pagès | A space quantization method for numerical integration[END_REF][START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]. For every N ≥ 1, the L p -quantization error is Lipschitz-continuous and reaches a minimum. An N -tuple that achieves the minimum has pairwise distinct components, as soon as card(supp(P X )) ≥ N . This result stands in the general case of a random variable valued in a reflexive Banach space [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF]. If card(X(Ω)) is infinite, this minimum strictly decreases to 0 as N goes to infinity. The asymptotic rate of convergence, in the case of non singular distributions is ruled by the Zador theorem [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]. A non-asymptotic upper bound for the quantization error is also available [START_REF] Luschgy | Functional quantization rate and mean regularity of processes with an application to Lévy processes[END_REF]. We now focus on the quadratic case (p = 2). For a L 2 random variable X, we now denote C N (X) the set of L 2 -optimal quantizers of X of level N and e N (X) the minimal quadratic distortion that can be achieved when approximating X by a quantizer of level

N . A quantizer Y of X is stationary (or self-consistent) if Y = E[X|Y ].
Proposition 1.2 (Stationarity of L 2 -optimal quantizers). A (quadratic) optimal quantizer is stationary.

The stationarity is a particularity of the quadratic case. In other L p cases, a similar property involving the notion of p-center occurs. A proof is available in [START_REF] Graf | Optimal quantizers for Radon random vectors in a Banach space[END_REF]. 

Definition 4 (Centroidal projection). Let C = {C 1 , • • • , C N } be a Borel partition of E. Let us define for 1 ≤ i ≤ N , G i = ß E[X|X ∈ C i ] if P[X ∈ C i ] = 0,
Var(X) = E î X -Proj C,X (X) 2 ó :=(1) + E î Proj C,X (X) -E[X] 2 ó :=(2)
.

The variance of the probability distribution X decomposes itself as the sum of the intraclass inertia (1) and the interclass inertia (2).

Proof:

Var(X) = E î X -Proj C,X (X) + Proj C,X (X) -E[X] 2 ó = E î X -Proj C,X (X) 2 ó =(1) + E î Proj C,X (X) -E[X] 2 ó =(2) + 2E X -Proj C,X (X), Proj C,X (X) -E[X] := (3) 
.

Now (3) = 0 since Proj C,X (X) = E X Proj C,X (X) .

Backgrounds on theory of polytopes

Let E be a d dimensional vector space and E * its dual.

Definition 5 (k-flat).

A k-flat is a k-dimensional affine subspace E.

Definition 6 (convex polyhedron and convex polytope). A convex polyhedron is the intersection of a finite subset of closed halfspaces. If it is bounded, it is a convex polytope.

Definition 7 (cell).

A cell is the intersection of a finite set of flats and open halfspaces. And thus, equivalently, it is the relative interior of a convex polyhedron. If R ⊂ E, we denote cell(R) the relative interior of the convex hull of R.

Definition 8 (simplex). A simplex is cell(R) where R is a set of affinely independent points.

• A 2-dimensional simplex is the interior of a triangle.

• A 3-dimensional simplex is the interior of a tetrahedron.

Definition 9 (circumsphere). A circumsphere of a set R ⊂ E is a sphere S of E such that R ⊂ S. Proof: The proof is straightforward using the same approach as for the previous lemma. Lemma 2.3. If C is a non empty closed convex subset of E, distinct of E, then every point of the boundary ∂C belongs to a supporting hyperplane of C.

(x) = α. Consider v ∈ E such that ∀x ∈ E φ(x) = x|v . Consider a ∈ H ∩ C. We may assume that ∀x ∈ C φ(x) = x|v ≥ α.
Proof: a ∈ ∂C ⇒ ∀k ∈ N * , ∃x k ∈ B a, 1 k , x k / ∈ C. We denote y k = p C (x k ) the projection of x k on C, z k = x k -y k x k -y k .
Owing to the characterization of the projection on a closed convex subset, we have

∀z ∈ C, x k -p C (x k ), x k -z = |x k -p C (x k )| 2 - ≤0 x k -p C (x k ), z -p C (x k ) ≥ |x k -p C (x k )| 2 > 0 because x k / ∈ C.
Every vector z k lying on the unit sphere of E (which is compact), one can extract a subsequence of z φ(k) that converges to a vector v, with |v| = 1. As (x k ) 1≤k converges to a, by continuity of p C and of the scalar product, we have

∀z ∈ C, v, a -z = lim k→+∞ z φ(k) , x φ(k) -z ≥ 0.
In other words C is contained in the halfspace {z ∈ E, v, az ≥ 0}. Moreover, as a is in the corresponding hyperplane H, H is a supporting halfspace of C.

Definition 11 (face).

A face of a convex polyhedron P is the relative interior of the intersection of a hyperplane supporting P with the closure of P .

Proposition 2.4. Let P be a convex polyhedron, a face of P is a cell, and a face of a face of P is a face of P .

Definition 12 (k-face).

A k-face is a a face whose affine closure has dimension k.

Definition 13 (cell complex). A cell complex is a finite collection of pairwise disjoint cells so that the face of every cell is in the collection.

Definition 14 (opposite k-faces). Two distinct k-cells of a cell complex are opposite if they have a common (k -1)-face.

Definition 15 (triangulation). Let S be a finite point set of E. A triangulation T of S is a cell complex whose union is the convex hull of S and whose set of 0-cells is S.

Definition 15 is a non standard definition because cells are not required to be simplices. This formalism is due to Steven Fortune [START_REF] Fortune | Voronoi diagrams and Delaunay triangulations[END_REF].

Definition 16 (proper triangulation). A proper triangulation is a triangulation whose all cells are simplices.

Any triangulation can be completed to a proper triangulation by subdividing non simplicial cells.

Voronoi diagrams and Delaunay triangulations

Voronoi diagram

Let E be a d-dimensional Euclidean space, and S a finite subset of E. In the following, elements of S will be called sites.

Definition 17 (Voronoi cell). For a nonempty subset of S, R ⊂ S, the Voronoi cell of R, denoted V (R) is the set of all points in E that are equidistant from all sites in R, and closer to every site of R than to any site not in R.

Proposition 2.5.

• Clearly, is r ∈ S, V ({r}) is the set of all points strictly closer to r than to any other site. In particular, it is the interior of the Voronoi slab associated to r in S. (See the definition of a Voronoi slab in Section 1.)

• V (R) may be empty. Proposition 2.6 (Empty circumsphere property). For R ⊂ S, cell(R) is a Delaunay cell if and only if there is is a circumsphere of R that contains no site of S\R in its interior.

• Any point of E lies in V (R) for some R ⊂ S. Definition 18 (Voronoi diagram). The Voronoi diagram V is the collection of all nonempty Voronoi cells V (R) for R ⊂ S.
Proof: Such a circumsphere can be obtained with center an point in the Voronoi cell V (R). V is a cell complex that partitions E.

D is a triangulation of S.

3. V and D are linked with the following duality relation:

For R, R ′ ⊂ S, V (R) is a face of V (R ′ ) if and only if D(R ′ ) is a face of D(R).
4. V (R) is unbounded if and only if every site of R is on the boundary of the convex hull of S.

We refer to [START_REF] Fortune | Voronoi diagrams and Delaunay triangulations[END_REF] for a detailed proof.

Locality

Definition 21 (locally Delaunay). We consider two opposite d-cells cell(R) and cell(R ′ ) in a triangulation T with circumspheres C and C ′ . cell(R) and cell(R ′ ) are locally Delaunay if R ′ \R is outside of C. This is equivalent to R\R ′ outside of C ′ . A triangulation is locally Delaunay if every pair of opposite d-cells is locally Delaunay. Lemma 2.8 (Delaunay and locally Delaunay). A triangulation is Delaunay if and only if it is locally Delaunay.

We refer to [START_REF] Fortune | Voronoi diagrams and Delaunay triangulations[END_REF] for a detailed proof.

Definition 22 (General position). Let S be a nonempty finite set of sites in E. S is in general position if no d + 1 points of S are affinely dependent and if no d + 2 points of S lie on a common sphere.

Definition 23 (Incircle list). In the following, if S is a finite nonempty set of sites, D is a Delaunay triangulation of S and x ∈ E is a settle point, we call incircle list and denote ICL D (x) the set of d-cells of D whose circumsphere contains x.

If S is in general position, no Delaunay cell of S is degenerate. Every cell of the triangulation is a simplex and for any R ⊂ S, V (R) has dimension d + 1 -|R|.

Computing the Delaunay triangulation and the Voronoi diagram

Whereas the Voronoi diagram was defined before the Delaunay triangulation, it has been recognized that it is easier to devise algorithms in terms of Delaunay triangulation, especially because of the locality property 2.8.

A common data structure for Delaunay triangulations is a graph structure where each simplex is a "node". The node contains the indices of the d + 1 sites of the simplex and the pointers to the adjacent simplices. Null pointers are used when the simplices lie on the boundary of the triangulation. Cells of lower dimension are not directly represented in the graph structure. Another convenient convention is that the kth pointer stored in the node corresponds to the facet obtained by deleting the kth site in the node. Moreover the order is chosen so that the orientation of every simplex in the triangulation remains always positive.

Here, we present the principles of incremental algorithms for Delaunay triangulations. In this kind of algorithms, sites are added one by one, and the Delaunay triangulation is modified to include each new site. Many other algorithms have been designed for computing the Delaunay triangulation, especially in dimension 2. Moreover, computing the Delaunay triangulation of the Voronoi diagram in the onedimensional case simply amounts to sorting the data set. An advantage of incremental algorithms is that they are valid in any dimension. Moreover, for another purpose in the following, we will need a new algorithm (the friend node algorithm presented in Section 5) that requires a stage which is very similar to the insertion of a new point in the Delaunay triangulation. Hence we will focus here on incremental algorithms. Let S = (s 1 , • • • , s N ) be a nonempty finite set of sites of E of cardinal N . We define the sets

S k := (s 1 , • • • , s k ) for k ∈ {1, • • • , N }. Now,
for a settled i < N , let us consider D i the Delaunay triangulation of S i . We inspect the situation of s i+1 with respect to the Delaunay triangulation D i . From this analysis, the Delaunay triangulation will be modified locally to build a new Delaunay triangulation D i+1 of S i+1 . When all the sites of S will be processed, we will have the complete Delaunay triangulation D of S.

Three situations can occur, if S is in general position:

1. s i+1 lies in the interior convex hull of S i .

2. s i+1 does not lie in any circumsphere of any simplex of D i .

3. s i+1 lies outside of the convex hull of S i but belongs to a circumsphere of a simplex of D i .

(1) In the first situation, let denote S := ICL Di (s i+1 ) and F 1 , • • • , F p the external faces of S of any dimension k < d. We can show that the cell complex defined by

D i+1 := (D i \S) ∪ cell(F j , s i+1 ) j , 1 ≤ j ≤ p ∪ {s i+1 }
is the Delaunay triangulation associated to S i+1 . In a more general setting, we have the following property: Proposition 2.9 (star-shaped incircle list). Let S be a nonempty finite set of sites of E and x ∈ E that lies on the convex hull of S. Consider C the union of the d-cells of ICL D (x) and of all its faces. Then C is star-shaped from x, that is for any point p ∈ C, [x, p] ⊂ C.

(2) The second situation is the simplest. If F 1 , • • • , F p are the external faces of the triangulation D i (of any dimension k < d) that are visible from s i+1 . We can show that the cell complex defined by

D i+1 := D i ∪ cell(F j , s i+1 ) j , 1 ≤ j ≤ p ∪ {s i+1 }
is the Delaunay triangulation associated to S i+1 .

(3) In the third situation, if we denote S = ICL Di (s i+1 ) the set of elements of D i whose circumsphere contains s i+1 and F 1 , • • • , F p are the external faces) of this set which are not visible from s i+1 and F p+1 , • • • , F p+q are the external faces of D i that are not faces of elements of S and that are visible from x i+1 . We can show that the cell complex defined by

D i+1 := (D i \S) ∪ cell(F j , s i+1 ) j , 1 ≤ j ≤ p ∪ {s i+1 }
is the Delaunay triangulation associated to S i+1 .

The first triangulation D d+1 is made of a simple simplex defined by the d + 1 first inserted points.

One important modification of the incremental algorithm consists in inserting sites in a random order. Its expected running time is better than the worst case running time for the incremental algorithm.

The worst case complexity of computing the Delaunay triangulation of n points in a

d dimensional Euclidean space E is O n log(n) + n ⌈ d 2 ⌉ .
On the practical implementation The first step is the Localization. It consists in finding whether the new site x is in the convex hull of S or not, and if it is the case, in what Delaunay cell of the triangulation T S x lies. A survey on localization methods is available in [START_REF] Devillers | Walking in a triangulation[END_REF]. When x is inside of the convex hull of S, the localization procedure return the index of the the Delaunay cell where it lies. This corresponds to the situation (1). When x is outside of this convex hull, the localization returns a Null pointer. This corresponds to the situations (2) or (3).

The second step consists in finding the list of the Delaunay cells whose circumsphere contains x (the incircle list). In the situation (1), this list contains at least the Delaunay cell where x is located. Owing to the Proposition 2.9, we know that the union of these Delaunay cells is star-shaped so that it can be determined locally by testing connected cells in the graph structure presented above.

The last step consists in deleting the Delaunay cells of the incircle list and connecting the new site to the external faces of the incircle list or the visible faces of the convex hull of S depending on the situation (1), ( 2) or (3).

Classical examples of fast nearest neighbor search algorithms in low dimensions

Given a set of n points, {x 1 , • • • , x n } ⊂ E, the nearest neighbor problem is to find the point that is closest to a query point q ∈ E. Many algorithms have been proposed to avoid the large computational cost of the obvious brute force algorithm. When one has to perform a big amount of nearest neighbor searches, a preprocessing of the data set will be profitable if it reduces the average query time.

The problem is optimally solved in the case of dimension 1, where the best algorithm is, as a preprocessing to sort the data set by the unique coordinate of its points. (Approximative cost of O(n ln(n))). The search algorithm consists of a simple binary search whose cost is ln(n) ln(2) + O(1). In the case of low dimensions, most fast search algorithms still have an approximative preprocessing cost of O(n log(n)) and an average search cost in O(log(n)) in low dimension. The criterion of choice among them relies on

• their effective speed on real data sets,

• the required memory,

• the sensitivity of the speed to the dimensionality.

A first obvious optimization called partial distance search (P.D.S.) consists of a simple modification of the brute force search: during the calculation of the distance, if the partial sum of square differences exceeds the distance to the nearest neighbor found so far, the calculation is aborted. This almost always speeds up the nearest neighbor search procedure.

The Kd-tree algorithm

The Kd-tree algorithm is the archetype of the branch-and-bound nearest neighbor search tree. It is very popular because of its simplicity.

Building the tree:

• Every point of the data set is associated to the root node.

• The data set is being sorted by its first coordinate. Then it is divided in two subsets of cardinal

n 2 + 1 or n 2 .
• Each subset is associated to a child node of the root node.

• The process is repeated on each child node recursively using the coordinate axis in a cyclic order, until there are less than two points in each node.

Searching in the tree: Let q be the query point.

• The search procedure begins by searching in what child node q is (depending of its first coordinate).

• This child node is then searched, and the process is repeated recursively until a terminal node is reached.

• A trivial nearest neighbor search is performed in the terminal node. (Partial Distance Search optimization can be used.)

• The procedure moves up to the parent of the terminal node.

• If the distance d 2 between q and the hyperplane that splits the data set is smaller than the distance d min to the nearest neighbor found so far, the other child node is searched.

• The procedure continues its way back to the root node.

Complexity: Except in one dimension where the search complexity is logarithmic (it amounts to a binary search), the worst case of the Kd-tree corresponds to the case where every node of the tree is explored. Then the worst case complexity is time exponential. The distances to every point is computed. The complexity of the preprocessing is O(d × n log(n)).

The principal axis tree algorithm

The Principal Axis Tree (PAT) is a generalization of the Kd-tree proposed by McNames in [START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF]. Instead of using a coordinate axis to sort the data set, its principal axis is used at each step. Moreover, the number of child node in the tree can be greater than 2 at each generation.

Building the tree:

• Every point of the data set is associated to the root node.

• The data set is being sorted by its projection on its principal axis. Then it is partitioned in n c subsets whose cardinality is ö

n nc ù + 1 or ö n nc ù . d2 dmin q p
Figure 2: K-d tree elimination condition: if the distance d 2 between the query point q and the brother node is smaller than the distance d min to the nearest neighbor found so far, say p, the brother node has to be explored.

• Each subset is associated to a child node of the root node.

• The process is repeated on each child node recursively until there are less than n c points in each node.

• At each step, the principal axis, and maximal and minimal values of subset's projection on the principal axis are kept in memory.

Optimizing the elimination condition: We refer here to Figure 3. We can improve the lower bound to the points that belong to child nodes of brother nodes. For any point q in region 1 and x in region 2, we have

d 2 (q, x) ≥ d 2 q2 + d 2 2x
. This result is then used again to get a lower bound to points in region 3, and 4 and so on.

d 2 2x ≥ d 2 23 ∀x ∈ Region 3, d 2 (q, x) ≥ d 2 q2 + d 2 23 + d 2 34 ∀x ∈ Region 4.
Searching in the tree: Let q be the query point.

• The search process begins by searching in which child node q is (by computing its projection on principal axis).

• This child node is then searched, and the process is repeated recursively until a terminal node is reached.

• A partial distance search is then performed in the terminal node.

• The procedure moves up to the parent of the terminal node.

• The elimination condition is checked to decide if brother nodes have to be searched or not.

• The procedure continues its way back to the root node.

Choice of parameter n c : For normal or uniform random data sets (and distribution of query points), best overall performances are obtained with n c = 7 (independently from dimensionality for d < 10).

(The same optimal value is obtained by McNames in [START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF].) In the case where the data set is an optimal quantizer of those distributions, best performance is obtained with n c = 13.

Complexity: Space storage is O(n). Except in the one-dimensional setting where the search complexity is logarithmic (it comes to a binary search), the worst case of the Kd-tree corresponds to the case where every node of the tree is explored. Then the worst case complexity is time exponential (2 n comparisons of coordinates). n distances are computed. The complexity of the preprocessing is O(d × n log(n)).

Algorithm performance: On a 5000 points Gaussian data set in R 2 , the depth of the tree is 4.

• 27 (partial) distances,

• 15 scalar products,

• 9 binary searches are performed in average. Why using this space partitioning ? The idea is that good empirical performance of PAT are due to the fact that it takes advantage of the shape of the data set. Yet obviously when both query point distribution and data sets lie on a smaller dimension (k < d) subspace of E, one retrieves the same complexity as when using the same algorithm on a k dimensional space. This intrinsic dimension is often less than the spatial dimension of the space. In a more general setting, PAT takes advantage of high correlations in the data set coordinates. However if one uses the same number of child nodes n c in Kd-tree and PAT tree, we see that

• Preprocessing time is longer for PAT than for Kd-tree.

• The first traversal of the tree to a terminal node is more costly (projections have to be computed).

But PAT is still faster because its geometrical partition of the space fits the data set in a more relevant way. To be precise, it happens less often than one has to search a brother node with PAT than with Kd-tree.

In [START_REF] Wim | An efficient branch and bound seach algorithm for computing k nearest neighbors in a multidimensional vector space[END_REF], the same space decomposition was proposed for the nearest neighbor search problem (but using the only 2 child node at each generation). They justify the use of this decomposition using a heuristic criterion, according to which the best possible decomposition of the data-set into two subsets for branch and bound nearest neighbor search is to split the data set with respect to its projection on the principal axis.

A new quantization based tree algorithm

As we have seen in previous sections, a good space decomposition that fits to the data distribution may lead to a faster branch and bound nearest neighbor search algorithm, if less brother nodes have to be explored. The traversal of the tree can be a little more expensive if it is compensated by the gain due to the fact that less nodes are explored.

Principal component analysis and optimal quantization are two types of projection of a probability distribution. Similar inertia decompositions hold in the quadratic case (Huyghens lemma).

PAT is based on a recursive space decomposition based on the principal component analysis of the underlying data set. The initial idea here is to design a branch and bound algorithm based on a recursive quantization of the empirical distribution of the underlying data set.

The crude quantization tree algorithm

Building the tree:

• Every point of the data set is associated to the root node.

• The data set is being partitioned into n c subsets corresponding to the Voronoi cells of an optimized quantizer of the empirical distribution of the data set.

• Each subset is associated to a child node of the root node.

• The process is repeated on each child node recursively until there are less than a certain number of points in each node.

Some other computations are done during the preprocessing that will be detailed further on.

Remark. One notices that the resulting search tree is not balanced and may have some longer branches.

Searching in the tree: Let q be the query point.

• By performing trivial nearest neighbor researches in the node's quantizer the search algorithm traverses the tree to a terminal node where a trivial partial distance search is performed.

• The procedure moves up to the parent of the terminal node.

• The elimination condition, (developed further on) is checked to decide whether brother nodes have to be searched or not.

• The procedure continues its way back to the root node.

Consistency of the space decomposition:

Implementing only the way down to the terminal node (with n c = 7 in both principal axis tree and quantization tree), we naturally do not obtain always the index of the nearest neighbor. But we have noticed that the result is more often the right one with the quantization tree than with the principal axis tree.

For instance, in dimension 2, on a 5000 points Gaussian data set, on a million Gaussian query points, we notices:

• 56 percent of false results with PAT.

• 16 percent of false results with the quantization tree.

Similar results are obtained with other values of the parameters and other data set distributions. This empirical test makes us reasonably optimistic about the performance of a branch and bound tree based on this decomposition.

Still, the cost of the way through the search tree is more expansive with the quantization tree (as described above).

• For the "quantization tree", we have to perform trivial nearest neighbor search to find the right child node.

• For "principal axis tree", we only compute a projection and perform a binary search.

Moreover, it was proved in [START_REF] Tarpey | Principal points and self-consistent points of elliptical distributions[END_REF] that in the case of Gaussian distributions, the affine subspace spanned by stationary quantizers correspond to the first principal components of the considered Gaussian distribution. (This result, extended to the infinite dimensional case in [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF] allows to efficiently compute optimal quadratic quantizers of bi-measurable Gaussian processes.) Hence, in this case, this shows that the quantization tree with two branches at each generation is related to the principal axis tree.

First elimination condition If the center of the Voronoi cell corresponding to the current node is A, the first rough method to decide whether a brother node with center B has to be explored or not is compute the distance d 2 of the query point Q to the Leibniz halfspace H(B, A). Then the node corresponding to point B is explored if d 2 is smaller than the distance to the nearest neighbor found so far, d 1 . We

have d 2 = AB 2 -AQ cos α and QB 2 = QA 2 + AB 2 -2AQAB cos α so that ⇒ cos α = QA 2 +AB 2 -QB 2 2AQAB . This yields d 2 = QB 2 -QA 2 2AB
. Hence, the computation of the distance to the Leibniz halfspace requires one subtractions QA 2 -QB 2 , (QA 2 and QB 2 can be computed during the search in the quantizer in the parent node), and one multiplication by 1 2AB . ( 1 2AB can be computed during the preprocessing.) Then, it is clear that the nearest brother node correspond to the second nearest neighbor in the quantizer, and the second nearest to the third nearest neighbor, and so on. Hence, brother nodes have to be explored in the order defined by the distances of its centers the query point.

We can also use the same optimization of the lower bound proposed by McNames in [START_REF] Mcnames | A fast nearest-neighbor algorithm based on a principal axis search tree[END_REF] and presented in Section 3.2. Referring to Figure 4, the lower bounds d i are recursively incremented when exploring brother nodes. Performance of this first quantization tree algorithm. This first algorithm has been implemented and its empirical performances has been compared to the two previously exposed PAT and Kd-tree in terms of empirical performances. Intermediate performances between our implementations of Kd-tree and PAT were obtained in small dimensions. Although, as we will see further in empirical tests, it seems to take better the increase of dimensionality. The preprocessing time, that requires small quantizer computations is also more costly than both PAT and Kd-tree.

Optimizations for the quantization tree

To reduce the average query time, we are now proposing a new optimization procedure which reduces the number of brother nodes to be checked. Let us consider the Voronoi diagram plotted in Figure 5. In this figure, we obviously know that when the query point is in a cell A, its nearest neighbor cannot be in cell B, because cell B is "hidden" by closer cells. One has to give a precise mathematical sense to "hidden" in this sentence. However, in the quantization tree as it has been described, the distance of query point to H(a, b) has to be computed.

A first idea is to compute for each 1 ≤ i ≤ n c a list of "friends" among brother nodes in which the nearest neighbor can be when q is in cell i.

This list has to be large enough to ensure that it contains the nearest neighbor but as small as possible in order to reduce the computations of elimination conditions.

As concerns the choice of the parameter n c , we have to take in consideration that increasing n c makes the depth of the tree smaller but also makes the nearest neighbor search slower for each generation of the search tree.

How can we obtain a friend Voronoi slabs list? The first observation about obtaining such a friend list is that it is not a simple problem. Indeed, this list is a priori not reduced to slabs whose corresponding Voronoi cells are adjacent in the Voronoi diagram. Moreover, in some cases, the minimal friend list can be quiet large. So is the case for unbounded Voronoi slabs for example. Figure 6: In these cases, the nearest neighbor of the query point q may be p although p is not in an adjacent Voronoi cell.

5 Some optimizations for the quantization tree algorithm

In Section 2.1, basic definitions about Voronoi diagrams and Delaunay triangulations that are prerequisites to this section ahev been recalled.

Remark (Voronoi slabs and Voronoi cells). From their respective definitions, one can easily deduce the following properties:

• Let S ⊂ E be a finite set of sites, let C be an associated Voronoi partition and consider s ∈ S.

Then it is clear that V ({s}) =

• ¸ slab C (s).

• The points of the Voronoi cells V (R) with R ⊂ S and card R > 1 belong to the boundaries of Voronoi slabs.

• As a consequence, for s ∈ S, as the boundary V ({s}) is constituted with its faces of lower dimensions, previous remark yields V ({s}) = slab(s) and δ slab S (s) = ∂V S ({s}).

Notations: In the following of this section, if S ⊂ E is a finite set of sites in E, one will denote T S the Delaunay triangulation of S, DG S the Delaunay graph of S, V S its Voronoi diagram. For R ⊂ S, For every point p of the underlying codebook,

• Compute s = Proj S (p) and P I S (p).

• Then for every point s ′ ∈ P I S (p), insert s in the set of friends of node s ′ .

This method gives a first algorithm to compute friend list. Still, when the data set is large, it is very expensive because one has to deal with all the points of the data set.

In fact it is possible to compute an acceptable friend list thanks to the same result 5.3 without using the points of the underlying data set.

Fast friend node algorithm: In this section, another method to compute friend node lists is devised which does not need to deal with the complete underlying data set but only the underlying codebook.

When keeping the same notations, the principle of the method is to compute for every slab S (s), s ∈ S ,of the Voronoi partition C S , the set U P I S (s) := p∈slabS (s) P I S (p). It is the union of all the pseudo-insertions of points of slab S (s). If one is able to compute this set, the resulting friend nodes algorithm simply writes: For every point s ∈ S,

• Compute U P I S (s).

• Then for every point s ′ ∈ U P I S (s), insert s in the set of friends of node s ′ .

The question is: how can we compute U P I S (s)? Remark. Let us recall that, thanks to Proposition 2.5, (δ slab S (s) = ∂V S ({s}).

Proof: Consider x ∈ slab S (s) such as s ′ ∈ P I S (x). Let us define x * , such that {x * } = [x, s ′ ] ∩ ∂V S (s).

• One has H(x * , s ′ ) ⊃ H(x, s ′ ). So V S ({s ′ }) ∩ H(x * , s ′ ) ⊃ V S ({s ′ }) ∩ H(x, s ′ ), hence V S ({s ′ }) ∩ H(x, s ′ ) = ∅ ⇒ V S ({s ′ }) ∩ H(x * , s ′ ) = ∅ that is equivalent to s ′ ∈ P I(x *
) thanks to the Lemma 5.3.

• Finally, ∀x ∈ slab S (s), ∀s ′ ∈ P I S (x), ∃x * ∈ δ slab S (s) such that s ′ ∈ P I S (x * ).

Remark. As there are not a finite number of sites on the boundaries, this does not give an effective method for computing U P I S (s) yet.

As seen in Section 2.1, computing the set P I S (x) corresponds almost to the same algorithm as the insertion procedure in an incremental triangulation algorithm, that is:

• Localization of x in the triangulation,

• Computation of the set ICL(x),

• U I S (x) is the set of points that belong to a cell of ICL(x) plus, if x is outside the convex hull of S, the points of the external faces of T S that are visible from x.

Lemma 5.6. Let S be a non empty finite set of sites in E. We consider the circumsphere C of Delaunay d-cell of the Delaunay triangulation T S . We denote c its center and r its radius. Let s be a site of S.

If V S ({s}) ⊂ C = ∅ then c + r |s-c| (s -c) ∈ V S ({s}).
The proof is straightforward. This leads to an algorithm to compute sets (U P I S (s)) s∈S .

• For every Delaunay d-cell D of T S -Compute the center c and radius r of its circumsphere.

-For every site s ∈ S that is not in D, compute p := c + r s-c |s-c| ∈ V S ({s}), and check if the site s is the nearest neighbor of p in S. If so is the case, then the points of the Delaunay d-cells D belong to U P I S (s).

• Then deal with unbounded Voronoi cells:

-For every external face F of the Delaunay triangulation, compute a normal vector u F directed toward the exterior of the convex hull of S.

-For two distinct external faces F 1 and F 2 of the Delaunay triangulation, if u F1 , u F2 > 0 then for every (s 1 , s 2 ) ∈ F 1 × F 2 , s 1 ∈ U P I S (s 2 ) and s 2 ∈ U P I S (s 1 ).

In Figure 8, we present some friend Voronoi lists in the 2-dimensional case. 

Test with real data sets

To perform the following tests, the quantization tree algorithm and the friend-node optimization have been implemented in C++. Because of the additional feature related to computational geometry that we needed, as the pseudo-insertion procedure, we had to implement a Delaunay triangulation. All the figures presented in this article were generated with this implementation of the Voronoi diagram with which we performed the following tests.

Tests on Gaussian and uniform data sets

In Tables 9, 10 and 11, we report the execution time for 10 millions nearest neighbor queries on datasets of size 5000 generated with independent Gaussian pseudo random variables and with a uniform distribution on the hypercube. The best overall performances were obtained with n c = 35 children by node for the quantization tree. The tests were performed with an Intel Pentium Dual CPU at 2GHz. We noticed that in dimension d = 2 and d = 3, we had intermediate performances between the "principal axis tree" and the Kd-tree algorithms. In dimension 4, the performance of the "principal axis tree" and the "quantization tree" are close one to each other. Finally, it seems that the quantization tree has a better behaviour in dimensions greater than 5 where it significantly outperforms the two other implemented methods. 6.47s 10.33s 15.91s 32.62s Principal axis tree 0.74s 1.52s 2.81s 6.71s 16.53s 28.03s 47.53s Kd-tree 1.54s 2.82s 5.46s 10.64s 18.50s 31.60s 55.71s Remark (Computational cost or the preprocessing for the friend cell algorithm). An important fact that we have experienced is that, in higher dimensions, the friend cells list becomes bigger and there is no more competitive advantage in using it in dimension higher than 7 (when having less than 30 branches per generation in the quantization tree). Moreover, as it requires to compute Delaunay triangulations during the preprocessing, whose complexity exponentially increases with the dimension, the computational cost of the friend cell preprocessing makes it useless in higher dimensions.

  the quantization error is the L p norm of |X -Y |, where | • | denotes the Euclidean norm on E. The minimization of this error yields the following minimization problem min{ X -Y p , Y : Ω → E measurable , card(Y (Ω)) ≤ N }.

  If a does not belong to the boundary of C, ∃ε ≥ 0, B(a, ε) ⊂ C so for any λ > 0 small enough, aλv ∈ C and α ≤ φ(aλv) = a|vλ v 2 < a|v = α which yields a contradiction. Consequently a ∈ ∂C.

Corollary 2 . 2 .

 22 Every point of the boundary of a convex subset of E belongs to one of its supporting hyperplanes.

  Delaunay triangulation Definition 19 (Delaunay cell). If R ⊂ S, and V (R) is a non empty Voronoi cell, then the Delaunay cell D(R) is cell(R). Definition 20 (Delaunay triangulation). The Delaunay triangulation D of S is the collection of Delaunay cells D(R), where R varies over subsets of S with V (R) non empty.
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 1 Figure 1: Voronoi diagram and Delaunay triangulation of a data set S of size 10. We have C ∈ V S ({s 1 , s 2 }). So C is the center of an empty circumsphere of {s 1 , s 2 }. The point C 123 is the center of the circumsphere of the Delaunay triangle {s 1 , s 2 , s 3 }.
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 43 Figure 3: Elimination condition of the principal axis tree.

3 Figure 4 :

 34 Figure 4: Optimization of the elimination condition for the quantization tree d 2 ≥ d 2 1 + d 2 2 + d 2 3 .

Figure 5 :

 5 Figure 5: Cell B is "hidden" from cell A.

Figure 7 :

 7 Figure7: If the query point q lies on the dark grey region H(x, s) ∩ V S ({s}) its nearest neighbor may be x.

Lemma 5 . 5 .

 55 With the same notations, one has U P I S (s) = p∈δ slabS(s) P I S (p). In other words, we have to check points of the boundary δ slab S (s) of slab S (s).

Figure 8 :

 8 Figure 8: Examples of friend Voronoi cells in a two-dimensional Voronoi diagram in the case of a bounded Voronoi cell (left) and in the unbounded case (right). In both case, the dark gray region is the considered Voronoi cell and the light gray regions are the friend Voronoi cells.
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 10 Figure 10: Execution time of 10 millions random queries on a data set of 10000 points, generated with a Gaussian pseudo random generator.

Figure 11 :

 11 Figure 11: Execution time of 10 millions random queries on a data set of 5000 points, generated with a uniform pseudo random generator.

  The centroidal projection associated C and X is the application Proj C,X : x →

	0	in the other case,	the centroids associated with X and C.
				N	G i 1 Ci (x).
				i=1
	Lemma 1.3 (Huyghens, variance decomposition). Let X be a E-valued L 2 random variable, N ∈ N *
	and C = (C i ) 1≤i≤N a Borel partition of E. Consider Proj C,X = projection. Then one has,	N i=1	G i 1 Ci the associated centroidal

  Definition 10 (supporting halfspace). Let C be a convex subset of E. A hyperplane H supports C if H ∩ C = ∅ and C is contained into one of the closed halfspaces defined by H.

	Lemma 2.1. Let C	E be a convex subset of E. If H is a supporting hyperplane of C, then every
	point of H ∩ C is a frontier point of C.
	Proof: Let H be a supporting hyperplane of C of equation φ

  2.75s 5.35s 8.93s 15.99s 28.06s 52.31s Principal axis tree 1.21s 1.86s 4.49s 10.87s 20.14s 41.56s 82.30s Kd-tree 1.88s 3.71s 8.54s 17.13s 31.06s 60.67s 118.93s Figure 9: Execution time of 10 millions random queries on a data set of 5000 points, generated with a Gaussian pseudo random generator.

		d = 2 d = 3 d = 4	d = 5	d = 6	d = 7	d = 8
	Quantization tree 2.59s 3.87s	6.46s 11.90s 27.54s 45.78s 84.63s
	Principal axis tree 1.33s 2.44s	4.94s 12.78s 41.02s 62.33s 119.88s
	Kd-tree	2.82s 5.20s 11.32s 24.20s 47.51s 87.61s 164.52s
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V S (R) will represent the Voronoi cell of R in S. If C S is a Voronoi partition associated to S, and s ∈ S, slab S (s) will denote the Voronoi slab associated to S is the Voronoi partition C. Lemma 5.3. Let S ⊂ E be a nonempty finite set of sites in E and x ∈ E\S. Consider s ∈ S, the following assertions are equivalent:

Proof:

) is obvious owing to Proposition 5.1. 

The intermediate value theorem shows that there exists λ * such that ∆ • f (λ * ) = 0 and thus f (λ * ) ∈ V S∪{x} ({x, s}).

The first modification made in the quantization tree algorithm is to assume that the points of the quantizer at each generation are points of the underlying codebook Γ. (In order to fulfill this requirement, we project an optimal quantizer onto the codebook.)

by their nearest neighbor projection on S. Consider q ∈ E. If q ∈ slab S (s) and t = Proj Γ (s) then {t, s} ∈ DG S∪{t} .

Proof: This is a straightforward consequence of the previous lemma.

Notation: Let S be a set of sites in E. For a point t in E, we denote P I S (t) = s ∈ S, {s, t} ∈ DG S∪{t} . The notation P I stands for "Pseudo-Insertion".

From an algorithmic viewpoint, the Delaunay graph of S being computed, P I S (t) stands for the sets of points in S, that are connected to t when updating the Delaunay graph to take account of this new point.

Implementing a procedure that computes P I S (t) is very similar to the insertion procedure of point t in T S . First friend node algorithm: This leads to a first method to compute a friend list: