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On Schrodinger equations with modified dispersion
Rémi Carles

ABSTRACT. We consider the nonlinear Schrddinger equation with aifieatdspatial dis-
persion, given either by an homogeneous Fourier multjpielby a bounded Fourier multi-
plier. Arguments based on ordinary differential equatigietd ill-posedness results which
are sometimes sharp. When the Fourier multiplier is boundlednfer that no Strichartz-
type estimate improving on Sobolev embedding is availaBleally, we show that when
the symbol is bounded, the Cauchy problem may be ill-poséhertase of critical regu-
larity, with arbitrarily small initial data. The same is &#when the symbol is homogeneous
of degree one, where scaling arguments may not even givégthtecritical value.

1. Introduction
For (t,z) € Ry x R?, we consider
(1.2) i0wu + P(D)u = Nu|*"u Uj—0 = U,

whereD = —iV,, P: R = R, A € R ando > 0. Since @he Fourier multiplieP is
real-valued, the free flow\(= 0) generates a unitary group &f* (R%), s € R

S(t) = e~ P,
We consider two cases:

e Pis homogeneous? (&) = p™P(¢), forall ¢ € RY, > 0, withm > 1.

e PisboundedP € L>(RY).
The first case includes the standard Schrodinger operBtg) = —|¢|?), and the fourth-
order Schrodinger operatoP(¢) = |£[*), studied for instance if2}[21,[22. Smoothing
effects and dispersive estimates have been establisheadlier general Fourier multipliers
Pin [4,[17. The casel = 1, P(&) = £%*1, j € N, has been studied initially ifiLB];
the casel = 2, with P a polynomial of degree» = 3 has been studied i8], revealing
different dispersive phenomena according to the preaigetste of P. The casen € 2N,
with P elliptic and V2 P non-degenerate outsidé = 0}, appears as a particular case of
the framework in[L3]. It is shown there that if > max(0, s¢), then the Cauchy problem
(L2) is locally well-posed if*(R%), where

d m
(12) S = 5 — %
This index corresponds to the one given by scaling arguméntssolves[(1.1L), then for

anyA > 0, up : (t,x) — A™/29)y(A™t Az) solves the same equation. The values of
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2 R. CARLES

for which theH* (R%)-norm is invariant undet — u is s = so. We will see in§I.3 that
this scaling argument may not yield the sharp Sobolev retylaf m = 1, the Cauchy
problem [Z.1L) may be strongly ill-posed ii* (R?) for all s < d/2.

In [[13], the proof of local well-posedness uses dispersive aridHsirtz estimates for
S, established inT1] for d = 1, and in [L2] for d > 2. Note that in the casé = 1,
dispersive and Strichartz estimates foare proved in[16] for P(£) = |£|™ andm > 2
(not necessarily an integer). By resuming arguments sirtalthose presented i8]1d,
we prove that in this framework, the index is sharp, in the sense that the nonlinear flow
map fails to be uniformly continuous at the originif* (R?), if s < so. This property has
been established i2P] for the caseP(¢) = |¢|* with (d,0) = (3, 1). However, the index
so may not correspond to the critical Sobolev regularity (§£8).

The second case, whefeis bounded, is motivated by the results presented., [
whereP(§) = — 1 arctan(h|¢|?) is considered to construct numerical approximations of
the solution to the linear Schrodinger equation

10+ Au = V(x)u,

and0 < h < 1 denotes the time step. We will see below that in such a framewo
Strichartz estimate is available, even if one is ready togoaye loss of derivative. Another
example of bounded symbol one may think of is

i+ A1 —A) " = Au*u.

In these two exampleg is elliptic. We will see however that no Strichartz estim@tetter
than Sobolev embedding) is available there, and that thieadnegularity iss. = d/2.

1.1. Norm inflation. Our result in this direction is:

Theorem 1.1. Letd > 1, A € R, o0 > 0. Assume that either is an integer, or that there
exists an integer such thae > r > d/2.

1. Suppose thaP is m-homogeneous, witl: > 1, and denotesy = d/2 — m/(20).
Suppose that, > 0 and let0 < s < sq. There exists a familfu?)o< <1 in S(R?) with

[ug|| s (may — 0 @sh — 0,
and a solution:” to (L) and0 < t* — 0, such that:
[ (") || - (Ray — +00 @sh — 0.
2. If P is bounded, then the above conclusion remains true folatys < d/2.

Theoreni L1l is proved if, by adapting the ordinary differential equation mechanis
used in, e.g./d,[1(. However, the critical Sobolev regularity may satisfys. > so (see
g1.3): in view of [13 and Theorem 1]1, we hawe = s at least whenP (&) = plé|™,
we R\ {0}, m € 2N\ {0}. We also refer tdf] where a different result concerning the
lack of well-posedness is established for a broad varietjigdersive equations, even in
the linear case.

1.2. Absence of Strichartz estimatesin this paragraph, we focus our discussion on
the case wher® is bounded. Fos > d/2, H*(R?) being an algebra, local well-posedness
in H*(RY) is straightforward, provided that the nonlinearity is stiéfntly smooth (see e.g.
[23). Therefore, the critical threshold is = d/2, and from Theorerm 111, no dispersive
property is present to decrease this number. More precise$trichartz estimate is avail-
able forS(-), even if one is ready to pay some loss of regularity which iswarse than
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the result provided by Sobolev embedding. To state thisgntggprecisely, we recall the
standard definition.

Definition 1.2. A pair (p, q) # (2, o) is admissible i > 2, ¢ > 2, and

2 1 1
N (—
p (2 Q)

By Sobolev embedding, for alp, ¢) (not necessarily admissible) with< ¢ < oo,
there exists” > 0 such that for alky € H%/2~%/4(R), and all finite time interval,

1S )uoll Lo (r;pamayy < CNSC)uoll Lo r;mer2-aramay)
< C||UOHLP(I;Hd/%d/q(Rd)) = C|I|1/p||U0||Hd/2fd/q(Rd)-
WhenP is bounded, this estimate cannot be improved:

Corollary 1.3. Letd > 1, andP € L>~(R%;R). Suppose that there exist an admissible
pair (p, ¢), anindext € R, atime intervall > 0, |I| > 0, and a constanf’ > 0 such that

||S(')U0||LP(1;Lq(Rd)) < CHUOHHk(Rd)a Yug € Hk(Rd)-
Then necessarily; > 2/p =d/2 —d/q.

The fact that no standard Strichartz estimate (with no isssjailable forS(-) is rather
clear, since the dispersion relation is giverrby: P(¢), and defines a characteristic variety
which is bounded inr. However, one could expect the existence of Strichartmedés
with loss of regularity, in the same fashion as1i[B,[7 (where the geometric framework
— the space variable belongs to a compact manifold — ruleghmiexistence of the
standard dispersive properties). The fact that this is 0d$ & rather direct consequence
of Theoren{ Il (where > 0 is arbitrary), and of the argument given [#] to prove
Proposition 3.1. It may seem surprising to prove Corol[a® 4s a consequence of a
nonlinear analysis; we insist on the fact that the proof cfdiieni 1.1l is rather simple, and
the deduction of Corollary_1.3 involves another nonlinesutlt, whose proof is also quite
short (see Propositidn 3.2 below).

1.3. Critical cases.In [9], local well-posedness ifif * (R%) for small data is estab-
lished for Equation[(I]1) in the cagq&) = —|£|?, where

d 1
Se=———

2 o

coincides withs, in that case, sincer = 2. In [20], local well-posedness ifif */2(R?)

for small data is established for the same operator, withimearities which are allowed
to grow exponentially. In these two papers, the proof usdsifirtz estimates (in Besov
spaces). On the other hand, whBris bounded, the Cauchy problem may be ill-posed
in H42(R%), even for nonlinearities growing algebraically. Moreqwehen P is m-
homogeneous witm = 1, the critical Sobolev regularity may not bg, buts. = d/2 >

so, with ill-posedness fos = s..

Proposition 1.4. LetA € R\ {0}, 0 > 0. Assume that either is an integer, or that there
exists an integer such thao > r > d/2. In either of the two cases:

o P(§) =c-&ceRYor

e Pis constant,
forall § > 0, there exista,y € H¥/2(R%) with [|ug| r/2(ray < 6 such that{L.T) has a
unique solution, € C(R; D'(R%)), and for anyt > 0, u(t,-) ¢ HY/?(RY).
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For comparison with other results, note that in the first c&se not elliptic if d > 2.
In the second cas@, # 0 is elliptic, butV2P = 0 is obviously degenerate.

Unlike what happens in the presence of Strichartz estin{ff@e20Q), this result yields
examples where local well-posedness fails in the critiaaks = s.., even for small data.
We prove Proposition 1.4 ifd: we present the casds= 2,0 > 0,andd > 1,0 = 1/2,
only, for the convenience of the exposition, but the arguman be extended to any space
dimension, up to more intricate computations.

In the casen = 1 (at least), the mere assumption thais m-homogeneous is not
enough to characterize the critical Sobolev regularit{fid), or the existence of Strichartz
estimates. Indeed, the symhB(¢) = |£| corresponds to the wave equation, for which
Strichartz estimates are available whén> 2, and sos. < d/2. See e.g.[15. This
suggests that also when > 1, the values, may not be sharp wheR is not proportional
to |¢|™, but for instance of the forrg|~1c - ¢, ¢ € RY, or more generally whe is not
elliptic; see alsd3,(4,[17 for remarks in this direction.

2. Proof of Theorem[1.1

The proof of Theorem 111 proceeds along the same lines &[] (see alsol23)).
Fix s as in Theorem I]11. Consider initial data of the form

ug(:zr) = p*~ 42kl (%) ,

‘ 2

with0 < h < 1, ap(z) = e~ 1*I", and
-0

1
h

= 1 —

5 < o8 h)
for somed > 0 to be fixed later. We haviu(|| - (ra) h—go. Introduce the scaling
—

d(ry) = b2 (BP0 hy)
for somea to be precised later:

||¢(T)||H5(Rd) = H“h (hHaT) ”HS(Rd)'
Denotes = h27(4/2-5)=2—_The functior solves the Cauchy problem
(2.1) ie0 + W72 P (WD) ¢ = Ay jr—0 = K"ao.

2.1. Choice ofo. WhenP is m-homogeneous, Equatidn(2.1) simplifies to
10 + WP P(Dy Y = APy ir—o = Kao.
Forw > 0, we set

1 d
2+a=—((m—1+w)2a(——s)+m),
m+w 2

in which case we have:
c = hQJ(sofs)/(erw).

Thereforeg — 0 ash — 0 sinces < so. We also compute
h20’(d/275)7m — gmtw,

WhenP is bounded, we consideér+ o = o(d/2 — s). Therefore,

d
20(§—S>—2—a>0 (hencez — 0ash — 0), and2+ « > 0.
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2.2. The ODE approximation. Introduce the solution to
ie0rp = )\|90|2090; Plr=0 = Hh(lo-
Itis given by
e(r,y) = K"ao(y) exp (=iAZ ()" Jao()|*7) -
Sinceay is a Gaussiany € C*(R x R%) regardless of > 0, and for anyr > 0,

(2.2) I i mey S ()7 (g) R

Lemma 2.1. Letr > d/2 be an integer, with in addition < 2¢ if o € N. In either of the
cases of Theorem 1.1, we can fihd 0 independent of > 0 such that

sup[[9() — ol ay — 0.
OSTés(log é)é

PROOF Denote byw = 1) — ¢ the error. It solves
iedyw + 272 P (h'Dy ) w = h* 2= P (h71D,) ¢
A (lw+@l* (w + ) = 01> ) |

with w),—o = 0. Using the facts thaP is real-valuedz — |z|*" z is sufficiently smooth,
andH"(RY) is an algebra, we find

1 T
Jwr) e S 2 [ |
0

1 " g g
+;A(wvwamﬂ+wwm@mwwmwmmmmw.
In the case wher@ is m-homogeneous, we have

< p20(d/2—5)—m ||<p(7'/) HHT+M(Rd)

dr’

H"(R%)

hZU(d/Q—S)P (h_lDy) (p(T/)

HhQU(d/Qfs)P (hilDy) 4/7(7'/)

HT(R%)
SR o (P | oo (it -
In the case wher® is bounded, we have

S B2 o) | g ey

~

< h20(s0—s) H('O(T/)HHT(Rd) :

HhZG(d/Z—s)P (h_lDy) s0(7_/)

H™(R4)

where we sety, = d/2 in this case.
In both cases, we check that there exists 0 (independent of) such that
hQU(sofs) — €1+[5'

Itis given by the formula
20(s0 —d/2)+ 2+«
B = -
20(d/2—3s)—2—«
In the homogeneous case, this formula becothesm — 1 + w, and whenP is bounded,
§ = 1. Therefore, in view of[(2]2) and sineé < 1, there exisp3, y > 0 such that

<o ((Z) )
Hr(R4) €

HhQU(d/Qfs)P (hley) 4/7(7'/)
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So long as|w(7)|| g+ re) < 1, with 7 as above, we infer froni.(2.2):

()] < [T ((TY s a2 (e (7Y / dr’
H™(R4) S 3 + T + + ||w(7’ )HH’V‘(Rd) T .
o € e Jo 5

Gronwall's Lemma yields
Y - .
(™) | e (ray S €° ((g) + 1) eCT/eHO(/e) T < B207/e40(r/e)™H

By choosings > 0 sufficiently small, the right hand side is controlled by, s&/2, for

all0 < 7 < e(log %)5 The condition||w(7)|| ;- wra) < 1 is verified for such times,
provided that is sufficiently small, and the lemma follows. O

2.3. Conclusion.Letr > d/2 as in Lemma&2]1. Witlhh > 0 given by Lemma2]1,

we have, since < d/2:
5 5
u” <h2+0‘6 <1og 1) ) %) (E <1og 1) )
3 3
H*(R)
5 5
%) <5 <1og1> ) - <5 <logl> )
3 g

On the other hand, similar tb(2.2), we have:

lo() e 2 ()77 () - o,

3
1 5 1 s0—0—200s
© (E <1og—> ) >C (1og—) —o(1).
‘ He(R4) ‘
For6 > 0 sufficiently small,sé — 6 — 206s > 0, and LemmaZ]1 yields

1\?
ul <h2+°‘5 <1og g> )

Theoreni LIl follows, with

=

H=(R4)

-C

H™(R%)

and so,

— +00.
h—0
Hs(R4)

5 5
th = p2toe (10g l) = Cp?o(d/2=9) (10g l) — 0.
€ h/) h—o0

3. Proof of Corollary I3
We argue by contradiction, by using a slight generalizatitofY, Proposition 3.1].

Definition 3.1 (From [19]). Lets € R. The Cauchy probleifL.])is well posed inf/* (R%)
if, for all bounded subseB C H*(R?), there existl' > 0 and a Banach spac&r
continuously embedded intG3([0, T]; H*(R%)) such that for allug € H*(R%), L.1)
has a unique solutiom € Xp, and the mapping, — w is uniformly continuous from
(B, |- lla+) to C([0, T); H*(R%)),

Proposition 3.2. Letd > 1, P : R* — R. Suppose that there exist an admissible pair
(p,q), anindext < 2/p =d/2 —d/q, To > 0, and a constanf’ > 0 such that

(3.1) 1S()uoll Lo (o.1): La(ray) < Clluollge(ray, VYuo € HF(RY).
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Then for all
b

d d
k+6<8<5’ O<0’<§7
the Cauchy problem foff.1)is well posed i *(R).

Since in Theorem 111, we can always consigler 1, Theoreni 1.l and PropositibnB.2
imply Corollary[1.3 in the non-endpoint cage> 2. The endpoint case then follows by
interpolation with the cas@p, ¢) = (o0, 2): if an endpoint Strichartz estimate (with some
loss) was available, then an non-endpoint would be as well.

ProOOFR For0 < T < Ty, introduce

Xr =C (0,7} H*(R?)) n L* ([0, T); WH(R))
wherel = s — k. By assumption/ > d/q, so we have
Xz C LP ([0,T); L™ (RY))..
This space is equipped with the norm
lullx = sup u(®)llaee) + (1 = 2)7]

tx

Lr([0,T);La(R4))

We construct the solution tb(1.1) by a fixed point argumeat. S

D(u)(t) = S(t)ug — i/\/o St —1) (|u(7’)|2‘7u(7')) dr.

We prove that forT' €]0, Tp] sufficiently small,® is a contraction on some ball dfr
centered at the origin. In view df(3.1) and Minkowski inelitya

t
1900 x, S ool + [ D)) | g

t
20
S lluoll s (ra) +/0 ||U(T)||Loo(Rd) HU(T)HHs(Rd) dr

20
S HUOHHS(Rd) + 77 ||U||Lp([0,T];Loo(Rd)) HUHLOO([O,T];HS(Rd)) )

with v =1 — 20/p > 0. Therefore,
20+1
1®(u)ll x, < Cluoll s ey + CTY Jull 3,7 -
Similarly,

20 20
[@(u) = D), < T (Nl + 1013, ) lu = vl -
This yields the local well-posedness result stated in Psitipo[3.2. O

4. lll-posedness

The key remark is that all the cases of Proposfitioh 1.4 beilrdtm an ordinary differ-
ential equation mechanism. Denotedbthe solution to

0w = Ao[*7v; v = uo.
WhenP (&) = ¢ &, we have
u(t,x) =v (t,z+ct),

and whenP(§) = ¢, we have
u(t, ) = v(t, z)e',
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so it suffices to prove Propositibn 1.4 in the c#se- 0. For fixedz € R¢, we have

4.2) o(t,z) = uo(x)e_ut‘””(m)l%.
The idea is then thatf*/2(R?) is not an algebra.
Consider
4.2) ug(x) =6 % <1og ﬁ) x(z°), zeRY
X

with x € C§°(R), x = 1 near the origin, anguppy C] — 1, 1[. We compute
Vo(t,x) = e iMtluo(@)|*7 Vuo(x) — 2io\tug () > Vug(z).

We split the proof into three cases: fde 2, the proof is straightforward, fat > 4 even,
the proof is similar but we omit the details of computatioasd ford odd, we simply
sketch the argument.

Cased = 2. First,ug € H'(R?) provided thata < 1/2. Now Propositiod 114
follows if we can choose < 1/2 so thatjug|?°Vug ¢ L?(R?). Near the origin, we have,
leaving out the constants,

- 2 1 Qo+20—
||uo(2)]** Vg ()| %W(10g|$|)4 ez

The right hand side fails to be i .(R?) if we imposedao + 2« > 1. So Proposition 114
follows, with

Lo,
fot+2 3479

Cased > 4 even. The argumentis the same as in the case 2, with more computa-
tions that we simply sketch. We check by induction thatifor 1, there exist coefficients
(Bjx)1< <k such that near the origin,

k a—j
1 1
k _ 2 : ; _ k—
aTUO((E) = T_k P B_]k (lOg m) N with Blk = (—1) 1(k — 1)'0{
Therefore, the asymptotic behavior@ffu, near the origin is given by:

a—1
k (V=1 & i
Orug(x) r—>0( 1) (k 1).Tk <1og |x|> .

Like in the casel = 2, ugp € H%/?(R?) provided thatx < 1/2. We compute, fot > 0,
and asr — 0:

43) |9kt 2)] = Tik <ck(t) <1og ﬁ)v +0 <<1og |—3€|>7w>> ,

with ¢ (t) > 0, wr > 0, and
v = max ((20k + Na —k, (20 + 1)a — 1).

Fort > 0,v(t,-) ¢ HY/?(R?) if, for k = d/2, the first term in[(4B) is almost ih? _(R?),
but not quite: we choose so that2v,,, = —1. We find (like ford = 2)

1
4o + 2

o = 5



ON SCHRODINGER EQUATIONS WITH MODIFIED DISPERSION 9

which is consistent with the requirement< 1/2. Thus, the first term if{413) is not in
L% (R) due to a logarithmic divergence, while the remainder terin B2 _(R%), since

loc

wg > 0.

The case wheni is odd. We keepug of the same form as in even dimensions, since
we have found a value far which does not depend eheven:

1 1/(40+2)
) x (|z]?), zeR™%

uo(x) =0 x (log Tl

Recall the characterization éf*(R?) whens €]0, 1[: a functionf € L?(R?) belongs to
H*(R%), s €]0, 1], if and only if

flx) = f(z+y)

Whend = 1, we check thati, € H'/2(R). We can also check that for> 0, v(t,-) ¢
H'2(R).
Whend > 3, we computé*u, andd¥v in the same fashion as above, and check that
Vi 2y, € HY2(RY), andfort >0, VI/2y(t,.) ¢ HY2(RY).

We leave out the details, since the technicalities are nnma@hved than in the even dimen-
sional case, and we believe that proving Proposftioh 1.4etails is not worth such an
effort.

Acknowledgement. The author is grateful to Valeria Banica for valuable comtaen
on this work.
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