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ON SCHRODINGER EQUATIONS WITH MODIFIED DISPERSION

REMI CARLES

ABSTRACT. We consider the nonlinear Schrodinger equation with aifieatspatial dis-
persion, given either by an homogeneous Fourier multjmiely a bounded Fourier multi-
plier. Arguments based on ordinary differential equatigietd ill-posedness results which
are sometimes sharp. When the Fourier multiplier is boundlednfer that no Strichartz-
type estimate improving on Sobolev embedding is availaBleally, we show that when
the symbol is bounded, the Cauchy problem may be ill-poséhercase of critical regu-
larity, with arbitrarily small initial data. The same is @when the symbol is homogeneous
of degree one, where scaling arguments may not even givégtitecritical value.

1. INTRODUCTION
For (t,z) € Ry x R4, we consider
(1.1) iOu+ P(D)u= AMu[**u 5 up—o = uo,

whereD = —iV,, P : R = R, A € R ando > 0. Since @he Fourier multiplieP is
real-valued, the free flow\(= 0) generates a unitary group & (R%), s € R

S(t) _ efitP(D)'
We consider two cases:

e Pis homogeneous?(ué) = p™P(€), forall¢ € RY, > 0, withm > 1.

e PisboundedP € L>®(RY).
The first case includes the standard Schrodinger oper&tg) < —|¢|2), and the fourth-
order Schrodinger operataP(¢) = |¢|*), studied for instance i [15, 17]. The case- 1,
P(¢) = ¢¥*1, j € N, has been studied initially in [13]. The casec 2N, with P elliptic
and V2P non-degenerate outsidé = 0}, appears as a particular case of the framework
in [9]. Itis shown there that it > max(0, so), then the Cauchy probleri (1.1) is locally
well-posed inH *(R?), where

d m
(12) S = 5 20.
This index corresponds to the one given by scaling arguméntssolves[(1.1), then for
anyk > 0, uy : (t,z) — k™/Cy(k™t, kz) solves the same equation. The value ¢dr
which the H*(R%)-norm is invariant undet. — uy, is s = so. We will see in§1.3 that
this scaling argument may not yield the sharp Sobolev retylaf m = 1, the Cauchy
problem [Z.1L) may be strongly ill-posed ii* (R?) for all s < d/2.

In [9], the proof of local well-posedness uses dispersivé Strichartz estimates for
S, established in(|7] fod = 1, and in [8] ford > 2. Note that in the casé = 1,
dispersive and Strichartz estimates foare proved in[[12] forP(£) = |£|™ andm > 2
(not necessarily an integer). By resuming arguments girtoléghose presented ihl[4] 6],
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2 R. CARLES

we prove that in this framework, the index is sharp, in the sense that the nonlinear flow

mayp fails to be uniformly continuous at the originif* (R?), if s < so. This property has

been established in [17] for the caBé¢) = |¢[* with (d, o) = (3,1). However, whenP

is not elliptic, the index, may not correspond to the critical Sobolev regularity G&8).
The second case, whefeis bounded, is motivated by the results presented_in [10],

whereP(§) = — 1 arctan(h|¢|?) is considered to construct numerical approximations of

the solution to the linear Schrodinger equation

10+ Au = V(x)u,

and0 < h < 1 denotes the time step. We will see below that in such a framewo
Strichartz estimate is available, even if one is ready togoaye loss of derivative. Another
example of bounded symbol one may think of is

i+ A1 —A) " = Au*u.
1.1. Norm inflation. Our result in this direction is:

Theorem 1.1. Letd > 1, A € R, o0 > 0. Assume that either is an integer, or that there
exists an integer such thaeo > r > d/2.

1. Suppose thaP is m-homogeneous, witlm > 1, and denotes, = d/2 — m/(20).
Suppose that, > 0 and letd < s < so. There exists a familju)o<n<1 in S(R?) with

[ug| s (may — 0 @sh — 0,
and a solution:” to (I.2)and0 < ¢"* — 0, such that:
[ (") || g+ (Ray — +00 @sh — 0.
2. If P is bounded, then the above conclusion remains true folatys < d/2.
Theoreni 1.1 is proved ifi2, by adapting the ordinary differential equation mechanis
used in, e.g./[4.16]. However, the critical Sobolev regtyas. may satisfys. > sq (see

g1.3): in view of [9] and Theoren 1.1, we haye = sy at least whenP (&) = plé|™,
we R\ {0}, m e 2N\ {0}.

1.2. Absence of Strichartz estimates.In this paragraph, we focus our discussion on the
case wheré” is bounded. Fos > d/2, H*(R?) being an algebra, local well-posedness in
H*(R?) is straightforward, provided that the nonlinearity is stiéfntly smooth (see e.g.
[18]). Therefore, the critical threshold is = d/2, and from Theorem 111, no dispersive
property is present to decrease this number. More precise$trichartz estimate is avail-
able forS(-), even if one is ready to pay some loss of regularity which iswarse than
the result provided by Sobolev embedding. To state thisgntggprecisely, we recall the
standard definition.

Definition 1.2. A pair (p, q) # (2,0) is admissible i > 2, ¢ > 2, and

2 1 1
S=d(=-=).
p (2 q )
By Sobolev embedding, for allp, ¢) (not necessarily admissible) with < ¢ < oo,
there exist<” > 0 such that for alky € H4/?~%/9(R%), and all finite time interval,
HS(')UOHLP(I;Lq(Rd)) < C”S(')UO||LP(I;Hd/2*d/q(Rd))

< C||U0HLP(I;Hd/%d/q(Rd)) = C|I|1/p”uO”Hd/?*d/q(Rd)-
When P is bounded, this estimate cannot be improved:
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Corollary 1.3. Letd > 1, andP € L>~(R%;R). Suppose that there exist an admissible
pair (p, ¢), anindext € R, atime intervall > 0, || > 0, and a constanf’ > 0 such that

||S(')U0||LP(1;Lq(Rd)) < CHUOHHk(Rd)a Vug € Hk(Rd)-
Then necessarily; > 2/p =d/2 — d/q.

The fact that no standard Strichartz estimate (with no lisssyailable forS(-) is rather
clear, since the dispersion relation is givenvby: P(£), and defines a characteristic variety
which is bounded ir-. However, one could expect the existence of Strichartmedts
with loss of regularity, in the same fashion aslin[[1, ]2, 3] éndthe geometric framework
— the space variable belongs to a compact manifold — ruleghmiexistence of the
standard dispersive properties). The fact that this is 0d$ & rather direct consequence
of Theoren Il (where > 0 is arbitrary), and of the argument given [n [3] to prove
Proposition 3.1. It may seem surprising to prove Corol[la¥ 4s a consequence of a
nonlinear analysis; we insist on the fact that the proof afdieni 1.1l is rather simple, and
the deduction of Corollarfy 11.3 involves another nonlin@sutt, whose proof is also quite
short (see Propositidn 3.2 below).

1.3. Critical cases. In [5], local well-posedness iff - (R?) for small data is established
for Equation[(T.11) in the casB(¢) = —|¢|2, where

d 1
Se=———

2 o

coincides withs, in that case, since: = 2. In [15], local well-posedness i %/?(R?)

for small data is established for the same operator, withimearities which are allowed
to grow exponentially. In these two papers, the proof usastiitrtz estimates (in Besov
spaces). On the other hand, whBns bounded, the Cauchy problem may be ill-posed
in H4/2(R%), even for nonlinearities growing algebraically. Moreqwehen P is m-
homogeneous witm = 1, the critical Sobolev regularity may not bg, buts. = d/2 >

so, with ill-posedness fos = s..

Proposition 1.4. LetA € R\ {0}, 0 > 0. Assume that either is an integer, or that there
exists an integer such thao > r > d/2. In either of the two cases:

e P(&)=c-&ceRYor

e P s constant,

forall § > 0, there exists,y € H¥2(R%) with [|ug| a/2(ra) < 6 such that(TI) has a
unique solution: € C(R.4; D'(R%)), and for anyt > 0, u(t, ) ¢ HY/?(R%).

Unlike what happens in the presence of Strichartz estin{fig45]), this result yields
examples where local well-posedness fails in the critiaabe = s.., even for small data.
We prove Proposition 1.4 ifd: we present the caséds= 2,0 > 0,andd > 1,0 = 1/2,
only, for the convenience of the exposition, but the argurnan be extended to any space
dimension, up to more intricate computations.

In the casen = 1 (at least), the mere assumption thatis m-homogeneous is not
enough to characterize the critical Sobolev regularit{id), or the existence of Strichartz
estimates. Indeed, the symhBl(¢) = |¢| corresponds to the wave equation, for which
Strichartz estimates are available whén> 2, and sos. < d/2. See e.g.[[11]. This
suggests that also whemn > 1, the values, may not be sharp wheR is not proportional
to |¢|™, but for instance of the forrg|™1c - ¢, c € R4, or more generally wheR is not
elliptic.
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2. PROOF OFTHEOREM[L.]

The proof of Theorer 111 proceeds along the same lines s&h (dee alsa [18]). Fix
s asin Theore Il1. Consider initial data of the form

ub(e) = b= ta (1)),
With 0 < h < 1, ap(z) = e~ 1*I*, and
—6

1
h

= 1 —

K ( og h)
for somed > 0 to be fixed later. We haviu(|| g7« (ra) h—go. Introduce the scaling
—

W(1,y) = h¥2=*u" (R*Tor hy)

for somea to be precised later:

19 (P s ray = " (B*07) [l 7o (ray-
Denotes = h27(4/2=5)=2= The functior) solves the Cauchy problem
(2.1) iedpp + W27 2P (WD) ¢ = APy =0 = K" ao.

2.1. Choice ofa. WhenP is m-homogeneous, Equatidn (R.1) simplifies to
iedr) + B2 W2=I=mP(Dy ) = A7 Ylr=o = K" ay.
Forw > 0, we set

1 d
24+a= ((m—1+w)2a(——s)+m),
m+w 2

in which case we have:

c = hQU(so—s)/(m-l—w).
Thereforeg — 0 ash — 0 sinces < sg. We also compute
h20’(d/275)7m — gmtw.
WhenP is bounded, we consideér+ o = o(d/2 — s). Therefore,
d
20 <§—s> —2—a>0 (hencee - 0ash —0), and2+«a > 0.

2.2. The ODE approximation. Introduce the solution to

20 .. _ h
%7 »; Plr=0 = K Q0.

iedrp = Ny
Itis given by
T 20 -
e(r,y) = K"ao(y) exp (=iAZ ()" Jao(y)|*7) -

Sinceay is a Gaussiany € C*(R x R%) regardless of > 0, and for anyr > 0,
1420r /T\"T
(22) lolmr s S ()77 (2) + 1"

Lemma 2.1. Letr > d/2, with in additionr < 20 if o ¢ N. In either of the cases of
Theoreni 111, we can find> 0 independent of > 0 such that

swp 07 — () rty —2 0.
OSTés(log %)6
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Proof. Denote byw = i — ¢ the error. It solves
ie0yw + h2 /2= p (h'D)) w = h**/2= P (h='D,) ¢
+ A (Jw+ ¢ (w+ ) = [p*¢)

with w),—o = 0. Using the facts thaP is real-valuedz — |z|** z is sufficiently smooth,
andH"(RY) is an algebra, we have

dr’

H"(R%)

hQJ(d/Qfs)P (hley) 4/7(7'/)

1 T
o)y S % [ |
0

1 " o o
+- / (I3 ey + o3 ) N () ey

In the case wher® is m-homogeneous, we have

HhQU(d/Qfs)P (hilDy) 4/7(7'/)

< p20(d/2—=s)—m ||<p(7'/) Herm R

~

S h20’(5075) |‘<P(T/)||H7‘+m(Rd) .

HT(R4)

In the case wher® is bounded, we have

< W2 (')

HhQO’(d/Qfs)P (h*lDy) (,0(7’/) ||HT(Rd)

Hr (R4)
< B2 () e ey »

where we sety, = d/2 in this case.

In both cases, we check that there exists 0 (independent of) such that

hQU(so—s) — 61+B.

Itis given by the formula
20(so—d/2) +2+«
20(d/2—8)—2—a

In the homogeneous case, this formula becotesm — 1 + w, and whenP is bounded,
B = 1. Therefore, in view of[(2]2) and sineé < 1, there exisp3, y > 0 such that

Lelth ((I)7 + 1) )
Hr(R4) £

So long as|w(7)|| g+ re) < 1, with 7 as above, we infer froni.(2.2):

l[w(r)]| < " 8 T_/ ! 1) dr' 1 ’ 1 T_/ ' / dr'
H™(R4) S 9 + T + + ||U)(7' )HHT‘(Rd) T .
0 € e Jo €

Gronwall's Lemma yields

¥ . .
||w(T)||H7~(Rd) ,S 5’8 ((g) + 1) eCT/EJFC("'/E) " 5 EﬁSQCT/EJrC(T/E) *1'

B =

HhZU(d/Q—s)P (h_lDy) (p(T/)

By choosings > 0 sufficiently small, the right hand side is controlled by, s&/2, for

all0 < 7 < e(log é)é The condition||w(7)|| ;- ®e) < 1 is verified for such times,
provided that is sufficiently small, and the lemma follows. O
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2.3. Conclusion. Letr > d/2 as in Lemm&Z2]1. Witlh > 0 given by Lemma 211, we

have, since < d/2:
5 5
ul <h2+0‘5 <1og 1) ) %) <5 <1og 1) )
g g
Hs (R)
5 5
1 1
%) (E <1og—> ) - (E (10g—> )

3 3

On the other hand, similar tb(2.2), we have:

I ey 2 ()27 (2) = ot

e
1 S 1 s6—0—200s
® <5 <1og—> ) =>C (1og—) —o(1).
c Hs(R4) c
For6 > 0 sufficiently small,s§ — 6 — 2065 > 0, and LemmaZ2l1 yields

\°
u” <h2+0‘6 <1og E) )

Theoreni LIl follows, with

>

Hs(R4)

-C

H™(R4)

and so,

— +00.
h—0
Hs(R%)

4 4
i = n2*ee (log L) = cn2e@2) (105 1) 0.
€ h) h—0

3. PROOF OFCOROLLARY[1.3

We argue by contradiction, by using a slight generalizatitof3, Proposition 3.1].

Definition 3.1 (From [14]). Lets € R. The Cauchy probleifL.1)is well posed in7* (R%)
if, for all bounded subseB C H*(R?), there existl' > 0 and a Banach spac&r
continuously embedded intd([0, 7]; H*(R?)) such that for alluy € H*(R%), (1)
has a unique solutiom € Xp, and the mapping, — w is uniformly continuous from
(B.I| - ls+) to C(0, T); H*(R)).

Proposition 3.2. Letd > 1, P : R* — R. Suppose that there exist an admissible pair
(p,q),anindext < 2/p=d/2 —d/q, Ty > 0, and a constan€ > 0 such that

(3.1) ”S(')UO”LP([O,TO];L‘?(RUZ)) < OHUO”H’C(Rd)a Yug € Hk(Rd)-
Then for all
p

d d
k+_ - O (9 oy
q<8<2’ < <27

the Cauchy problem fofL.1)is well posed inf*(R%).

Since in Theorermn 111, we can always considet 1, Theoreni L1 and Propositibn B.2
imply Corollary[1.3 in the non-endpoint cape> 2. The endpoint case then follows by
interpolation with the cas@, ¢) = (00, 2): if an endpoint Strichartz estimate (with some
loss) was available, then an non-endpoint would be as well.
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Proof. For0 < T' < Ty, introduce
Xy =C([0,T); H*(R%) n LP ([0,T); W-(R%)),
wherel = s — k. By assumption{ > d/q, so we have
Xp C L? ([0,T); L>(R%)) .

This space is equipped with the norm

lullxr = sup u(®)llme oy + || (1 = 2)u]

Itx

LP([0,T);L9(R4))

We construct the solution tb(1.1) by a fixed point argumeat. S

O(u)(t) = S(t)uo — i/\/o St —7) (Ju(r)[*7u(r)) dr.

We prove that forT" €]0, 7] sufficiently small,® is a contraction on some ball &
centered at the origin. In view df(3.1) and Minkowski ineliya

t
9] x, S luollmen + [ 1)) gy

t
< Jluolls-qaey + / )% ey 1607 g ey I

20
S Mol e ay + T [[ull Lo o,7); 00 ey 1l Loo 0,775 (R 5

with v =1 — 20/p > 0. Therefore,

1)l x, < Clluoll e may + CT Jull 3 -
Similarly,
[@(w) = @)y, < T (Il + 1013, ) lu = vl -
This yields the local well-posedness result stated in Psition[3.2. O

4. ILL-POSEDNESS

The key remark is that all the cases of Proposifioh 1.4 boilrdtm an ordinary differ-
ential equation mechanism. Denotedbthe solution to

0w = Ao[*7v; v = uo.

WhenP (&) = ¢ &, we have
u(t,z) = v (t,x + ct),
and whenP(¢§) = ¢, we have
u(t, ) = v(t, x)e',

so it suffices to prove Propositibn 1.4 in the c#se- 0. For fixedz € R¢, we have
4.2) u(t,z) = uo(x)efMt‘““(I”%.
The idea is then thatf*/2(R?) is not an algebra.
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Consider

(4.2) ug(x) = 0 % <1og %)ax (|x|2) , z€RY

with x € C§°(R), x = 1 near the origin, anduppx C] — 1, 1[. We compute

Vo(t, z) = e~ M@ Gy () — 2ioAt|uo(z)[2 Vuo(z).

We split the proof into three cases: fde 2, the proof is straightforward, fat > 4 even,
the proof is similar but we omit the details of computatioasd ford odd, we simply
sketch the argument.

Cased = 2. First,up € H'(R?) provided thatx < 1/2. Now Propositiof 1}4 follows if
we can choose < 1/2 so that|ug|?? Vug ¢ L?(R?). Near the origin, we have, leaving
out the constants,

- 2 1 Qo420
||uo(2)?7 Vug ()| =~ e (log ||y 7272,

The right hand side fails to be i .(R?) if we imposedao + 2« > 1. So Proposition 114
follows, with

1 o <1
<a<-.
4o 4 2 2

Cased > 4 even. The argument is the same as in the case 2, with more computations
that we simply sketch. We check by induction that for> 1, there exist coefficients
(Bjx)1< <k Such that near the origin,

a—j

Bkuo Zﬂjk (log z |> ,  Wwith 81 = (—1)k71(k — 1l

Therefore, the asymptotic behavior@ffu, near the origin is given by:

T

Oula) ()= 115 (o)

Like in the casel = 2, uy € HY/?(R?) provided thatx < 1/2. We compute, for > 0,
and asz — 0:

@3)  |9Fo(t,x)| = Tik <ck(t) <1og ﬁ)v +0 <<1og |—3€|>7w>> ,

with ¢ (t) > 0, wg > 0, and
v = max ((20k+ 1)a—k, (20 + 1)a—1).
Fort > 0,v(t,-) ¢ HY/?(R?) if, for k = d/2, the first term in[(4B) is almost ih? (R?),
but not quite: we choose so that2v,;,, = —1. We find (like ford = 2)
B 1
4o+ 2’

which is consistent with the requirement< 1/2. Thus, the first term if{413) is not in
L% (R?) due to a logarithmic divergence, while the remainder terim &2 . (R?), since
wi > 0.
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The case whend is odd. We keepug of the same form as in even dimensions, since we
have found a value far which does not depend eheven:

1 > 1/(4042)

uo(x) =0 x <log Tl

Recall the characterization éf*(R?) whens €]0, 1[: a functionf € L?(R?) belongs to
H*(R%), s €]0, 1], if and only if

flx) = flz+y)
S " ey <

Whend = 1, we check that, € H'/?(R). We can also check that for> 0, v(t,-) ¢
H'2(R).
Whend > 3, we computeé)*u, andd*v in the same fashion as above, and check that
Vi 2y, € HY2(RY), andfort >0, VI¥/2yt,.) ¢ HY2(RY).

We leave out the details, since the technicalities are nmwa@hied than in the even dimen-
sional case, and we believe that proving Propos(iioh 1.4etaits is not worth such an
effort.

x(lz?), =€ RY.
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