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Abstract—Data sharing services on the web host huge
amounts of resources supplied and accessed by millions of users
around the world. While the classical approach is a central
control over the data set, even if this data set is distributed,
there is growing interesting in decentralized solutions, because
of good properties (in particularity, privacy and scaling up).
In this paper, we explore a machine learning side of this
work direction. We propose a novel technique for decentralized
estimation of probabilistic mixture models, which are among
the most versatile generative models for understanding data
sets. More precisely, we demonstrate how to estimate a global
mixture model from a set of local models. Our approach
accommodates dynamic topology and data sources and is
statistically robust, i.e. resilient to the presence of unreliable
local models. Such outlier models may arise from local data
which are outliers, compared to the global trend, or poor
mixture estimation. We report experiments on synthetic data
and real geo-location data from Flickr.

Keywords-Probabilistic mixture models ; Distributed data ;
Decentralized estimation ; Gossip ; Robust estimation.

I. INTRODUCTION

Web-based content sharing services gather huge amounts

of data (multimedia documents and associated meta-data

tags, scientific data, etc...) uploaded and retrieved by many

users around the world. The present work is located at the

crossroad of the two following research lines in this field:

• the large amount of user-contributed data is amenable

to statistical analysis. For instance, a classical goal is

content recommendation through collaborative filtering

[1]. Another example pertains to collaborative tagging

of images [2], which has been identified as a precious

resource for statistical learning models of visual ap-

pearance, where the lack of labelled data was long a

bottleneck [3];

• many popular systems rely on a central control on the

data set, even if the data is physical distributed for

performance and data availability reasons. Yet, there

are strong grounds for promoting alternative solutions,

founded on a distribution of data storage with a de-

centralization of control over information flow. Com-

pared to centralized systems, they demonstrate good
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Figure 1. Overview of the proposed scheme: Mixture models are first
estimated locally on local data. They are then exchanged and aggregated
with neighbouring models, though a gossip process. Simultaneously, outlier
models identified are progressively discarded.

properties in terms of scaling up to large amounts of

data and avoid having a single point of failure. Further,

they can offer participant’s control over propagation and

exploitation of their personal data [4], and lead to novel

approaches to information retrieval [5].

While we are far from addressing all of these issues here,

our point is that statistical machine learning in decentralized

data management systems is becoming a key research track.

In this perspective, this paper focuses on learning a highly

popular probabilistic model for continuous data, whether

for density modelling or data clustering, the Gaussian mix-

ture model [6]. Discrete counterparts, such pLSA [7] and

extensions, are also widely used for topic modelling and

community identification. Mixture models are of the semi-

parametric type, i.e. they have a built-in trade-off between

the ability to model a wide range of data distributions and

the parsimony of representation.

Let us assume a set of nodes, each node hosting a local

data set. As sketched on fig. 1, let us assume that, indepen-



dently at each node, a standard mixture model estimation

technique is applied on local data, supplying a local model.

The goal we address is the estimation of a global mixture

model, reflecting the probability density for the global data

set. Because we carry out this task using mixture models,

we in fact perform clustering of the data at the same time.

In an original fashion, we operate through aggregation of

local mixture models and propagation of these by means

of a gossip protocol. Gossip (or epidemic) protocols are

a means of disseminating information in a decentralized

fashion, which are well suited to cope with volatile peers

and evolving topology [8]. As node join and leave the

system, our propagation/aggregation mechanism updates the

global estimate accordingly. Let us underline that model

aggregation may be achieved by accessing only mixture

model parameters (i.e. statistics), without needing to read

local data nor transfer it over the network.

The main contribution of this paper is a technical solution

for estimating a global model by dynamically combining

local estimates, while being resilient to the presence of

unreliable local models. In other words, we conduct sta-

tistically robust global model distributed estimation, from

local models. Such outlier models may arise from local data

which are outliers, compared to the global trend, or poor

mixture estimation. In any case, such local models should

be discarded from the dynamic estimation process.

Robust estimation is a classical chicken-and-egg problem:

correct global model computation requires outliers to be

identified and discarded, but their identification requires

some reasonable estimate of the global model they deviate

from. Typically, M-estimators solve this iteratively. With

regard to this baseline situation, the original of our problem

is two fold: we should estimate a model from a set of proba-

bility distributions ; the scheme for outlier identification and

rejection is decentralized.

The remainder of the paper is organized as follows.

Section 2 presents related work. Section 3 disclosed the tech-

nical details of our solution. Section 4 reports experimental

result, while section 5 concludes and provides perspectives.

II. RELATED WORK

Numerous decentralized clustering approaches have been

proposed in the literature [9]–[13]. Roughly, the mechanism

consists in iterating between two steps: first an aggregation

function is applied independently on each node, and second,

a communication protocol is applied to communicate the

local clustering parameters on the network. The process

stops when a convergence criterion is achieved, based

for example, on the parameter similarity on each node.

The differences between the various proposals concern the

underlying distributed environment (P2P network, sensor

network,. . . ), the message exchanged between the nodes

(representatives data, models parameters,. . . ) and the number

of rounds of communication required by the algorithm.

In the context of the estimation of a model mixture, sev-

eral works [10], [11] propose a distributed EM algorithm. In

both cases, a node applies local iterations of the Expectation

and Maximisation steps and then sends its model parameters

to its neighbors until convergence. The main difference with

our approach is the access to the data set. Indeed, in our

context we make the hypothesis that the local Gaussian

models are already available, so that our estimation process

does not rely directly on the distributed data sets.

Several works [14] also propose decentralized algorithms

robust to outliers, an important property for our objective.

The principle is similar to the precedent works, but integrates

a step to detect the outliers. To our knowledge, the methods

proposed in this context are based on existing approaches

already used in the scope of centralized clustering. Thus,

the nearest neighbor [14] or statistical [14], [15] approaches

may well be applied. An interesting method [15], presenting

the advantage to avoid critical arbitrary parameters, is based

on a sampling approach: several clusterings are carried out

on different data samples and the best clustering obtained is

the closest one of the whole data set. Our proposal detection

method of outliers is based on this approach but applied

directly on probabilistic models.

Finally, after applying an aggregation function, a com-

munication protocol must be applied to obtain the global

model. Indeed, in our solution, each node iterates between

two steps: it collects all the models of its neighbors list in

order to re-compute its local model. Then, it selects one

node from its neighbors to update its list. The choice of the

selected node to communicate with and the way to swap the

list of neighbors is crucial to enable a correct dissemination

of the information. For that, we use the gossip protocol

which is a probabilistic way to choose a member pairs to

communicate and exchange an information [16]. Here, we

use a specific implementation: the peer sampling service

(PSS) [17]. The advantage of such a solution is practically

to improve the aggregation convergence [16]. It proposes to

update continuously the overlay topology of the network, in

order to make it dynamic and more realistic than the static

topologies. In a peer to peer network, nodes can leave or

join the system continuously.

III. A DISTRIBUTED AND ROBUST ESTIMATION

ALGORITHM

Our proposal is founded on a decentralized and robust al-

gorithm running independently on each node of the network.

Let us assume a network composed of n nodes, where each

node i is defined with the following properties:

1) a local data set Di;

2) a mixture model Mi;

3) a list of c neighbors Li.

The models Mi are a precondition for our algorithm: we as-

sume data set Di on each node is modelled as a probabilistic



Figure 2. Example of our decentralized and robust algorithm: figure a

shows an initial node i with its Gaussian model in two dimensions and
its list of neighbors Li. The first step consists in retrieving the Gaussian
models of Li, represented by the dashed ellipses on figure b. A detection
of the outlier models is then carried out on this set of models: the result of
the detection is showed by the model composed of 3 components depicted
by the plain gray ellipses. This outlier is not used to compute the new
estimation of the current node. Figure c presents the new aggregation model
obtained (dark ellipse). Finally, the last step is to change the topology of
the network by updating a part of the initial neighbors. Neighbors 4 and
54 are replaced by neighbors 3 and 17 on figure d.

mixture, using for instance an EM algorithm or a Bayesian

form thereof, supplying model parameters Mi.

Overall, the scheme iterates over the 4 following steps.

For node i:

• retrieve all the models of its neighbors Li. Each

node j ∈ Li sends its local model Mj to node i. Let

Mneighbor be the set of Li’s models ∪ model Mi;

• detect and outliers locally: filtering outliers out of

Mneighbor is carried out with a model clustering pro-

cess. The chosen algorithm is adapted from a sampling

method [15]. Note that node i itself can be consid-

ered as an outlier. Let Mrobust be the set of models

built from Mneighbor where outlier models have been

removed;

• update its model Mi: we aggregate the set Mrobust to

obtain a new local model. To this aim, we resort to a

technique exploiting approximate KL divergences be-

tween mixtures [18], that enables to aggregate mixture

models. It operates similarly to a k-means algorithm:

given an initial set of mixture and a number of compo-

nents P , it provides a final mixture of P components;

• apply a gossip protocol : in order to guarantee a

correct propagation of the new model Mi, the node

i updates its list of neighbors. The proposed method

is founded on the peer sampling service [17]. In a

nutshell, the principle consists in exchanging a part

of the neighbors list of Mi with one of its neighbors.

The point is to increase the convergence speed of the

clustering process and the quality of the global model

estimate by changing the topology of the network. Each

new aggregation of models for model Mi is then carried

out with different neighbors, avoiding to fall in a local

configuration;

• compute the convergence criterion: before executing

a new iteration of the estimation process, we check

whether models in the neighborhood of Mi are all

similar enough.

The main algorithm and an example of the different steps

are presented respectively in algorithm 1 and on figure 2.

In the following, we explain in details the different steps

of our algorithm. The similarity measure between mixture

models is first presented, followed by the detection of

outliers and the estimation algorithm of Gaussian models.

Finally, the gossip protocol used to change the topology of

the network and the convergence criterion are explained.

A. Similarity between Gaussian components

In order to aggregate or filter out outliers among a set

of Gaussian models, we resort to an approximation of the

Kullback-Leibler divergence. Our solution was motivated

by the work proposed in [19], which assessed several ap-

proaches to compare Gaussian mixture models. As expected,

it stated that Monte Carlo sampling leads to best accuracy,

but at the price of a high calculation complexity. Thus, we

focus on methods aiming the best trade-off between accuracy

in KL approximation and computational cost (i.e. requiring

only models parameters). Experiments from [19] conclude

that the best approaches are the matched bound and the

variational approximations. Because of its lower cost, we

resort to the matched bound criterion.

KLmatch(f ||g) =
∑

i

πfi

(

KL(fi||gm(i)) + log
πfi

πgm(i)

)

.

(1)

where πfi
is the prior probability of a component fi, and

m is the matching function between elements of f and g

Algorithm 1 Iterative process applied on node i

Require: A mixture Mi, a list of neighbors Li and the

number of components P for the global model

while Convergence not achieved do

- Build the set of mixture Mneighbor composed of Mi

and the set of models contained in its neighbors Li

- Filter the outlier out from Mneighbor: Mrobust =

REMOVE OUTLIER(Mneighbor)

- Aggregation of Mrobust: M ′
i =

ESTIMATION(Mrobusti
, P )

- Update of the neighbors Li with the peer sampling

service

- Compute the convergence criterion

end while



Figure 3. Example of the sampling algorithm: first, a node i retrieves
the models of its neighbors and T samples are drawn from the set
Mneighbor = {M1, Ml, . . . , ML} obtained. Second, for each sample
an iterative algorithm is applied to improve their quality: the goal is to
except in each sample the outlier models. For a sample St, the iterative
algorithm consists in comparing the similarity between the components
Ml ∈ Mneighbor and those in St. The nearest components Ml ∈
Mneighbor are then selected and used to update the sample St. The
convergence is achieved when the samples keep stable.

defined as follows:

m(i) = arg min
j

(KL(fi||gj) − logπgj
) (2)

where πgj
is the prior probability of a component gj and

KL is defined as:

KL(fi||gj) = 1
2 [log

|Σgj
|

|Σfi
| + Tr|Σ−1

gj
Σfi

|

−γ + (µfi
− µgj

)tΣ−1
gj

(µfi
− µgj

)] (3)

where γ is the dimension of the feature space.

This convenient criterion is used as a similarity distance in

both our sampling algorithm and our aggregation algorithm.

B. Detection of outliers

Our algorithm is an adaptation of the sample algo-

rithm [15] to deal with Gaussian models. Its objective is to

build a sample with no outlier in order to obtain a baseline

before to apply our aggregation algorithm. The principle is to

draw randomly several samples of a set of Gaussian model,

to improve them with an iterative algorithm and to select

the one presenting the best similarity with the initial data

set. Such a method presents interesting advantages for our

purpose:

• it does not depend on strong arbitrary parameters: it is

based on a simple hypothesis, the percentage of outliers

supposed on the network;

• it does not depend on the space dimension or domain of

the initial data set: our choice is then more convenient

than for example distance-based algorithms using a fix

threshold to detect outliers.

In our solution, we use the KLmatch (eq. 1) as a similarity

criterion. Figure 3 presents an overview on this algorithm.

More formally, the initial step of the algorithm is to draw

T samples of size ssize from a set of Gaussian model

Mneighbor = {M1, . . . ,ML}. Then for each sample St =
{M1, . . . ,Mr, . . . ,Mssize

}, t ∈ [1, T ], Mr ∈ Mneighbor, the

following steps are applied until convergence:

1) compute a model Mc obtained with the merge of all

Mr ∈ St;

2) compute the KLmatch divergence between Mc and

each model Ml ∈ Mneighbor. A ascending sorted list

of models is then computed;

3) update the sample St with the first ssize of the sorted

list obtained previously.

The convergence is achieved when each sample St remains

stable. Finally, the sample minimizing its KLmatch diver-

gence with all the Ml is selected. This model is supposed

to be cleared of outliers and is then used as a baseline for

the final aggregation of the set of models Mneighbor.

This algorithm depends on two understandable parame-

ters, the size ssize of each sample and their number T :

• the setting of the parameter ssize has to reflect the

average number of outlier on the network, but of course

this information is unknown. Practically, the higher

the value of ssize, the higher is the chance that the

sample contains outliers. And inversely, the lower its

value, the higher is the risk to select a set of models

none representative of the real global view. The setting

of this parameter is then a compromise between the

robustness and the quality of the final sample. But note

that a wrong initialization of ssize can be balanced with

a higher number of generated samples T , so that an

uncertainty is tolerated;

• the impact of the parameter T concerns the perfor-

mance: a high value would test a large number of

samples but it will increase the computational cost. To

improve this point, algorithm [15] proposes to make a

first selection of the best samples. The previous iterative

algorithm is first applied twice on a large number of

samples, leading to a selection of a subset of the best

ones. The algorithm is then applied until convergence

only on the selected samples.



Algorithm 2 REMOVE OUTLIER: Sampling algorithm to

remove outlier in a set of mixture models

Require: A set of Gaussian mixture Mneighbor =
M1, ...,ML and the number of components P for the

global model

- Draw randomly T samples SSample = S1, ..., ST com-

posed of ssize Models of Mneighbor

for each sample St, 1 < t < T , repeat the following

operations twice do

for each model Mj ∈ Mneighbor, 1 < j < L do

- Compute the KLmatch divergence between Mj

and Mt the concatenated model of all Mr ∈ St,

Mt = 1
π

∑ssize

r=1 Mr, where Mr =
∑mi

i=1 πi
rN

i,

π =
∑ssize

r=1 πi
r, and N i is a Gaussian component

end for

- St = { Mr | r = arg min1<j<L (KLmatch(Mt,

Mj))} and 1 < |St| < ssize

end for

- Select from SSample the T ′ best samples Sbest minimiz-

ing
∑L

j=1 KLmatch(Mt, Mj)
for each sample St ∈ Sbest, 1 < t < T ′ do

repeat

for each model Mj , 1 < j < L do

- Compute KLmatch(Mt, Mj)
end for

- St = { Mr | r = arg min1<j<L (KLmatch(Mt,

Mj))} and 1 < |St| < ssize

until St is unchanged

end for

return the sample St, 1 < t < T ′, minimizing
∑L

j=1 KLmatch(Mt, Mj)

Algorithm 2 details the sampling algorithm used to re-

move outliers from our aggregation process.

C. Mixture Model Estimation

Let the problem be formulated as transforming a mixture

model f into another mixture g with less components, while

minimizing a Kullback-Leibler divergence involved by the

simplification process. This section recalls how this was

solved in [18], as the sole difference in our approach is

the use of a different KL-approximation, the KLmatch. A

key feature of their solution is that only model parameters

are accessed to group components, i.e. neither access to data

nor sampling are required. Thus, it is very cost effective in

terms of computation.

The search for optimal g is composed in two alternating

steps. The first one consists in determining the best mapping

m between the components of f and g such that criterion (4)

is minimized :

d(f, g) = d(f, g,m)

=
∑

i

KLmatch(fi||gm(i))
(4)

where m = arg minm′ d(f, g,m′).
The second step updates the model parameters of g, again

from the sole model parameters of f . It is proposed to

compute the average of the mean and the covariance in

accordance with the mapping m obtained at previous step.

Each Gaussian is updated as follows:

µgj
= 1

πgj

∑

i∈m−1(j) πfi
µfi

(5)

Σgj
= 1

πgj

∑

i∈m−1(j) πfi

(

(Σfi
+ (µfi

− µgj
)(µfi

− µgj
)T )
)

(6)

where πgj
=
∑

i∈m−1(j) πfi
.

These two steps are iterated until the convergence of the

criterion defined in equation 4.

As our aggregation process is similar to a k-means algo-

rithm, let us discuss major shortcomings:

• the number of components P of the reduced model

must be known. This is the sole critical parameter of

our algorithm. Comparing several complexities of the

reduced model is nevertheless possible with Bayesian

criteria which in our context, should be adapted to work

directly on mixture parameters, rather than data. This

is discussed in another paper [?].

• the result is highly dependent on the parameter ini-

tializations: we opt for the kmeans++ [20] to set the

initial parameter of the reduction model P . This method

consists in selecting the centers as far as possible from

each others, while avoiding outliers. Adapted to the

context of the mixture model, this method consists

in first, selecting a center randomly from the ini-

tial components, and second, choosing the subsequent

cluster center from the remaining components with a

probability proportional to its distance squared to the

closest center. The distance used between components

is again the KL divergence.

D. Update of the network topology

In order to increase the convergence of our clustering

process, we propose to use an implementation of a gossip

protocol, the peer sampling service [17]. This protocol con-

sists in changing dynamically the topology of the network to

improve the propagation of the information. In our context,

the goal is to improve the propagation of the aggregated

models obtained iteratively on each node.

Let’s recall that each node has a list of its neighbors

composed of c elements. The different steps of the protocol

for a node i are the following:

1) select randomly a node j from the neighbors list of

the node i to initiate a communication;
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Figure 4. figure (a) shows the global view obtained without the outliers
models while figure(b) presents the global view obtained with the outliers
models.

2) exchange half of the neighbors list of the node i with

the node j. Both the list are then updated with a new

set of nodes;

3) discard the duplicate and reduce the size back to c (the

same step is applied on j).

This protocol enables to increase the convergence of our

global view as well as its quality. Indeed, the exchange of

neighbors enables to avoid local concentration of outlier

models that would lead to bias the aggregation process. This

dynamic property presents then the advantage to dispatch

randomly the outliers in all the network, leading to increase

the chance to detect them with our sampling algorithm.

E. Convergence criterion

Our objective is to stop automatically our algorithm when

each node contains the same global estimation. We then pro-

pose a decentralized solution to detect such a configuration.

Roughly, our solution consists in comparing for each node

its local models with the ones of its neighborhood: if they

all present a strong similarity, our estimation process on this

node is interrupted.

More precisely, let i be a node containing its new update

model Mi the method consists in:

1) sorting its neighbors in ascending order in accordance

with the KL divergence between Mi and their models;

2) selecting the model Mthreshold defined as the Ssizeth

nearest neighbor in the list obtained. Recall that Ssize

is the average number of outlier in the network. We

then suppose that the selected models is the last good

models among its neighbors;

3) comparing KLmatch of Mthreshold to a threshold ǫ:

if KLmatch is lower the algorithm is stopped, else a

new iteration is processed.

The parameter ǫ is set empirically to a small value: a

KLmatch(Mi, Mj) divergence lower to ǫ must involve a

strong similarity between Mi and Mj .

IV. EXPERIMENTS

To evaluate our proposed algorithm, we report experi-

ments on, first a synthetic data set with known ground truth

and then on a real geolocation data set taken from Flickr.

These experiments aim at computing the global model from

the distributed models. The objective is to evaluate different

aspects of our solution as the robustness and the aggregation

process. For both experiments, we ran our algorithm on a

peer to peer network composed of 200 nodes, characterized

as follows:

• each node has c = 20 neighbors;

• each node holds a Gaussian mixture model;

• 20% of models are considered as outliers;

• the number of nodes exchanged with the gossip proto-

col is set to c/2, the half of the neighbors list.

A. Experimental results on synthetic data

The objective of this first experiment is to assess the

robustness of our distributed algorithm. Our synthetic data

set is generated as follows:

• each node contains a Gaussian mixture model with a

number of components varying between 3 and 12;

• the components of the outlier nodes are all generated

randomly.

In order to evaluate the results of our distributed algo-

rithm, we compute our global model without the outliers

in a centralized way, presented in figure 4(a). This model,

composed of 4 distinct components, represents the true

global data distribution over the network. To demonstrate

that our sampling algorithm succeed to discard the outliers,

we also compute the global view with the outliers models,

depicted on figure 4(b). The result shows the impact of the

outliers on the aggregation process: the models obtained

present strong differences.

Figure 5 presents an example of initial models of 4 nodes

on the peer to peer network. These models are composed of

different number of components (Figure 5(a),(b),(c) and (d)

with 7, 9, 2 and 6 components respectively). An example of

outlier models is showed in figure 5(c).

Figure 7 presents the evolution of our convergence cri-

terion all along the iterations of our algorithm on each

node. The convergence criterion used here is the average of

the KL divergence between each local model and the real

global model. This curve decreases after each iteration and

tends quickly toward zero. This convergence is confirmed

by the results obtained on figure 6 of the previous models

(figure 5) after 13 iterations of our algorithm. All the models,

even the outliers (figure 6(c)), seem identical to the initial

centralized global model without outliers (figure 4(a)). This

result confirms that our sampling algorithm is effective to

discard the outliers from the aggregation process.

With this experiment, we assessed the robustness and

convergence properties of our distributed algorithm to obtain

a real global view of the network.
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Figure 5. These figures present the initial model of 4 nodes of the peer
to peer network
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Figure 6. These figures present the models of the 4 nodes presented in
figure 5 after 13 iterations

B. Experimental results on real data

This second experiment proposes to assess our algorithm

on a real multimedia set: a collections of 406, 450 geotagged

Flickr images from 5, 951 users, presented in figure 8. To

apply our algorithm, we first split this collection on 200
nodes, each one containing a set of data varying from 500
to 4000 images. The local Gaussian models are obtained

with the EM algorithm and their complexity are determined

thanks to the BIC criterion (models were tested between 3
and 6 components).

Figure 10 presents an example of initial models of 2 nodes

obtained after applying the EM algorithm on their local

data set. The two models presented here are quite different,

due to their different initial data set: node of figure 10(a) is

composed of 3 components while the one of figure 10(b)

contains 6 components. Their models obtained after 10
iterations of our algorithm are presented in figures 11. Even

though these nodes present initial differences, they converge
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Figure 7. This figure shows the average KL divergence between the model
on each node and the initial global view.

Figure 8. This figure presents the localisation of all the images and the
global density estimation obtained in a centralized way.

to a similar model with an identical number of components.

Figure 9 shows that, similarly to the previous experiment,

the KL criterion converges quickly toward zero.

In order to assess our decentralized algorithm, we com-

pute the aggregation of all the local Gaussian models in

a centralized manner, presented on figure 8. The compar-

ison between figure 8 and figure 11 shows that both the

models obtained are similar. We can then conclude that our

algorithm succeed to build a correct global estimation in a

decentralized way.
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Figure 9. This figure shows the average KL divergence between the model
on each node and the centralized global view.
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Figure 10. These figures present the initial models of 2 nodes after
applying locally the EM algorithm on their data sets.
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Figure 11. These figures present the two models of figure 10 after 10

iterations of our estimation algorithm.

V. CONCLUSION

This paper presents an original solution for decentralized

and statistically robust learning of a probabilistic mixture

model, from a distributed data set. Such settings are of much

current interest in decentralized data sharing systems, for

data understanding, content recommendation and so forth.

The proposed scheme is founded on local aggregation of

models, that rest upon the sole use of model parameters,

learning to interesting properties with regard to data privacy

and network load, rather than original data. We then illus-

trated the proposal on synthetic and real-world results.

We are currently adapting the proposal to bi-clustering

mixture models, such as latent Dirichlet allocation models,

that are fundamental to topic-based clustering for a wide

range of applications. Besides, while in practice we have

observed good convergence properties, their existence and

characteristics remain to be established theoretically. Finally,

recent advances pertaining to gossip algorithms should be

introduced in the scheme.
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