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Abstract

The paper considers the problem of estimating a p ≥ 2 dimensional
mean vector of a multivariate conditionally normal distribution under
quadratic loss. The problem of this type arises when estimating the
parameters in a continuous time regression model with a non-Gaussian
Ornstein–Uhlenbeck process driven by the mixture of a Brownian mo-
tion and a compound Poisson process. We propose a modification of
the James–Stein procedure of the form θ∗(Y ) = (1− c/‖Y ‖)Y, where
Y is an observation and c > 0 is a special constant. This estimate al-
lows one to derive an explicit upper bound for the quadratic risk and
has a significantly smaller risk than the usual maximum likelihood
estimator for the dimensions p ≥ 2. This procedure is applied to the
problem of parametric estimation in a continuous time conditionally
Gaussian regression model and to that of estimating the mean vector
of a multivariate normal distribution when the covariance matrix is
unknown and depends on some nuisance parameters.
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1 Introduction

In 1961, James and Stein [7] considering the problem of estimating the mean
vector θ of a p-dimensional normal distributed random vector Y with a co-
variance matrix Ip introduced an estimator

θ̂JS =

(

1− p− 2

‖Y ‖2
)

Y (1)

which outperforms the maximum likelihood estimate (MLE)

θ̂ML = Y (2)

for dimension p ≥ 3, under the common quadratic risk

R(θ, θ̂) = Eθ‖θ − θ̂‖2, (3)

in the sense that for all parameter values θ

R(θ, θ̂JS) < R(θ, θ̂ML).

This unexpected result draw a great interest of mathematical statisticians
and stimulated a number of authors to contribute to the theory of improved
estimation by extending the problem of James and Stein in different direc-
tions to more general models with unknown covariance matrix and consid-
ering other types of estimates (see [1, 2, 6, 9] for more details and other
references). A considerable effort has been directed towards the problems of
improved estimation in non-Gaussian models with the spherically symmetric
distributions (see [3, 5]) and in the non-parametric regression models [4].

Now the James–Stein estimator and other improved shrinkage estimators
are widely used in econometrics and the problems associated with the signal
processing.

In this paper we will consider the problem of estimating the mean in a
conditionally Gaussian distribution. Suppose that the observation Y is a
p-dimensional random vector which obeys the equation

Y = θ + ξ, (4)

where θ is a constant vector parameter, ξ is a conditionally Gaussian random
vector with a zero mean and the covariance matrix D(G), i.e. Law(ξ|G) =
Np(0,D(G)), where G is some fixed σ-algebra.
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We propose to consider a shrinkage estimator of the form

θ∗ =

(

1− c

‖Y ‖

)

Y, (5)

where c is a positive constant which will be specified below. It will be shown
that such an estimator allows one to obtain an explicit upper bound for
the quadratic risk in case of the regression model (4) with a conditionally
Gaussian noise. Theorem 2.1 in Section 2 claims that the estimator (5)
outperforms the maximum likelihood estimate θ̂ML uniformly in θ from any
compact set Θ ⊂ R

p for any dimension p starting from two. In Section
3, we apply the estimator (5) to solve the problem of improved parametric
estimation in the regression model in continuous time with a non-Gaussian
noise.

The rest of the paper is organized as follows. In Section 2, we impose
some conditions on the random covariance matrix D(G) and derive to upper
bound for the difference of risks

∆(θ) := R(θ∗, θ)− R(θ̂ML, θ)

corresponding to θ∗ and θ̂ML respectively. In Section 4, the estimate (5)
is used for the parameter estimation in a discrete time regression with a
Gaussian noise depending on some nuisance parameters. Appendix contains
some technical results.

2 The upper bound for the estimate risk

In this section we will derive an upper bound for the risk of estimate (5)
under some conditions on the random covariance matrix D(G).

Assume that
(C1) There exists a positive constant λ∗, such that the minimal eigenvalue

of matrix D(G) satisfies the inequality

λmin(D(G)) ≥ λ∗ a.s.

(C2) The maximal eigenvalue of the matrix D(G) is bounded on some
compact set Θ ⊂ R

p from above, i.e.

sup
θ∈Θ

Eθλmax(D(G)) ≤ a∗,
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where a∗ is some known positive constant.
Let denote the difference of the risks of estimate (5) and that of (2) as

∆(θ) := R(θ∗, θ)−R(θ̂ML, θ).

We will need also the following constant

γp =

∑p−2
j=0 2

j−1

2 (−1)p−jµp−1−jΓ
(

j+1
2

)

− (−µ)pI(µ)

2p/2−1Γ
(

p
2

)

d
,

where µ = d/
√
a∗,

I(a) =

∫ ∞

0

exp(−r2/2)

a+ r
dr and d = sup{‖θ‖ : θ ∈ Θ}.

Theorem 2.1. Let the noise ξ in (4) have a conditionally Gaussian distribu-

tion Np(0,D(G)) and its covariance matrix D(G) satisfy conditions (C1), (C2)
with some compact set Θ ⊂ R

p. Then the estimator (5) with c = (p− 1)λ∗γp
dominates the MLE θ̂ML for any p ≥ 2, i.e.

sup
θ∈Θ

∆(θ) ≤ −[(p− 1)λ∗γp]
2.

Proof. First we will establish the lower bound for the random variable
‖Y ‖−1.

Lemma 2.2. Under the conditions of Theorem 2.1

inf
θ∈Θ

Eθ
1

‖Y ‖ ≥ γp.

The proof of lemma is given in the Appendix.
In order to obtain the upper bound for ∆(θ) we will adjust the argument

in the proof of Stein’s lemma [9] to the model (4) with a random covariance
matrix.

We consider the risks of MLE and of (5)

R(θ̂ML, θ) = Eθ‖θ̂ML − θ‖2 = Eθ(E‖θ̂ML − θ‖2|G) = EθtrD(G);

R(θ∗, θ) = R(θ̂ML, θ) + Eθ[E((g(Y )− 1)2‖Y ‖2|G)]

+2

p
∑

j=1

Eθ[E((g(Y )− 1)Yj(Yj − θj)|G)],
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where g(Y ) = 1− c/‖Y ‖.
Denoting f(Y ) = (g(Y ) − 1)Yj and applying the conditional density of

distribution of a vector Y with respect to σ-algebra G

pY (x|G) =
1

(2π)p/2
√

detD(G)
exp

(

−(x− θ)′D−1(G)(x− θ)

2

)

,

one gets

Ij := E(f(Y )(Yj − θj)|G) =
∫

Rp

f(x)(x− θj)pY (x|G)dx, j = 1, p.

Making the change of variable u = D−1/2(G)(x− θ) and assuming f̃(u) =
f(D1/2(G)u+ θ), one finds that

Ij =
1

(2π)p/2

p
∑

l=1

〈D1/2(G)〉jl
∫

Rp

f̃(u)ul exp

(

−‖u‖2
2

)

du, j = 1, p,

where 〈A〉ij denotes the (i, j)-th element of matrix A. These quantities can
be written as

Ij =

p
∑

l=1

p
∑

k=1

E(< D1/2(G) >jl< D1/2(G) >kl
∂f

∂uk

(u)|u=Y |G), j = 1, p.

Thus, the risk for an estimator (5) takes the form

R(θ∗, θ) = R(θ̂ML, θ) + Eθ((g(Y )− 1)2‖Y ‖2)

+2Eθ

(

p
∑

j=1

p
∑

l=1

p
∑

k=1

< D1/2(G) >jl< D1/2(G) >kl
∂

∂uk
[(g(u)− 1)uj]|u=Y

)

.

Therefore one has

R(θ∗, θ) = R(θ̂ML, θ) + EθW (Y ),

where

W (z) = c2 + 2c
z′D(G)z
‖z‖3 − 2trD(G)c

1

‖z‖ .

This implies that
∆(θ) = EθW (Y ).
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Since z′Az ≤ λmax(A)‖z‖2, one comes to the inequality

∆(θ) ≤ c2 − 2cEθ
trD(G)− λmax(D(G))

‖Y ‖ .

From here it follows that

∆(θ) ≤ c2 − 2c

p
∑

i=2

Eθ
λi(D(G))

‖Y ‖ .

Taking into account the condition (C1) and the Lemma 2.2, one has

∆(θ) ≤ c2 − 2(p− 1)λ∗γpc =: φ(c).

Minimizing the function φ(c) with respect to c, we come to the desired
result

∆(θ) ≤ −[(p− 1)λ∗γp]
2.

Hence Theorem 2.1.

Corollary 2.3. Let in (4) the noise ξ ∼ Np(0, D) with the positive definite

non random covariance matrix D > 0 and λmin(D) ≥ λ∗ > 0. Then the

estimator (5) with c = (p − 1)λ∗γp dominates the MLE for any p ≥ 2 and

compact set Θ ⊂ R
p, i.e.

sup
θ∈Θ

∆(θ) ≤ −[(p− 1)λ∗γp]
2.

Remark 2.1. Note that if D = σ2Ip then

sup
θ∈Θ

∆(θ) ≤ −[(p− 1)σ2γp]
2.

Corollary 2.4. If ξ ∼ Np(0, Ip) and θ = 0 in model (4) then the risk of

estimate (5) is given by the formula

R(0, θ∗) = p−
[

(p− 1)Γ((p− 1)/2)√
2Γ(p/2)

]2

=: rp. (6)
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Figure 1: Risk of θ∗ at θ = 0.

By applying the Stirling’s formula for the Gamma function

Γ(x) =
√
2πxx−1/2 exp(−x) (1 + o(1))

one can check that rp → 0.5 as p → ∞. The behavior of the risk (6) for small
values of p is shown in Fig.1. It will be observed that in this case the risk of
the James–Stein estimate remains constant for all p ≥ 3, i.e.

R(0, θ̂JS) = 2

and the risk of the MLE θ̂ML is equal to p and tends to infinity as p → ∞.
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3 Improved estimation in a non-Gaussian Ornstein–

Uhlenbeck–Levy regression model

In this section we apply the proposed estimate (5) to a non-Gaussian con-
tinuous time regression model. Let observations (yt)0≤t≤n obey the equation

dyt =

p
∑

j=1

θjφj(t)dt + dξt, 0 ≤ t ≤ n. (7)

Here a vector θ = (θ1, ..., θp)
′ of unknown parameters from some compact

set Θ ⊂ R
p. Assume that (φj(t))j≥1 is a one-periodic R+ → R functions,

bounded and orthonormal in L2[0, 1]. The noise (ξt)t≥0 in (7) is a non-
Gaussian Ornstein–Uhlenbeck process given by stochastic differential equa-
tion

dξt = aξtdt+ dut, (8)

where a ≤ 0 is unknown parameter, (ut)t≥0 is a Levy process satisfying the
equation

ut = ̺1wt + ̺2zt. (9)

Here ̺1, ̺2 are unknown constants, (wt)t≥0 is a standard Brownian motion,
(zt)t≥0 is a compound Poisson process defined as

zt =

Nt
∑

j=1

Yj, (10)

where (Nt)t≥0 is a Poisson process with unknown intensity λ > 0 and (Yj)j≥1

is a sequence of i.i.d. Gaussian random variables with parameters (0,1).
The problem is to estimate the unknown vector parameter θ on the basis

of observations (yt)0≤t≤n.
Let G = σ{Nt, t ≥ 0} denote the σ-algebra generated by the Poisson

process.
It will be noted that the model (7) is conditionally Gaussian given the σ-

algebra G. Therefore one can use estimate (5) to obtain an improved estimate
of the unknown vector parameter θ. To this end we have to reduce the initial
continuous time regression model (7) to a discrete time model of the form
(4).

The quality of an estimator θ̃ will be measured by the quadratic risk

R(θ, θ̃) = Eθ‖θ − θ̃‖2.
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A commonly used estimator of an unknown vector θ in model (7) is the
least squares estimate (LSE) θ̂ = (θ̂1, ..., θ̂p)

′ with

θ̂j =
1

n

∫ n

0

φj(t)dyt, j = 1, p.

From here taking into account (7), one has

θ̂ = θ + εnζ(n), (11)

where εn = n−1/2 and ζ(n) is the random vector with coordinates

ζj(n) =
1√
n

∫ n

0

φj(t)dξt.

Note that the vector ζ(n) has a conditionally Gaussian distribution with a
zero mean and conditional covariance matrix Vn(G) = cov(ζ(n), ζ(n)′|G) with
the elements

vij(n) = E(ζi(n)ζj(n) | G).
Thus the initial problem of estimating parameter θ in (7) can be reduced

to the that of estimating parameter θ in conditionally Gaussian regression
model (11).

Theorem 3.1. Let the regression model be given by the equations (7)–(10),
̺1 > 0. Then, for any n ≥ 2 and p ≥ 1, the estimator of θ

θ∗ =

(

1− ̺21(p− 1)γp

n‖θ̂‖

)

θ̂,

dominates the LSE θ̂:

sup
θ∈Θ

∆(θ) ≤ −
[

̺21(p− 1)γp
n

]2

.

To proved this theorem one can apply Theorem 2.1 and it suffices to check
conditions (C1), (C2) on the matrix Vn(G). The proof of conditions (C1) and
(C2) is given in the Appendix.
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4 Improved estimation in an autoregression

In this section we consider the problem of improved estimating the unknown
mean of a multivariate normal distribution when the dispersion matrix is
unknown and depends on some nuisance parameters.

Let in (4) the noise ξ = (ξ1, ..., ξd)
′, be described by a Gaussian autore-

gression process
ξk = aξk−1 + εk, k = 1, p, (12)

where |a| < 1, Eξ0 = 0 and ε1, ..., εp are independent Gaussian (0,1) random
variables. Assume that the parameter a in (12) is unknown and belongs to
interval [−α, α], where 0 < α < 1 is known number.

It is easy to check that the covariance of the noise ξ has the form

D(a) =
1

1− a2















1 a ... ap−1

a 1 ... ap−2

. . .

ap−1 ap−2 ... 1















Proposition 4.1. Let ξ in (4) be specified by (12) with a ∈ [−α, α]. Then
for any p > 1/(1− α)2 the MLE is dominated by the estimator

θ∗ =

(

1−
(

p− 1

(1− α)2

)

γp
‖Y ‖

)

Y

and

sup
θ∈Θ

∆(θ) ≤ −
(

p− 1

(1− α)2

)2

γ2
p .

Proof. One has that trD(a) = p/(1 − a2). Now we find the estimation of
the maximal eigenvalue of matrix D(a). By definition

λmax(D(a)) = sup
‖z‖=1

z′D(a)z

one has

z′D(a)z =

p
∑

i=1

p
∑

j=1

< D(a) >ij zizj =
1

1− a2

(

1 + 2

p−1
∑

i=1

p−i
∑

j=1

ajzizj+i

)

=
1

1− a2

(

1 + 2

p−1
∑

j=1

aj
p−j
∑

i=1

zjzi+j

)

.
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By applying the Cauchy–Bunyakovskii inequality we obtain that

λmax(D(a)) ≤ 1

1− α2

(

1 + 2
∞
∑

j=1

αj

)

=
1

(1− α)2
.

Thus,

trD(a)− λmax(D(a)) ≥ p− 1

(1− α)2
.

Hence, taking into account the Theorem 2.1 we come to assertion of Propo-
sition.

5 Conclusions

In this paper we propose a new type improved estimation procedure. The
main difference from the well-known James–Stein estimate is that in the dom-
inator in the corrected term we take the first power of the observation norm
‖Y ‖. This allow us to improve estimation with respect to MLE begining with
any dimension p ≥ 2. Moreover, we apply this procedure to the estimation
problem for the non-Gaussian Ornstein–Uhlenbeck–Levy regression model.

6 Appendix

6.1. Proof of the Lemma 2.2.
Proof. From (4) one has

J = Eθ
1

‖Y ‖ = Eθ
1

‖θ + ξ‖ ≥ Eθ
1

d+ ‖ξ‖ .

Using a repeated conditional expectation and since the random vector ξ is
distributed conditionally normal with a zero mean, then

J ≥ Eθ
1

(2π)p/2
√

detD(G)

∫

Rp

exp(−x′D(G)−1x/2)

d+ ‖x‖ dx.

Making the change of variable u = D(G)−1/2x and applying the estimation
u′D(G)u ≤ λmax(D(G))‖u‖2 we find

J ≥ 1

(2π)p/2

∫

Rp

exp(−‖u‖2/2)
d+

√

λmax(D(G))‖u‖
du.

11



Further making the spherical changes of the variables yields

J ≥ 1

2p/2−1Γ(p/2)
Eθ

∫ ∞

0

rp−1 exp(−r2/2)

d+
√

λmax(D(G))r
dr.

From here by Jensen and Cauchy–Bunyakovskii inequalities and by the
condition (C2) we obtain

J ≥ µ

2p/2−1Γ(p/2)d

∫ ∞

0

rp−1 exp(−r2/2)

µ+ r
dr = γp.

This leads to the assertion of Lemma 2.2.

6.2. The proof of conditions (C1) and (C2) on the matrix Vn(G).
The elements of matrix Vn(G) can be written as [8]

vij(n) =
̺21
n

∫ n

0

φi(t)φj(t)dt

+
̺21
2n

∫ n

0

(

φi(t)εφj
(t) + φj(t)εφi

(t)
)

dt+
̺22
n

∑

l≥1

φi(Tl)φj(Tl)χ(Tl≤n)

+
̺22
n

∑

l≥1

∫ n

0

(

φi(t)Lφj
(t− Tl, Tl) + φj(t)Lφi

(t− Tl, Tl)
)

χ(Tl≤t)dt, (13)

where

εg(t) = a

∫ t

0

exp(a(t− s))g(s)(1 + exp(2as))ds,

Lg(x, y) = a exp(ax)

(

g(y) + a

∫ x

0

exp(as)g(s+ y)ds

)

and (Tl)l≥1 are the jump times of the Poisson process (Nt)t≥0, i.e.

Tl = inf{t ≥ 0 : Nt = l}.

Lemma 6.1. Let (ξt)t≥0 be defined by (8) with a ≤ 0. Then a matrix Vn(G) =
(vij(φ))1≤i,j≤p with elements defined by (13), satisfy the following inequality

a.s.

inf
n≥1

inf
‖z‖=1

z′Vn(G)z ≥ ̺21.
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Proof. Notice that by (13) one can the matrix Vn(G) present as

Vn(G) = ̺21Ip + Fn +Bn(G),

where Fn is non random matrix with elements

fij(n) =
̺21
2n

∫ n

0

(

φi(t)εφj
(t) + φj(t)εφi

(t)
)

dt

and Bn(G) is a random matrix with elements

bij(n) = ̺22
∑

l≥1

[φi(Tl)φj(Tl)χ(Tl≤n)

+

∫ n

0

(

φi(t)Lφj
(t− Tl, Tl) + φj(t)Lφi

(t− Tl, Tl)
)

χ(Tl≤t)dt].

This implies that

z′Vn(G)z = ̺21z
′z + z′Fnz + z′Bn(G)z ≥ ̺21z

′z,

therefore
inf

‖z‖=1
z′Vn(G)z ≥ ̺21

and we come to the assertion of Lemma 6.1.

Lemma 6.2. Let (ξt)t≥0 be defined by (8) with a ≤ 0. Then a maximal

eigenvalue of the matrix Vn(G) = (vij(n))1≤i,j≤p with elements defined by

(13), satisfy the following inequality

sup
n≥1

sup
θ∈Θ

Eθλmax(Vn(G)) ≤ Mp̺∗,

where ̺∗ = ̺21 + λ̺22 and M > 0.

Proof. One has

Eθλmax(Vn(G)) ≤ Eθtr(Vn(G)) =
p
∑

j=1

Eθζ
2
j (n) =

̺∗

n

p
∑

j=1

τj(n),

13



where

τj(n) =

∫ n

0

φ2
j(t)dt

+ a

∫ n

0

φj(t)

∫ t

0

exp(a(t− u))φj(u)(1 + exp(2au))dudt.

Since the (φj)1≤j≤p is a one-periodic orthonormal functions therefore the first
integral is equal to n and in view of the inequality max |φj(t)| ≤ K for any
a ≤ 0

a

∫ n

0

φj(t)

∫ t

0

exp(a(t− u))φj(u)(1 + exp(2au))dudt

≤ 2K2|a|
∫ n

0

∫ t

0

exp(a(t− u))dudt ≤ 2K2n.

From here denoting M = 1 + 2K2 we obtain that

Eθλmax(Vn(G)) ≤ Mp̺∗.

Hence Lemma 6.2.

Thus the matrix Vn(G) is positive definite and satisfies for any compact
set Θ ⊂ R

p, the conditions (C1) and (C2) with λ∗ = ̺21 and a∗ = Mp̺∗.
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