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Abstract

Knowledge of the contact stress between roll and strip becomes a critical factor in modern, high-speed rolling
mills. In this paper, an inverse analytical method is developed to determine the contact stress in the roll gap by
measuring the stress tensor with fibre optics at only one point inside the roll. Unlike many inverse methods, no
matrix inversion is needed because the very small contact length would lead to ill-conditioned matrices. Iterative
methods are also not studied because short computation times are desired. This approach uses the theory of
elasticity on the assumption that the problem is isothermaland planar and relies on the expansion of holomorphic
functions into a power series. On the other hand, the computation time is studied to rapidly optimise the industrial
parameters during the rolling process. Hot, cold and temper-rolling simulations are given to demonstrate the
accuracy of the method and the feasibility of this new kind ofsensor, taking into account the restrictions (e.g.,
frequency of acquisition) of the local measurement system.
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1. Introduction

1.1. Principles

In steel rolling processes, two rolls are used as tools to reduce the thickness of a workpiece. Modern rolling
mills combine higher rolling speeds, larger reductions, harder steel grades and thinner rolled strips. Thus, to
ensure better product quality, especially in terms of thickness, flatness and defect-free surface, knowledge of
friction and lubrication in the roll gap becomes critical. The contact between the strip and the roll is a location of
unknown shear stress and normal pressure and lubrication conditions. Some models that characterise the interface
taking into account lubrication have been proposed in recent years by Montmitonnet et al. (2007) but still need
experimental validation. On the other hand, with industrial rolling process being currently dictated by empiricism,
knowledge of the contact stress would be desirable to allow an optimisation of parameters such as speed and
lubrication, with a closed-loop control.

Sensors already provide measurements of stress in the roll gap. Many investigators, such as Jeswiet and
Rice (1982) or more recently, Liu et al. (2002) and Andersen et al. (2001), have used direct friction pin sensors.
However, the presence of the pin disturbs the local lubricant flow at the interface, and the contact marks the strip;
industrial use is therefore impossible. More recently, Lagergren et al. (2006) developed a sensor with a much
bigger transducer than the strip-roll arc of contact. This sensor overcomes the difficulties of local perturbation of
the frictional conditions, but the problem of strip marks isstill unresolved.

Thus, an inverse method is necessary. Stelson (1983) showedthat the roll itself can be used as a sensor by
measuring the elastic deformation inside the roll (local sensor fully embedded) and by inferring the boundary
stress by inverse analysis. The development of this new sensor aims for real-time measurement. Therefore, iter-
ative schemes are not suitable. Moreover, a finite element approach, or any other method based on inversions of
matrices (representing the relationship between the stress measured inside the roll and the contact stress), is not
accurate. Because the roll gap has a very small length, this matrix is ill-conditioned because the angles involved
in the matrix are too similar. Therefore, a problem arises whereby small measurement errors become strongly
amplified, leading to poor accuracy. To avoid this classic problem, Meierhofer and Stelson (1987) proposed an
analytical method based on the assumption that the problem is steady-state. Therefore, it is possible to measure
the strain tensor (converted into stress by the equations ofelasticity) at one point inside the roll, and the rotation
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of the roll allows a measurement of the whole circle. Therefore, it is possible to solve the problem bounded by the
measurements (circle) and to extend the solution by continuity towards the roll gap. However, the method is based
on an ineffective elastic approach that involves an expansion of the Airy potential into a power series (with addi-
tional terms) and an expansion of the stress measured insidethe roll into a Fourier series. Then, an identification
of the coefficients of both series is needed. To obtain enough equations,the authors used measurements on two
concentric circles. They proposed measuring the stresses at two different points and at two different radii (which
is technologically very difficult for industrial mills). Moreover, many inversions of matrices of identification
(well-conditioned if the two radii are sufficiently distinct from each other) are needed.

Very recently, Legrand et al. (2010) computed this method and investigated its effectiveness by simulating
several industrial conditions. The authors concluded that, for common industrial rolling conditions, the method
developed by Meierhofer and Stelson (1987) is quite accurate but hardly usable because of the very long com-
putation time. Moreover, the authors demonstrate that the contact stress cannot be reconstructed precisely under
temper-rolling conditions (with extremely sharp stress gradients and a very short bite). It is demonstrated in this
paper that the present method is successful under this kind of condition.

1.2. Fibre optics

In this paper, an analytical approach similar to the generalapproach of Meierhofer and Stelson (1987) is devel-
oped. The stress is measured only at one radius (instead of two). This difference is one of the main improvements
because it is technologically much easier to insert one local strain sensor rather than two at different radii. Mea-
surements of the whole circle are accomplished by the rotation of the roll. Concerning the local sensor itself,
Meierhofer and Stelson (1987) used strain gages glued to theedge of the roll (considered thin enough). However,
this technique is not recommended for industrial rolls because they are much larger than the strip. Therefore there
is no strip-roll contact at the edge in the roll gap. Fibre optics are considered in this study; they rely on the principle
of Bragg gratings and which give the local strains by interpreting the wavelengths as explained by Ferdinand et al.
(2009). Fibre optics inserted in a thin radial hole in the roll is technologically possible. This technique is studied
within the framework of the European project RFS-PR-08051.The surface of the roll is then re-manufactured to
avoid any damage to the strip.

1.3. Mathematical approach

The problem bounded by the circle of measurements is solved.Then, the solution is extended by continuity
to exhibit the contact stress in the roll gap. In this way, theequations of elasticity for an isotropic material under
the isothermal assumption developed by Muskhelishvili (2008) are used. The complex formalism allows a very
simple expansion of the holomorphic functions involved in the equations into power series. Moreover, a method
to make the computation as fast as possible is demonstrated.Thus, the computation time has been considerably
reduced to reach a real-time calculation of this new kind of sensor.

In this paper, all the results are derived from simulations.The following industrial conditions given by Legrand
et al. (2010) are considered: hot rolling conditions, cold rolling conditions and temper-rolling conditions. Thus,
the measurements at the inner radius are simulated by directcalculation (this part replaces the measurements
provided by the fibre optics), and the contact stresses are inferred from the inverse method. Results are compared
to the applied stress to estimate the accuracy of this new approach. The present method is more accurate than
the previous one developed by Meierhofer and Stelson (1987). Moreover, Legrand et al. (2010) conclude that the
extreme temper-rolling condition (or skinpass) cannot be reconstructed because of the extremely small contact
length and very sharp stress gradients. In this paper, it is demonstrated that the reconstruction of these extreme
rolling conditions is satisfactory.

2. Inverse analysis

The circle of measurements is denoted by∂C and its radius byRc. The roll itself is denoted by∂D and its
radius byRd. In the following derivation, the letterc (respd) means that the quantity is related to the circle∂C
(resp∂D). All the notations are listed in Table 1.
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Rd Outer radius (radius of the roll)
Rc Inner radius (radius of the measurements by fibre optics)
Ns Number of points of interpolation (cubic function)
Nm Number of measurement points
Nt Number of truncation (terms kept in the summation)
Ninv Number of inversion of matrices
ǫ Error of reconstruction
∇max Largest gradient in the inputs
Imax Maximum of the norm of the input signal
δ Angular part covered by the roll gap

Table 1: Nomenclature

Roll gap

@C

@D

δ

Rc

Rd

ti
tfStrip

Figure 1: Stress measurement on∂C

For all z ∈ C, the equations of elasticity for an isotropic material under the isothermal assumption given by
Muskhelishvili (2008) are:

{

σrr + σθθ = 2
(

Φ(z) + Φ(z)
)

−σrr + σθθ + 2iσrθ = 2e2iθ (Ψ(z) + zΦ′(z))
(1)

whereΦ(z) andΨ(z) are unknown holomorphic functions defined onD. Mathematically, these functions can be
expanded into a power series. Therefore, for allz ∈ D:

Φ(z) =
+∞
∑

k=0

a′kzk Ψ(z) =
+∞
∑

k=0

b′kzk (2)

For dimensionless coefficients, the following quantities are introduced:

ak = Rk
ca′k bk = Rk

cb′k (3)

By combining (1), (2) and (3), the stresses in the roll gap as afunction of (ak)k∈N and (bk)k∈N are obtained:
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rr + σ

d
θθ = 2

+∞
∑

k=0

(

Rd
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)k

(akeikθ + ake−ikθ)

−σd
rr + σ

d
θθ + 2iσd

rθ = 2
+∞
∑

k=0

(

Rd

Rc

)k

(bkei(k+2)θ + kakeikθ)

(4)
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By combining equations (4)σd
rr, σ

d
rθ andσd

θθ
are obtained. Because

∫

∂C

zk dz =

{

2iπ k = −1
0 k , −1

(5)

(ak)k∈N and (bk)k∈N are calculated by integrating the stresses measured at the inner radius using the following
equations:































































































a0 =
1
8π

∫ 2π

0
σc

rr + σ
c
θθ dθ

∀k ∈ N
∗

ak =
1
4π

∫ 2π

0

σc
rr + σ

c
θθ

eikθ
dθ

∀k ∈ N

bk =
1
4π

∫ 2π

0

−σc
rr + σ

c
θθ
+ 2iσc

rθ

ei(k+2)θ
dθ − (k + 2)ak+2

(6)

3. Accuracy and computation time

The key to the whole method is the quality provided for the integrals (6). A small numerical error onak or bk

is multiplied at least by(Rd/Rc)
k, which increases until the solution diverges. Therefore, atruncation is needed.

Thus, the more accurate the integrals are and the higher the progression is, the more accurate the solution is.
To compute an accurate integral, many measurement points are needed. However, the frequency of the mea-

surement system is fixed to quite a low value, according to thefrequency of acquisition (approximately 1 kHz) of
new fibre optics. Hence, the number of points is limited. Because the measurement system and the rotation of the
roll are not synchronised (and the problem is steady-state), it is possible to acquire signals from several rotations
to increase the number of points. This technique is only usedfor extreme cases, such as temper-rolling conditions.

An effective way to calculate the integrals (6) (with a very short computation time) is to interpolate the input
signal with a spline (cubic function). The number of interpolation points is calledNs (s meaning spline). The
choice ofNs is a compromise between computation time and accuracy. The spline interpolation considerably
improves the quality of the input signal. The integrations (6) are like Fourier coefficients, and a very effective way
to compute these kinds of integrals is to use the fast Fouriertransform (fft), which computes the Riemann sum
from 1 toNs that converges to the integral.

More precisely, ifσ is the input signal represented as a column withNs rows, thefft classically computes the
following vector (sizeNs) :

1
Ns
fft(σ) =

1
Ns

















Ns
∑

m=1

σ(k)e−2iπ (m−1)(k−1)
Ns

















k∈‖1,Ns‖

→
Ns→+∞

(

1
2π

∫ 2π

0
σ(θ)e−i(k−1)θ dθ

)

k∈‖1,Ns‖

(7)

Therefore, the extraction of the coefficientsak andbk can be done as follows:






















































































a0 ≃
1

4Ns
fft(σc

rr + σ
c
θθ)1

∀k ∈ N
∗

ak ≃
1

2Ns
fft(σc

rr + σ
c
θθ)k+1

∀k ∈ N

bk ≃
1

2Ns
fft(−σc

rr + σ
c
θθ + 2iσc

rθ)k+3 − (k + 2)ak+2

(8)

The Table 2 lists the CPU times corresponding to the computation of all theNs coefficientsak andbk (including
the interpolation of the input signal) for different values ofNs. A linear dependence can be noted. All CPU times
are obtained for a quadcore 2.8 GHz and are the times displayed by Scilab 5.3 . Moreover, a program compiled
and translated in machine language would significantly reduce the computation time.
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Ns CPU time (s)
20 000 0.01
50 000 0.03
100 000 0.06
200 000 0.12

Table 2: CPU time

In the following, the parameterNs is fixed to 100 000. This choice is related to the accuracy needed for the
reconstruction and is discussed in section 6.

Formula (4) is a deconvolution and could be computed with theifft (inverse fast Fourier transform). However,
the ifft does not offer the choice of the reconstruction points. Because the reconstruction is only needed in the roll
gap, the deconvolution is computed as follows. Formula (4) is rewritten in matrix form. Matrices are underlined
twice and vectors are underlined once. Therefore, if the reconstruction is done forNr points in the roll gap (r
meaning reconstructed) called (θ j) j∈‖1,Nr‖ and if the number of terms kept in the sum is calledNt (t meaning
truncation):
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(9)

where :










































M1 = 2
(

(

Rd

Rc

)k
eikθ j

)

( j,k)∈‖1,Nr‖×‖1,Nt‖

M2 = 2
(

(

Rd

Rc

)k
ei(k+2)θ j

)

( j,k)∈‖1,Nr‖×‖1,Nt‖

M3 = 2
(

(

Rd

Rc

)k
keikθ j

)

( j,k)∈‖1,Nr‖×‖1,Nt‖

(10)

andA = (ak)k∈‖1,Nt‖
andB = (bk)k∈‖1,Nt‖

.
Table 2 gives the CPU times to calculateA andB. A very interesting point in writing (4) in matrix form is that

the matricesM1,M2 andM3 can be calculated before the rolling process and can be stocked in a library. The

on-line computation is therefore limited to the products involved in (9). This library can contain different versions
of the matrices corresponding to different values ofNr andNt. The computation can be adaptive. The CPU time
of the products in (9) forNr = 55, which is enough for an industrial interpretation, is 0.002 s.

4. Error estimate

To evaluate the quality of the reconstruction, a quantified error estimate is needed. The relative distance
(norm 2) between the reconstructed stressσr and the applied stressσa (wherer means reconstructed anda means
applied) is introduced:

ǫ =

√

√

√

√

∫ 2π

0
(σr(θ) − σa(θ))2 dθ
∫ 2π

0
σa(θ)2 dθ

(11)

Thus,ǫ is dimensionless and can be understood as a percentage.

5. Truncation criterion

The effectiveness of the method relies on the integrations (6). A small mistake (unavoidable) is multiplied at
least by(Rd/Rc)

k, which becomes higher and higher until that the solution diverges. Therefore, a truncation of the
development is needed. The number of terms kept in the sum is called Nt (t meaning truncation). A method to
make a good guess ofNt according to some parameters of input signals is proposed.

Input signals are given with a resolution calledNm, which represents the number of measurement points on
2π (m meaning measured). The quality of the extraction of the coefficientsak andbk depends highly onNm and
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on the singularity of the signal. In this paper, the largest stress gradient in the signal (called∇max), the maximum
of the norm of the signal (calledImax) and the angular part covered by the roll gap (calledδ) are considered to
characterise the singularity of the signal.

A very classic model is a logarithmic law:

Nt = A× NαmIβmax∇
γ
maxδ

λ (12)

whereα, β, γ andλ are dimensionless coefficients. Moreover,∇βmaxIγmaxδ
λ should be dimensionless, therefore

β = −γ = −λ. Thus, the model becomes:
Nt = A× NαmS

β (13)

where :S = Imax/ (∇maxδ)
This model is a rule of thumb. A systematic study of the order of convergence of the integration method

proposed in section 3 would be necessary for a theoretical analysis of the number of truncationsNt. However,
such a theoretical point of view is not needed for the purposeof this discussion. An estimate of the number of
truncations is sufficient to obtain a reconstruction as close as possible to the best reconstruction depending on the
input signal.

To determineA, α andβ, three industrial rolling conditions taken from Legrand etal. (2010) are tested. Hot
rolling conditions, cold rolling conditions and temper-rolling conditions cover the range of the possible signals
during industrial rolling processes. For that reason, thisset of cases is used as a reference. The stress profiles in
the roll gap are known, and a direct elastic calculation is performed to obtain the stress profiles at the inner radius
(assumed to be measured by fibre optics). These stress profiles are the inputs of the inverse method. By using
(11), it is possible for each rolling condition and each value of Nm to plot the error between the reconstructed
stress and the applied stress against the number of truncation Nt. For example, Figure 2 (corresponding to the
normal pressure of the cold rolling condition withNm = 1000) shows that the error reaches a minimum for a
unique value ofNt. It is clear that the best reconstruction is a compromise between the convergence of the series
and the amplified error of integration. The reconstructionscorresponding to three values ofNt are given in Figures
3, 4 and 5. Fig. 3 is a bad reconstruction due to the fact that the series have not converged, Fig. 4 is the best
reconstruction and Fig. 5 is a bad reconstruction due to the fact that too many terms with amplified errors are kept
in the sums. The value ofNt that corresponds to the best reconstruction is listed in Tables 3 and 4 for different
values ofNm and for the three rolling conditions (i.e., different values ofS).
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200 300 400 500 600

Ntoptimal

Nt

ε
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Figure 2:ǫ againstNt
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Nm Hot rolling Cold rolling Temper-rolling
- S ≃ 0.07 S ≃ 0.39 S ≃ 0.64

1000 445 544 630
1250 503 708 899
1500 532 846 1119
2000 532 1080 1304
3000 532 1080 1428
5000 532 1080 2600

Table 3: OptimalNt for normal pressure

Nm Hot rolling Cold rolling Temper-rolling
- S ≃ 0.087 S ≃ 0.29 S ≃ 0.3

1000 437 527 590
1250 489 630 919
1500 506 761 795
2000 506 960 1150
3000 506 960 1620
5000 506 960 2364

Table 4: OptimalNt for shear stress
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Nt =100
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Figure 3: Reconstruction for cold rolling conditions withNm = 1000 andNt = 100
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Figure 4: Reconstruction for cold rolling conditions withNm = 1000 andNt = 544
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Figure 5: Reconstruction for cold rolling conditions withNm = 1000 andNt = 700

In Tables 3 and 4, the optimal number of truncationsNt reach a limit whenNm increases. Because of the spline
interpolation (with a very large number of interpolation points) and the regularity of input signals, the precision
of the integrations cannot be improved beyond a limit, depending on the length of the roll bite. To identify the
constantsA, α andβ involved in the logarithmic model (13), only the values ofNt before the saturation are taken
into account (values in bold letters in Tables 3 and 4). The validity of this model is therefore limited to values of
Nm for which the precision is not saturated.

In Figure 6, the optimal numbers of truncationNt from the Tables 3 and 4 are represented againstNmS
β

α . The
model (13) is also represented with the following values:



















A = 1.83
α = 0.86
β = 0.215

8



0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000 3500 4000 4500

NmS
α
β

Nt

Logarithmic model

Optimal truncation numbers

Figure 6:Nt vs. NmS
β
α

The CPU time of the logarithmic model (13) is 0.006 s.

6. Discussion on Ns

In this section, the choice of the number of interpolation points Ns = 100000 is discussed. As explained in
section 3, this choice is a compromise between accuracy and computation time. By using the error estimate (11)
and the three industrial rolling conditions taken from Legrand et al. (2010), the stresses for different values of
Ns (i.e., different qualities of integration) are reconstructed. Therefore, it is possible to plot the error between
the reconstruction and the applied stress against the number of interpolation pointsNs for each rolling condition.
Figure 7 (resp 8) presents the error againstNs for the reconstruction of normal pressure (resp shear stress). The
values ofNm are the ones considered in the following sections. For temper-rolling conditions, the error decreases
exponentially whenNs increases. The choice that is the best compromise between accuracy and computation time
is Ns = 100000. For simplicity, this choice is applied for all rolling conditions, but for industrial use, hot and cold
rolling conditions can be calculated even faster by usingNs = 20000, for example.
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Figure 7:ǫ vs. Ns for normal pressures (σrr)
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Figure 8:ǫ vs. Ns for shear stress (σrθ)

7. Validation and comparison

7.1. Stress in the roll gap: applied stress

The three industrial rolling conditions used in sections 5 and 6 are used for the quantitative validation of the
inverse method presented here and for comparison with the results obtained by Legrand et al. (2010). The contact
stress of the three rolling conditions is given by a numerical model, LAM3 edited by Hacquin (1996). The stress
profiles for normal pressure (σrr) and shear stress (σrθ) are given in Figures 9, 10 and 11. Hot rolling conditions
are the least singular, and temper-rolling conditions are the most singular. The roll gap lengths are around 71.6
mm for hot rolling conditions, 13.7 mm for cold rolling conditions and 4.8 mm for temper-rolling conditions. It
is interesting to note that the shape of the stresses given bythe model LAM3 Hacquin (1996) bear a resemblance
to the contact stresses found by Boussinesq (1885) for a concentrated load on a semi-infinite half plane with the
classic change of sign of the shear stress.

Hot (resp cold and temper) rolling simulation settings are given in Table 5 (resp Tables 6 and 7).
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Figure 9: Contact stresses for hot rolling
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Figure 10: Contact stresses for cold rolling

-1000

-800

-600

-400

-200

0

200

-0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 0.010

-100

-50

0

50

100

150

Normal pressure

Shear st resses

σrr (MPa)

θ (rad)

σrθ (MPa)

Figure 11: Contact stresses for temper-rolling

7.2. Simulated measurements

A direct elastic calculation gives the stresses at the radius Rc (considered as a simulation of the measurements
that would be done with fibre optics). In Figures 12, 13 and 14,the stresses calculated atRc without noise are
given. The data are not experimental results but rather calculations.

The inner radiusRc is chosen at 3 mm from the surface of the roll for hot and cold rolling conditions, which
is technologically a correct distance. For temper-rollingconditions, the stress gradients are very sharp, andRc is
chosen at only 2 mm from the surface of the roll, which is the closest distance at which the fibre optics can be
accurately inserted. Legrand et al. (2010) show that a reconstruction is impossible for temper-rolling conditions
because the authors require an input signal at 1 mm from the surface of the roll, which is not technologically
possible. In this paper, this difficulty is overcome.

It is also important to remember that the number of pointsNm is chosen to be consistent with the quite low
frequency of acquisition (1kHz). With a typical experimental speed (1 cycle/sec), the resolution isNm = 1000
points for 2π. This resolution is used for hot and cold rolling conditions.

For industrial speeds, measurements on several rotations are necessary to reach this kind of resolution because
the acquisition system and rotation speed are not synchronised. This technique is used for the temper-rolling
condition because of the very small contact length. Three cycles are considered (i.e,Nm = 3000) followed by five
cycles (i.e,Nm = 5000).
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Figure 12: Stresses calculated atRc for hot rolling
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Figure 13: Stresses calculated atRc for cold rolling

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

0.70 0.75 0.80 0.85

Roll Gap

Shear stresses

Hoop stresses

Normal pressure

σrr (MPa)

θ (rad)

σθθ (MPa)

σrθ (MPa)

σ (MPa)

Nm=5 000

Figure 14: Stresses calculated atRc for temper-rolling
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7.3. Results without noise

The inverse method is applied, and a comparison between the reconstruction of the contact stress and the
applied stress is made. Results given by Legrand et al. (2010) are also compared. Results corresponding to the
three rolling conditions (with different options discussed in the following) are given in Figures 15 to 22.

The number of truncations is chosen according to the approximate (but predictive) model (13). Therefore, the
results do not correspond to the best possible reconstruction.

7.3.1. Hot rolling
The problem is assumed to be isothermal. However, for hot rolling conditions, the thermal stress is not

negligible, as demonstrated by Legrand et al. (2010). In this paper, this aspect is not studied (the thermal stress is
neglected), but the difficulty is overcome in a future publication where the thermal problem is solved. Thus, the
coupled thermal and mechanical problems overlap by linearity.

Figures 15 and 16 are relative to hot rolling conditions. Thetruncation is done at the 399th harmonic for
σrr (and at the 412-th forσrθ). The results in Figures 15 and 16 show that the reconstructed stress (with the
present method) and the applied stress are almost identical. Therefore, the new method developed in this study is
much more accurate than the computation of Legrand et al. (2010) (based on the work of Meierhofer and Stelson
(1987)). The neutral point is very well predicted, which is an important result for industrial studies .

All simulation parameters and the reconstruction errors inpercentage and indicative computation time of both
methods are listed in Table 5. The time of the computation of Legrand et al. (2010) is an estimate from CPU times
obtained with a dualcore 2GHz.Ninv is the number of inversions of matrices of identification (4×4), the present
study does not involve any matrix inversion.
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Figure 15: Results for hot rolling without noise,σrr
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Figure 16: Results for hot rolling without noise,σrθ

Legrand et al. (2010) Present study
(rr/rθ) (rr/rθ)

Rd (mm) 177.51 177.51
Rc (mm) 174.51 174.51
Nt 100 (399/412)
Nm 1000 1000
Ninv 200 0
ǫ (%) (9.3/13.2) (0.63/0.75)
CPU time (s) ≃300 ≃0.07

Table 5: Hot rolling summary

7.3.2. Cold rolling
For cold rolling conditions the thermal stress is more negligible than for hot rolling conditions, as demonstrated

by Legrand et al. (2010). The truncation is done at the 568th harmonic forσrr (and at the 534th forσrθ). As for
the hot rolling conditions, the results in Figures 17 and 18 show that the new inverse method is more accurate than
the computation of Legrand et al. (2010) (based on the work ofMeierhofer and Stelson (1987) ). Computation
time is extremely reduced compared to the work of Legrand et al. (2010).

For cold rolling conditions, there is Coulomb-type friction with a discontinuity of the shear stress at the neutral
point (where the sliding speed between the roll and the stripchanges sign). For hot rolling conditions, there is an
area around the neutral point where the roll and the strip do not slide over each other. In this area, the shear stress
can be arbitrary compared to the normal pressure.

It is particularly interesting that the discontinuity of the shear stress is rather well reconstructed, in comparison
to the reconstruction of Legrand et al. (2010). In Figure 19,it is interesting to note that the reconstruction of the
shear stress can be considerably improved by using an acquisition of the input signal over two cycles instead of
only one (i.eNm = 2000). The discontinuity is indeed very well reconstructed. In this case, the truncation is done
at the 1029th harmonic forσrr (and at the 969th forσrθ).
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Figure 17: Results for cold rolling without noise,σrr
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Figure 18: Results for cold rolling without noise,σrθ
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Figure 19: Results for cold rolling without noise,σrθ
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Legrand et al. (2010) Present study Present study
(rr/rθ) (rr/rθ) (rr/rθ)

Rd (mm) 200 200 200
Rc (mm) 197 197 197
Nt 600 (568/534) (1029/969)
Nm 1000 1000 2000
Ninv 1200 0 0
ǫ (%) (8.6/26) (4.14/13.20) (1.83/2.64)
CPU time (s) ≃2400 ≃0.07 ≃0.07

Table 6: Cold rolling summary

7.3.3. Temper-rolling
Legrand et al. (2010) show that a reconstruction is not possible for temper-rolling conditions because of the

very small length of the roll gap. Indeed, the authors need tocalculate the input signal at 1 mm from the surface
of the roll, which is technologically almost impossible. The authors considered three cycles of acquisition at a
rotation speed of 1 cycle/second (i.e.,Nm = 3000). The results presented in Figures 20 and 21 are produced with
an input signal calculated at 2 mm from the surface of the roll, which is a distance that is technologically possible
through the insertion of fibre optics. The truncation is doneat the 1605th harmonic forσrr (and at the 1371th for
σrθ). The results in Figures 20 and 21 show that the new inverse method (2 mm from the surface of the roll) is
as accurate as the computation of Legrand et al. (2010) (1 mm from the surface of the roll). Therefore, the new
inverse method is more powerful than the older one.

To improve the reconstruction of shear stress, it is possible to consider the acquisition on five cycles instead
of three. The resolution becomesNm = 5000. In this case, the truncation is done at the 2487th harmonic for σrr

(and at the 2128th forσrθ). Figure 22 shows that the reconstruction is excellent. Moreover, the computation time
is extremely reduced compared to the computation time obtained by Legrand et al. (2010).
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Figure 20: Results for temper-rolling without noise,σrr
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Figure 21: Results for temper-rolling without noise,σrθ
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Figure 22: Results for temper-rolling without noise,σrθ

Legrand et al. (2010) Present study Present study
(rr/rθ) (rr/rθ) (rr/rθ)

Rd (mm) 257 257 257
Rc (mm) 256 255 255
Nt 1200 (1605/1371) (2487/2128)
Nm 3000 3000 5000
Ninv 2400 0 0
ǫ (%) (4.3/21.6) (3.23/19.38) (2.48/9.81)
CPU time (s) ≃4800 ≃0.07 ≃0.07

Table 7: Temper-rolling summary

8. Conclusions

The inverse method developed in this paper gives very good results for three industrial rolling conditions free
from noise, under the assumption of a system of acquisition at quite low frequency (signals measured by fibre

17



optics). The measurements are carried out practically withnoise. Noise sensitivity will be studied in a future
publication by processing experimental data. Thus specificmethods will be developed to reduce the influence of
noise.

A very important improvement is the simplification of the local measurement system because only one mea-
surement point (fibre optics placed inside the roll at the inner radius) is needed, whereas two local sensors at
different radii are needed with the older method. The second major improvement is the possibility to apply the
method for very singular signals (temper-rolling conditions), whereas the older method fails. The third major
improvement is the computation time of the new method allowing a real-time use of the sensor. Thus, the com-
putation (for 55 points of reconstruction) is performed in approximately 0.07 second with a quadcore 2.8 GHz
processor (CPU time displayed by Scilab 5.3). The sensor is designed for industrial use.

The next step in this study is thermal analysis to solve the coupled thermal and elastic problems. This analysis
will be done within the framework of European project RFS-PR-08051 and will be published later. Experiments
on pilot rolling mills and a test on industrial tools are alsoscheduled.
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