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Abstract

Knowledge of the contact stress between roll and strip besarcritical factor in modern, high-speed rolling
mills. In this paper, an inverse analytical method is depetbto determine the contact stress in the roll gap by
measuring the stress tensor with fibre optics at only onetgide the roll. Unlike many inverse methods, no
matrix inversion is heeded because the very small contagthevould lead to ill-conditioned matrices. Iterative
methods are also not studied because short computatios tneedesired. This approach uses the theory of
elasticity on the assumption that the problem is isotheandlplanar and relies on the expansion of holomorphic
functions into a power series. On the other hand, the cortipottime is studied to rapidly optimise the industrial
parameters during the rolling process. Hot, cold and temgéng simulations are given to demonstrate the
accuracy of the method and the feasibility of this new kindeffisor, taking into account the restrictions (e.g.,
frequency of acquisition) of the local measurement system.
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1. Introduction

1.1. Principles

In steel rolling processes, two rolls are used as tools toaedhe thickness of a workpiece. Modern rolling
mills combine higher rolling speeds, larger reductiongdbra steel grades and thinner rolled strips. Thus, to
ensure better product quality, especially in terms of théds, flathess and defect-free surface, knowledge of
friction and lubrication in the roll gap becomes criticahélcontact between the strip and the roll is a location of
unknown shear stress and normal pressure and lubricatiaitmons. Some models that characterise the interface
taking into account lubrication have been proposed in regears by Montmitonnet et al. (2007) but still need
experimental validation. On the other hand, with industoding process being currently dictated by empiricism,
knowledge of the contact stress would be desirable to alloweimisation of parameters such as speed and
lubrication, with a closed-loop control.

Sensors already provide measurements of stress in theapll §lany investigators, such as Jeswiet and
Rice (1982) or more recently, Liu et al. (2002) and Andergesl.g2001), have used direct friction pin sensors.
However, the presence of the pin disturbs the local lubtiiaw at the interface, and the contact marks the strip;
industrial use is therefore impossible. More recently, drggen et al. (2006) developed a sensor with a much
bigger transducer than the strip-roll arc of contact. Tkiss®r overcomes theftitulties of local perturbation of
the frictional conditions, but the problem of strip markst#l unresolved.

Thus, an inverse method is necessary. Stelson (1983) shinaethe roll itself can be used as a sensor by
measuring the elastic deformation inside the roll (locaisse fully embedded) and by inferring the boundary
stress by inverse analysis. The development of this nevosass for real-time measurement. Therefore, iter-
ative schemes are not suitable. Moreover, a finite elemeambaph, or any other method based on inversions of
matrices (representing the relationship between thessinemsured inside the roll and the contact stress), is not
accurate. Because the roll gap has a very small length, thiigxs ill-conditioned because the angles involved
in the matrix are too similar. Therefore, a problem arisegnghy small measurement errors become strongly
amplified, leading to poor accuracy. To avoid this classabj@m, Meierhofer and Stelson (1987) proposed an
analytical method based on the assumption that the proldesteady-state. Therefore, it is possible to measure
the strain tensor (converted into stress by the equatioeasficity) at one point inside the roll, and the rotation
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of the roll allows a measurement of the whole circle. Thaefi is possible to solve the problem bounded by the
measurements (circle) and to extend the solution by caityitawards the roll gap. However, the method is based
on an indfective elastic approach that involves an expansion of thg patential into a power series (with addi-
tional terms) and an expansion of the stress measured itgdell into a Fourier series. Then, an identification
of the codficients of both series is needed. To obtain enough equatieaguthors used measurements on two
concentric circles. They proposed measuring the stresse® aifferent points and at two fierent radii (which

is technologically very diicult for industrial mills). Moreover, many inversions of triaes of identification
(well-conditioned if the two radii are $liciently distinct from each other) are needed.

Very recently, Legrand et al. (2010) computed this methaodl iamestigated its féectiveness by simulating
several industrial conditions. The authors concluded floatcommon industrial rolling conditions, the method
developed by Meierhofer and Stelson (1987) is quite aceurat hardly usable because of the very long com-
putation time. Moreover, the authors demonstrate thatdinéact stress cannot be reconstructed precisely under
temper-rolling conditions (with extremely sharp stressdignts and a very short bite). It is demonstrated in this
paper that the present method is successful under this kicohalition.

1.2. Fibre optics

In this paper, an analytical approach similar to the gersggptoach of Meierhofer and Stelson (1987) is devel-
oped. The stress is measured only at one radius (insteadpf This diference is one of the main improvements
because it is technologically much easier to insert ond kicain sensor rather than two afiérent radii. Mea-
surements of the whole circle are accomplished by the ootaif the roll. Concerning the local sensor itself,
Meierhofer and Stelson (1987) used strain gages glued tedte of the roll (considered thin enough). However,
this technique is not recommended for industrial rolls bieeahey are much larger than the strip. Therefore there
is no strip-roll contact at the edge in the roll gap. Fibréapare considered in this study; they rely on the principle
of Bragg gratings and which give the local strains by intetipg the wavelengths as explained by Ferdinand et al.
(2009). Fibre optics inserted in a thin radial hole in thé itechnologically possible. This technique is studied
within the framework of the European project RFS-PR-08081e surface of the roll is then re-manufactured to
avoid any damage to the strip.

1.3. Mathematical approach

The problem bounded by the circle of measurements is sollkdn, the solution is extended by continuity
to exhibit the contact stress in the roll gap. In this way,dheations of elasticity for an isotropic material under
the isothermal assumption developed by MuskhelishvilD@0are used. The complex formalism allows a very
simple expansion of the holomorphic functions involvedhia quations into power series. Moreover, a method
to make the computation as fast as possible is demonstrateds, the computation time has been considerably
reduced to reach a real-time calculation of this new kinceofksr.

In this paper, all the results are derived from simulatidre following industrial conditions given by Legrand
et al. (2010) are considered: hot rolling conditions, calitimg conditions and temper-rolling conditions. Thus,
the measurements at the inner radius are simulated by diadmilation (this part replaces the measurements
provided by the fibre optics), and the contact stresses fegad from the inverse method. Results are compared
to the applied stress to estimate the accuracy of this newoapp. The present method is more accurate than
the previous one developed by Meierhofer and Stelson (198@)eover, Legrand et al. (2010) conclude that the
extreme temper-rolling condition (or skinpass) cannotdmonstructed because of the extremely small contact
length and very sharp stress gradients. In this paper, gnsothstrated that the reconstruction of these extreme
rolling conditions is satisfactory.

2. Inverseanalysis

The circle of measurements is denotedddyand its radius byR.. The roll itself is denoted byD and its
radius byRy. In the following derivation, the letter (respd) means that the quantity is related to the cir@®
(respdD). All the notations are listed in Table 1.



Ry Outer radius (radius of the roll) J

Re Inner radius (radius of the measurements by fibre optics)
Ns Number of points of interpolation (cubic function)
Nm Number of measurement points

[\ Number of truncation (terms kept in the summation)
Ninv  Number of inversion of matrices

€ Error of reconstruction

Vmax Largest gradient in the inputs

Imax  Maximum of the norm of the input signal

1) Angular part covered by the roll gap

Table 1: Nomenclature
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Figure 1: Stress measurementdh

For all z € C, the equations of elasticity for an isotropic material unithe isothermal assumption given by
Muskhelishvili (2008) are:

{ O'rr+0'06=2(q)(z)+m) Q)
—0r + Ogg + 2i0rg = 2627 (P(2) + 207 (2)

where®d(2) and¥(2) are unknown holomorphic functions defined & Mathematically, these functions can be
expanded into a power series. Therefore, foralD:

+00
D(2) = Z az
k=0
For dimensionless céiécients, the following quantities are introduced:

ac = Rég | b= Ry ®)
By combining (1), (2) and (3), the stresses in the roll gap fametion of (@y)key and fx)ken are obtained:
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By combining equations (4%, o4, anda, are obtained. Because

2ir k=-1
aczkdz_{o k#-1 ©)

(akeny @nd pykeny are calculated by integrating the stresses measured amrke iadius using the following
equations:

1 & C C
= . o +0g,do
vk e N*
_ 1 f T o+ 0G do (6)
4 0 e'k"
Vke N
1 (F —of +05,+ 208,
b= - fo S o — (k+ a2

3. Accuracy and computation time

The key to the whole method is the quality provided for thegnals (6). A small numerical error @g or by
is multiplied at least byRy/R.)*, which increases until the solution diverges. Thereforeyacation is needed.
Thus, the more accurate the integrals are and the higherdgegssion is, the more accurate the solution is.

To compute an accurate integral, many measurement pomizegded. However, the frequency of the mea-
surement system is fixed to quite a low value, according tdrégriency of acquisition (approximately 1 kHz) of
new fibre optics. Hence, the number of points is limited. Beeahe measurement system and the rotation of the
roll are not synchronised (and the problem is steady-stidig)possible to acquire signals from several rotations
to increase the number of points. This technique is only fmegktreme cases, such as temper-rolling conditions.

An effective way to calculate the integrals (6) (with a very shorhputation time) is to interpolate the input
signal with a spline (cubic function). The number of intdgtion points is calledNg (s meaning spline). The
choice ofNg is a compromise between computation time and accuracy. pliveesnterpolation considerably
improves the quality of the input signal. The integratiodjsgre like Fourier caicients, and a veryfeective way
to compute these kinds of integrals is to use the fast Fotraasform fft), which computes the Riemann sum
from 1 to Ns that converges to the integral.

More precisely, ifo- is the input signal represented as a column Wthrows, theftt classically computes the
following vector (sizeNs) :

1 1 N - (m-1)(k-1) 1 2 )
N M) = —[Z 0‘(")92'"”5] = (— f o(g)eritwy de) )
Ns Ns kNGl T 2r Jo KellL Nl

m=1

Therefore, the extraction of the diieientsa, andby can be done as follows:

1
ag ~ 4—|\Isfft(afr + o

Yk e N*

1
8 = Z—NSfft(O'?r + 0kl (8

Vke N

1 .
by ~ mfﬁ(—()’fr + 0'26 + 2IO’?0)k+3 — (k+ 2)a,2
s

The Table 2 lists the CPU times corresponding to the comiputaf all theNs codficientsa, andby (including
the interpolation of the input signal) forfirent values oNs. A linear dependence can be noted. All CPU times
are obtained for a quadcore 2.8 GHz and are the times display&cilab 5.3 . Moreover, a program compiled
and translated in machine language would significantlyecedbie computation time.



Ns CPU time (s)
20 000 0.01
50 000 0.03
100 000 0.06
200 000 0.12

Table 2: CPU time

In the following, the parametes is fixed to 100 000. This choice is related to the accuracy eedor the
reconstruction and is discussed in section 6.

Formula (4) is a deconvolution and could be computed withfthénverse fast Fourier transform). However,
the ifftt does not fer the choice of the reconstruction points. Because thenstaation is only needed in the roll
gap, the deconvolution is computed as follows. Formulag4gwritten in matrix form. Matrices are underlined
twice and vectors are underlined once. Therefore, if themnstruction is done foN; points in the roll gapr(
meaning reconstructed) called, XN, and if the number of terms kept in the sum is callgd(t meaning
truncation):

Th + 0y = MLA+ MiA
9
U_ﬂ+a_ge+2ia_%:£.§+£.é
where :
k .

My = 2((%) ekﬂl) |
= o Jiwemn

Mo = 2( Ry \¥ di(k+2)e, 10
= (RC)k (LRI N XL N (10)
Ms = 2( Ro) ek,

— (R) (RN, IXILN|

andA = (ke @NdB = (B)key -
Table 2 gives the CPU times to calcul®@ndB. A very interesting point in writing (4) in matrix form is tha
the matricesM;, M, and M3 can be calculated before the rolling process and can beextdoka library. The

on-line computation is therefore limited to the productsined in (9). This library can containfiérent versions
of the matrices corresponding taiiirent values oN; andN;. The computation can be adaptive. The CPU time
of the products in (9) foN, = 55, which is enough for an industrial interpretation, is02.@.

4. Error estimate

To evaluate the quality of the reconstruction, a quantifigdreestimate is needed. The relative distance
(norm 2) between the reconstructed sti@sand the applied stress* (wherer means reconstructed aagneans
applied) is introduced:

2 o' — o(0))?
.o Iy (@7 (6) - o3(9))? do (11)

J o2(6)2 de

Thus,e is dimensionless and can be understood as a percentage.

5. Truncation criterion

The dfectiveness of the method relies on the integrations (6). Allsmistake (unavoidable) is multiplied at
least by(Ry/Rc)¥, which becomes higher and higher until that the solutioemjes. Therefore, a truncation of the
development is needed. The number of terms kept in the suallexdd\; (t meaning truncation). A method to
make a good guess df according to some parameters of input signals is proposed.

Input signals are given with a resolution calllg, which represents the number of measurement points on
27 (m meaning measured). The quality of the extraction of théfmentsa, andby, depends highly o, and



on the singularity of the signal. In this paper, the largésiss gradient in the signal (call&..), the maximum
of the norm of the signal (callel}.x) and the angular part covered by the roll gap (calidre considered to
characterise the singularity of the signal.

A very classic model is a logarithmic law:

Ny = A X N IA, VT o5 (12)

wherea, B, v and A are dimensionless cfiients. MoreoverV: 1 %.x0* should be dimensionless, therefore
B = —y = —A. Thus, the model becomes:
N = A x N2 SP (13)

where :S = lmax/ (Vimaxd)

This model is a rule of thumb. A systematic study of the ordecanvergence of the integration method
proposed in section 3 would be necessary for a theoretiedysia of the number of truncatiod. However,
such a theoretical point of view is not needed for the purpidhis discussion. An estimate of the number of
truncations is sfficient to obtain a reconstruction as close as possible todserbconstruction depending on the
input signal.

To determineA, « andp, three industrial rolling conditions taken from Legrandakt(2010) are tested. Hot
rolling conditions, cold rolling conditions and tempettmy conditions cover the range of the possible signals
during industrial rolling processes. For that reason, $bisof cases is used as a reference. The stress profiles in
the roll gap are known, and a direct elastic calculation ifgpmed to obtain the stress profiles at the inner radius
(assumed to be measured by fibre optics). These stress prafdehe inputs of the inverse method. By using
(11), it is possible for each rolling condition and each eatif N, to plot the error between the reconstructed
stress and the applied stress against the number of trandéti For example, Figure 2 (corresponding to the
normal pressure of the cold rolling condition wily, = 1000) shows that the error reaches a minimum for a
unique value of\;. It is clear that the best reconstruction is a compromisevdésen the convergence of the series
and the amplified error of integration. The reconstructimorsesponding to three valuesifare given in Figures
3, 4 and 5. Fig. 3 is a bad reconstruction due to the fact tleasénies have not converged, Fig. 4 is the best
reconstruction and Fig. 5 is a bad reconstruction due todbigthat too many terms with amplified errors are kept
in the sums. The value d¥; that corresponds to the best reconstruction is listed iheSab and 4 for dterent
values ofNy, and for the three rolling conditions (i.e. fiirent values oS).

0.18

0.147
optimal Ny
0.12—
0.10—

0.087

0.06

0.04

Ni

L B e e e s e B s e B e N
200 300 400 500 600

Figure 2:e againstN;



Nm | Hotrolling | Cold rolling | Temper-rolling
- S ~0.07 S =~0.39 S ~0.64
1000 445 544 630
1250 503 708 899
1500 532 846 1119
2000 532 1080 1304
3000 532 1080 1428
5000 532 1080 2600

Table 3: OptimaNN; for normal pressure

Nm | Hotrolling | Cold rolling | Temper-rolling
- S=~0087 | S=~029 S=~03
1000 437 527 590
1250 489 630 919
1500 506 761 795
2000 506 960 1150
3000 506 960 1620
5000 506 960 2364

Table 4: OptimaN; for shear stress

i ':. O-rr (MPa)
200} —— Reconstructed stress
I Appli T
400 pplied stress
-600 | |
800
-1000 |
-1200 | "
-1400 |
-1600 |
-1800 | [} SR
il Nt - 1 OO 9 (rad)
-2000 T T T T T T T T T T T T T
0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82

Figure 3: Reconstruction for cold rolling conditions witly, = 1000 and\; = 100
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800 |
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0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82

-2000

Figure 4: Reconstruction for cold rolling conditions witly, = 1000 and\; = 544
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Figure 5: Reconstruction for cold rolling conditions wiky, = 1000 and\; = 700

In Tables 3 and 4, the optimal number of truncatidlaseach a limit wherN,, increases. Because of the spline
interpolation (with a very large number of interpolationimie) and the regularity of input signals, the precision
of the integrations cannot be improved beyond a limit, depenon the length of the roll bite. To identify the
constantsA, @ andg involved in the logarithmic model (13), only the valuesiyfbefore the saturation are taken
into account (values in bold letters in Tables 3 and 4). Thiglitya of this model is therefore limited to values of
Nm for which the precision is not saturated.

In Figure 6, the optimal numbers of truncatibipfrom the Tables 3 and 4 are represented agaim&ér. The
model (13) is also represented with the following values:

A =183
@ =086
B =0215



300037
! + + + Optimal truncation numbers
. . +
2500 —— Logarithmic model
2000
1500°]
10007
5001
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N, S"
m
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500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6:N; vs. Nm3§

The CPU time of the logarithmic model (13) is 0.006 s.

6. Discussion on Ng

In this section, the choice of the number of interpolatiomfNs = 100000 is discussed. As explained in
section 3, this choice is a compromise between accuracy @n@utation time. By using the error estimate (11)
and the three industrial rolling conditions taken from Lagt et al. (2010), the stresses foffelient values of
Ns (i.e., different qualities of integration) are reconstructed. Thoeeefit is possible to plot the error between
the reconstruction and the applied stress against the muwhb#erpolation pointd\s for each rolling condition.
Figure 7 (resp 8) presents the error agaMsfor the reconstruction of normal pressure (resp shearsjtrde
values ofN,, are the ones considered in the following sections. For temgikng conditions, the error decreases
exponentially wheiNg increases. The choice that is the best compromise betweareay and computation time
is Ng = 100000. For simplicity, this choice is applied for all rallj conditions, but for industrial use, hot and cold
rolling conditions can be calculated even faster by udigg: 20000, for example.

1& (%)
1 N, =100 000
54
B Cold rolling condition N,, =1 000
PR Moo
1 S
3
E Temper-rolling condition N, =5 000
2 e o o il
.
N S e | Hot rolling condition N, 1000 | I
| N,

0 —_— —_—
20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 7:e vs. Ng for normal pressuresr(,)
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0 —_— —
20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 8:€ vs. Ns for shear stressr(y)

7. Validation and comparison

7.1. Sressintheroll gap: applied stress

The three industrial rolling conditions used in sections8 & are used for the quantitative validation of the
inverse method presented here and for comparison with shtseobtained by Legrand et al. (2010). The contact
stress of the three rolling conditions is given by a numérioadel, LAM3 edited by Hacquin (1996). The stress
profiles for normal pressurer(,) and shear stress{,) are given in Figures 9, 10 and 11. Hot rolling conditions
are the least singular, and temper-rolling conditions leenost singular. The roll gap lengths are around 71.6
mm for hot rolling conditions, 13.7 mm for cold rolling comidins and 4.8 mm for temper-rolling conditions. It
is interesting to note that the shape of the stresses givéimebyodel LAM3 Hacquin (1996) bear a resemblance
to the contact stresses found by Boussinesq (1885) for eeatrated load on a semi-infinite half plane with the
classic change of sign of the shear stress.

Hot (resp cold and temper) rolling simulation settings avergin Table 5 (resp Tables 6 and 7).

" Oy (MPa) (%] (M}ja) w0

-20

-40
Normal pressure 10

-60 -
Shear stresses

-80 7|

-100 -

F-30
-120 7
k-40

-140 -

0 (rad) |

T T T T T T T T -
-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

60

Figure 9: Contact stresses for hot rolling
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Figure 10: Contact stresses for cold rolling
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Figure 11: Contact stresses for temper-rolling

7.2. Smulated measurements

A direct elastic calculation gives the stresses at the sflijconsidered as a simulation of the measurements
that would be done with fibre optics). In Figures 12, 13 andthd,stresses calculated Rt without noise are
given. The data are not experimental results but ratheulzdions.

The inner radiusx; is chosen at 3 mm from the surface of the roll for hot and collihgpconditions, which
is technologically a correct distance. For temper-rolliogditions, the stress gradients are very sharp Rand
chosen at only 2 mm from the surface of the roll, which is thesest distance at which the fibre optics can be
accurately inserted. Legrand et al. (2010) show that a stnaetion is impossible for temper-rolling conditions
because the authors require an input signal at 1 mm from tHiaceuof the roll, which is not technologically
possible. In this paper, thisfiiculty is overcome.

It is also important to remember that the number of politsis chosen to be consistent with the quite low
frequency of acquisition (1kHz). With a typical experima&ngpeed (1 cyc)sec), the resolution ibl,, = 1000
points for 2r. This resolution is used for hot and cold rolling conditions

For industrial speeds, measurements on several rotatiemeaessary to reach this kind of resolution because
the acquisition system and rotation speed are not synadedniThis technique is used for the temper-rolling
condition because of the very small contact length. Thretesyare considered (i.Bl,, = 3000) followed by five
cycles (i.e Ny, = 5000).
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Figure 12: Stresses calculatedRatfor hot rolling
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Figure 13: Stresses calculatedRatfor cold rolling
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Figure 14: Stresses calculatedRatfor temper-rolling
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7.3. Results without noise

The inverse method is applied, and a comparison betweeretmmstruction of the contact stress and the
applied stress is made. Results given by Legrand et al. §28r#0also compared. Results corresponding to the
three rolling conditions (with dierent options discussed in the following) are given in Fegut5 to 22.

The number of truncations is chosen according to the apmae (but predictive) model (13). Therefore, the
results do not correspond to the best possible recongiructi

7.3.1. Hotrolling

The problem is assumed to be isothermal. However, for hdihgotonditions, the thermal stress is not
negligible, as demonstrated by Legrand et al. (2010). kxghper, this aspect is not studied (the thermal stress is
neglected), but the fliculty is overcome in a future publication where the thermrabtem is solved. Thus, the
coupled thermal and mechanical problems overlap by libeari

Figures 15 and 16 are relative to hot rolling conditions. Tiuacation is done at the 399th harmonic for
oy (and at the 412-th foog). The results in Figures 15 and 16 show that the reconstisitess (with the
present method) and the applied stress are almost iderilicatefore, the new method developed in this study is
much more accurate than the computation of Legrand et dl0j2®ased on the work of Meierhofer and Stelson
(1987)). The neutral point is very well predicted, whichsimportant result for industrial studies .

All simulation parameters and the reconstruction erropgeirtentage and indicative computation time of both
methods are listed in Table 5. The time of the computationegfrand et al. (2010) is an estimate from CPU times
obtained with a dualcore 2GH®;,, is the number of inversions of matrices of identificatiorx4¥, the present
study does not involve any matrix inversion.

| Orr (MPa)
o4 e Applied stress

Reconstructed stress
present method

o +—+—+ Reconstructed stress
Legrand et al. (2010)

-60

-80 )
-100

-120 7

-140

-160

Np,=1000

T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Figure 15: Results for hot rolling without noise;,
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Applied stress

Reconstructed stress
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+—+—+ Reconstructed stress

Legrand et al. (2010)

-10 |
-20
-30
-40 |

-50 7

N, =1 000

Neutral point

/]

0 (rad)

-60 T T
0.60 0.65

0.70 0.75 0.80 0.85

0.90 0.95

Figure 16: Results for hot rolling without noise;e

Legrand et al. (2010) Present study
(rr/ro) (rr/ro)
Ry (mm) 177.51 177.51
R. (mm) 17451 17451
Nt 100 (399412)
Nm 1000 1000
Niny 200 0
€ (%) (9.313.2) (0.630.75)
CPU time (s) ~300 ~0.07

Table 5: Hot rolling summary

7.3.2. Coldralling

For cold rolling conditions the thermal stress is more rgglgle than for hot rolling conditions, as demonstrated
by Legrand et al. (2010). The truncation is done at the 568tmbnic foro, (and at the 534th faw-4). As for
the hot rolling conditions, the results in Figures 17 andH@xsthat the new inverse method is more accurate than
the computation of Legrand et al. (2010) (based on the wordeiErhofer and Stelson (1987) ). Computation
time is extremely reduced compared to the work of Legrandl ¢2@10).

For cold rolling conditions, there is Coulomb-type friatiwith a discontinuity of the shear stress at the neutral
point (where the sliding speed between the roll and the shigmges sign). For hot rolling conditions, there is an
area around the neutral point where the roll and the stripadaslide over each other. In this area, the shear stress
can be arbitrary compared to the normal pressure.

Itis particularly interesting that the discontinuity oktBhear stress is rather well reconstructed, in comparison
to the reconstruction of Legrand et al. (2010). In Figureitl®, interesting to note that the reconstruction of the
shear stress can be considerably improved by using an &emuisf the input signal over two cycles instead of
only one (i.eN,, = 2000). The discontinuity is indeed very well reconstructedhis case, the truncation is done
at the 1029th harmonic fer,, (and at the 969th far).
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-1500
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Figure 17: Results for cold rolling without noise;,
" Torg (MPa)
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1| ——— Reconstructed stress
507 present method
|+t Reconstructed stress
| Legrand et al. (2010)
0
1 Neutral point
50
100 Ny»=1 000 0 (rad)
0.‘75 ‘ O.‘76 ‘ 0.‘77 ‘ 0.‘78 ‘ 0.‘79 ‘ O.‘80 ‘ 0.‘81 ‘ 01‘32
Figure 18: Results for cold rolling without noisegy
1
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1 present method
40
1 [+—+—+ Reconstructed stress
207 Legrand et al. (2010)
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-60
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Figure 19: Results for cold rolling without noisesy
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Legrand et al. (2010) Present study Present study
(rr/ro) (rr/ro) (rr/ro)
Ry (mm) 200 200 200
R: (mm) 197 197 197
Ni 600 (568534) (1029969)
Nm 1000 1000 2000
Niny 1200 0 0
€ (%) (8.626) (4.1413.20) | (1.832.64)
CPU time (s) ~2400 ~0.07 ~0.07

Table 6: Cold rolling summary

7.3.3. Temper-rolling

Legrand et al. (2010) show that a reconstruction is not ptess$dr temper-rolling conditions because of the
very small length of the roll gap. Indeed, the authors neeatzhtoulate the input signal at 1 mm from the surface
of the roll, which is technologically almost impossible. érauthors considered three cycles of acquisition at a
rotation speed of 1 cycisecond (i.e.Ny,, = 3000). The results presented in Figures 20 and 21 are prdduitie
an input signal calculated at 2 mm from the surface of the wdlich is a distance that is technologically possible
through the insertion of fibre optics. The truncation is dahthe 1605th harmonic far,, (and at the 1371th for
o). The results in Figures 20 and 21 show that the new inverdbadd2 mm from the surface of the roll) is
as accurate as the computation of Legrand et al. (2010) (1 nomm the surface of the roll). Therefore, the new
inverse method is more powerful than the older one.

To improve the reconstruction of shear stress, it is posgibconsider the acquisition on five cycles instead
of three. The resolution becombls, = 5000. In this case, the truncation is done at the 2487th haimfior o,
(and at the 2128th fary). Figure 22 shows that the reconstruction is excellent.édweer, the computation time
is extremely reduced compared to the computation time bbby Legrand et al. (2010).

Oy (MPa)
L IS, Applied stress

Reconstructed stress
present method

-200 1 )

+—+—+ Reconstructed stress
Legrand et al. (2010)

-400 7

-600 |

-800 7

-1000
0.776 0778 0.780 0.782 0.784 0.786 0.788 0.790 0.792  0.794

Figure 20: Results for temper-rolling without noise
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Figure 21: Results for temper-rolling without noisg,
1 079 (MPa)
100: ,,,,,,,,,,,, Applied stress
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0 e
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-1 T T T

T T T T T T
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Figure 22: Results for temper-rolling without noisey

Legrand et al. (2010) Present study Present study
(rr/ro) (rr/ro) (rr/ro)
Ry (mm) 257 257 257
R: (mm) 256 255 255
Ni 1200 (16051371) | (24872128)
Nm 3000 3000 5000
Niny 2400 0 0
€ (%) (4.321.6) (3.2319.38) | (2.489.81)
CPU time (s) ~4800 ~0.07 ~0.07

Table 7: Temper-rolling summary

8. Conclusions

The inverse method developed in this paper gives very gaadtsefor three industrial rolling conditions free
from noise, under the assumption of a system of acquisitiaquiie low frequency (signals measured by fibre
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optics). The measurements are carried out practically mditise. Noise sensitivity will be studied in a future
publication by processing experimental data. Thus speaiéithods will be developed to reduce the influence of
noise.

A very important improvement is the simplification of the &eneasurement system because only one mea-
surement point (fibre optics placed inside the roll at theeinradius) is needed, whereas two local sensors at
different radii are needed with the older method. The secondrrimajiyovement is the possibility to apply the
method for very singular signals (temper-rolling condisd whereas the older method fails. The third major
improvement is the computation time of the new method alhgva real-time use of the sensor. Thus, the com-
putation (for 55 points of reconstruction) is performed ppeoximately 0.07 second with a quadcore 2.8 GHz
processor (CPU time displayed by Scilab 5.3). The sensasgyded for industrial use.

The next step in this study is thermal analysis to solve thepleal thermal and elastic problems. This analysis
will be done within the framework of European project RFS-#8051 and will be published later. Experiments
on pilot rolling mills and a test on industrial tools are atsheduled.
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