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Abstract—Nowadays there are a huge number of applica-
tions produce the immense amount of data in the form of a
data stream, which needs real time analysis. Sensor networks,
real-time surveillance and telecommunication systems are the
examples of such applications. The real time analysis of the
data stream leads to a number of computational and mining
challenges. In this scenario new data arrives continuously and an
efficient learning algorithm must be able to improve its learning
accuracy by incorporating the time and memory constraints.
This paper addresses the problem of incremental Bayesian
network structure learning for high dimensional domains. The
local skeleton discovery methods for Bayesian network structure
learning are outperforming to deal with such domains. Here
we transformed the local discovery algorithm Max-Min Parents
and Childrens (MMPC) into an incremental fashion. We learned
a set of candidate-parent-children for each variable by using
incremental hill-climbing. The reduced search space saves a lot
of computations and reduces the complexity. Our algorithm is
then illustrated with a toy example.

Index Terms—Statistical learning, Incremental learning, Data
mining, Data stream, Bayesian network structure learning

I. INTRODUCTION

Many sources produce data continuously like customer click
streams, telephone call records, large sets of web pages,
multimedia, scientific data and sets of retail chain transactions
etc. Such type of data is called data stream so, it is a real
time and continuous ordered sequence of items, which are not
feasible to store nor possible to control the order [1].

Data stream mining means extracting useful information or
knowledge structures from continuous data. It becomes the key
technique to analyze and understand the nature of the incoming
data. Typical data mining tasks, including association mining,
classification, and clustering, helps to find interesting patterns,
regularities, and anomalies in the data. However traditional
data mining techniques cannot directly apply to data streams.
This is because most of them require multiple scans of
data to extract the information, which is unrealistic for data
stream. More importantly the characteristics of the data stream
may change over time and the evolving pattern needs to
be captured [2]. Furthermore, we also need to consider the
problem of resource allocation in mining data streams. Due to
the large volume and the high speed of streaming data, mining
algorithms must cope with the effects of a system overload.

Thus how to achieve optimum results under various resource
constraints becomes a challenging task.

Bayesian network (BN) is a graphical representation for
joint probability distribution among a set of random variables.
It has been used in many applications like medical diagnosis
and financial forecasting. It represents by directed acyclic
graphs (DAG), where nodes of the DAG represent the random
variables and the arcs of the DAG are represents the direct
influence of one variable to the other. The intensity of the
influence between the variables is defined by the conditional
probability. To find the best structure of the BN, which
describes the data is called structure learning.

BN structure learning is proved to be a NP-Hard problem
[3], it motivated to use of heuristic search methods to solve
it. Many heuristics have been proposed in the literature, it
can be classify in three categories for Bayesian Network (BN)
structure learning:

e Score and search based methods are search over the space
of all possible Bayesian networks in an attempt to find
the network with a maximum score. Unfortunately, in
such methods the search space is super-exponential in the
number of random variables. It is very hard to compare
all the structures specially in high dimensional domains
[4]. Therefore, score-based methods are theoretically in-
tractable despite the quality of the search heuristic in use.

o Constraint based methods, the main idea behind these
types of methods is to exploit the independence semantics
of the graph. They construct the graphical structure called
“patterns” using statistical tests or information theoretic
measures [5]. Later using different assumptions they
direct the edges to get a directed acyclic graph (DAG).
Its performance is limited with small conditioning set and
criticized for complex structures.

e Local Search methods first search for the conditional
independence relationships among the variables on a
dataset and construct a local structure around a target
variable i.e. Parent-Children (PC) or Markov Blanket
(MB), using different heuristics like IAMB [6], MMPC
[7], MBOR [8] and then they use another heuristic to
learn the full BN structure. For instance MMHC [9]
combines MMPC and greedy search approaches.



Applying BN structure learning in high dimensional domains
e.g. biological or social networks, faces the problem of high
dimensionality. These domains produce data sets with tens
or hundreds of thousands of variables. The recent Max-Min
Hill-Climbing algorithm (MMHC) [9] has been proposed to
solve high dimensionality problem and it outperforms on a
wider range of network structures. MMHC combines, both
the local search and the score-and-search based approaches. In
the first phase, it learns the possible skeleton of the network
using the local discovery Max-Min Parent Children (MMPC)
algorithm. While in the second phase, it orients the determined
edges using the greedy hill-climbing search. Algorithms using
local discovery for skeleton identification performs better than
other leading non-hybrid structure learning algorithms in high
dimensional domains [9]

Here we will focus on Local Search which is most scalable
method. In this paper, we present an incremental local skeleton
learning algorithm (iMMPC) to identify the set of candidate
parent children (CPC) of a target variable in any BN which
faithfully representing the distribution of data. We applied
incremental hill climbing method to find a set of CPCs for
a target variable and observed that it saves a considerable
amount of computing time.

This paper is organized as follows: first we discussed the
previous work already done in the field of incremental learning
and data stream mining in the section [sec:Related-Work]. In
section [sec:Backgroun] we recall the basics of the heuris-
tics used in our proposed method. In section [sec:iMMPC-
Approach] we present our incremental Local Search approach
iMMPC. In section [sec:Toy-Example] we explained our
method with an example. Finally we conclude in section
[sec:Conclusion-and-Perspectives] with some proposals for
future research.

II. PREVIOUS WORK

In the field of incremental Bayesian Network Structure
learning, some works proposed to iteratively revise the struc-
ture of a Bayesian network. It can be classified in two cate-
gories, approaches deal with the stationary domains and non-
stationary domains. Algorithms which deal with stationary
domains consider the data is drawn from single underlying
distribution, which will not change with the passage of time.
The models are also not very different when they evaluated
with respect to similar data sets [10]. On the other hand,
algorithms deal with non-stationary domains consider the
underlying distribution of data may change with time so, drift
or shift change may occur. Furthermore, we can divide these
domains with respect to BN structure learning methods.

Buntine’s [11] proposes a batch algorithm that uses the
score-and-search based Bayesian approach, later he proposes
some rules to convert it into an incremental algorithm. He
considered two conditions, if there is time constraint for
incremental or online learning then it updates the posterior
probabilities only of the parent structure. Otherwise both
structure and parameters will be updated.

Lam and Bacchus’s [12] approach is also an extension
of their batch algorithm and based on Minimal Description

Length (MDL) principle. The idea is to first learn both partial
network structure from the new data and existing network
using the MDL learning method and then update the global
old structure by using the newly learned partial structure.

Friedman and Goldszmidt [13] proposes three different
approaches, first naive approach, where previously seen data
is stored and then a batch learning procedure is called for each
new example. Second approach based on Maximum Aposte-
riori Probability (MAP). Third approach called incremental.
In this approach, a set of network candidates is maintained,
which called the frontier of the search process. And at the
arrival of new examples, it updates the stored information.
Later it runs the search process to verify if any network in the
frontier seems more appropriate than a current model.

Alcobe [14] adopted Chow and Liu [15] tree structure
algorithm and proposed a heuristic ACO (Arches in Correct
Order) to trigger the updating process when data invalidates
the current structure. It rebuilds the network structure from the
branch which is found to be invalidated. Later he proposed
two heuristics to change a batch Hill-climbing search into an
incremental one. Section III-B will describe more deeply these
heuristics.

All above approaches deal with the stationary domains and
use the scoring methods to learn BN structure incrementally.

A recent work in this field done by Nielsen and Nielsen [16]
considers the non-stationary domains where a concept shift
may occur. This approach consists of two mechanisms, first
monitoring and detecting when and where the model should
be changed and second relearning and using a local search
strategy integrating the parts of the model that conflict with
the observations.

As a conclusion we see that most of the algorithms use the
scoring methods and treat the incremental process in different
ways for stationary domains. Score based methods are not
scalable for data stream mining, the judicious choice for han-
dling a great number of variables is a local search approach.
It’s why we take advantages of local search approaches and
proposed iIMMPC algorithm: a scalable incremental method
for stationary domains with high dimensionality, in section
Iv.

III. BACKGROUND

A. MMPC(T): Local Search approach for BN Structure Learn-
ing

The MMPC(T) algorithm discovers the set of CPC (candi-
date parent-children, without distinguishing among both) for a
target variable T. It is a combination of M M PC(T') algorithm
and additional correction for symmetric test.

Algorithm MM PC(T) (cf. Algo. 1) has also two phases.
In forward phase it adds variables in CPC for a target variable
T and in backward phase it removes the false positives. The
pivotal part of the MMPC algorithm is the forward phase of
MM PC(T) algorithm. This phase starts from the empty set
of CPC(T) for a target variable T, then sequentially adds the
variables in CPC which have strong direct dependencies.

Function min(Assoc) used to measure the association be-
tween two variables given CPC, it is zero if these two



variables are independent conditionally any subset of CPC. So
variables having zero associations given any subset of already
calculated CPC, can never enter in CPC(T). This function
estimates the strength of association by using any measure
of association Assoc like x2, mutual information (MI) or G2.
Further “MaxMinHeuristic” [9] selects the variables which
maximize the min(Assoc) with target variable T conditioned
to the subset of the currently estimated CPC. Forward phase
stops when all remaining variables are independent of the
target variable T given any subset of CPC.

Algorithm 1 MM PC (T
Require: rarget variable T; data D; threshold 0
Output: a set of Candidate Parent and Children
(CPC) of T

\** Forward Phase: MaxMinHeuristic **\
CPC =90
Repeat
< F, assocF >=

mazzex~\ cpc (mingcopcAssoc(x; T'| S))
if assocF # 0 then

Add (CPC, F)
Endif
Until CPC has not changed

\** Backward Phase: **\
For all X eCPC
if 3SC CPC, s.t. Assoc(X; T | S) < 6 then
Remove (CPC, X)
Endif
Return CPC

B. Incremental Adaption of Score Based BN Structure Learn-
ing

In the category of score based methods, here we are
discussing the Alcobe [10] approach. In his approach, he
proposed two heuristics to change a batch Hill-climbing search
(HCS) into an incremental algorithm. We will first describe
the usual non incremental HCS and then introduce Alcobe’s
heuristics.

1) Hill Climbing Search : HCS (cf. Algo. 2) methods
traverse the search space called neighborhood by examining
only possible local changes at each step and applying the one
that maximizes the scoring function. The neighborhood of a
model M consists of all models which can be built using the
operators op and argument pairs A, where the operator can be
Add Edge, Delete Edge or Reverse Edge. A scoring function
f(M, D) is used to measure the quality of the model. Search
path or traverse path is a sequence of operators and argument
pairs added on each step to obtain a final model M, in other
words, it is a sequence of intermediate models.

Definition 1. (Search Path) Let M, be an initial model, op
be an operator and A be an argument pair. Then the final

modelM, is the model with highest score to the neighbor-
hood, obtained by a hill-climbing search algorithm as:

My = opp(...(op2, (0p1, A1), A2), ..., Ay)

So search path is the sequence of operators and argument pairs
Oop = {(0p1, A1), (0p2, A2),... (0pn, An)} used to build
M;y.

Models in a search path are in increasing quality score order.

f(My, D) < f(My, D) < f(Mz, D)--- < f(My, D)

Algorithm 2 Hill Climbing Search (HCS)
Require: Data D; scoring function f(M, D); a set
of operators OP = {op*, ..., op*}
Output: DAG: a model M of high quality

i=0
M; =@
Repeat
oldScore = f(M;, D)
i++
M; = op(M;—1, A;)
\tk where op(M;_1, A;)=

argmaz k. ayeg, | (opk(Miq7 Ai), D)**\
Until oldScore > f(M;, D)
Return M

2) Incremental Hill Climbing Search (iHCS): In iHCS (cf.
Algo. 3) Alcobe discussed two main problems: firstly, when
and which part needs to update, secondly to calculate and
store sufficient statistics. At each iteration, it repeats the search
path by traversing the reduced DAG space. He proposed two
heuristics “Traversal Operators in Correct Order” (TOCO)
and “Reduced search space” (RSS). It is assumed that data
is sampled from same distribution. The search space is also
supposed not to change too much when few data are added in
current dataset or new data slightly change the underlying dis-
tribution so, the scoring function imagined being a continuous
over the space of datasets.

First heuristic verifies the learned model and its search path
for new data. If the new data alter the leaning (search) path
then it is worth to update an already learned model. Second
heuristic applies when TOCO found the path is not valid so, it
is necessary to revise the current structure. At each step of the
search path, it stores the k models in a set 3 having the score
closer to the best one. The set B reduces the search space by
avoiding to explore those parts of the space where low quality
models were found during former search steps.

IV. INCREMENTAL MMPC(T) APPROACH

Now we can present our local search algorithm iMMPC(T)
for stationary domains. As already discussed the pivotal
part of the MMPC(T) algorithm is the forward phase of a
MMPC(T) algorithm. In this phase variables enter incre-
mentally in the set of CPC(T).



Algorithm 3 Incremental Hill Climbing Search (iHCS)
Require: data D; scoring functionf (M, D), a set of
operators OP = {op*,... op™} and B; is a set of
k best operators and argument pairs for model M;
Output: DAG: a model M of high quality

\¥# TOCO ##\

Verify previous search path: After evaluation of
scoring function f over new data D U D', let
(opj, A;) be a last pair where the new data agree
with previously learned search path.

Mini = (opj, Aj)

i=0

M; = My

\¥# RSS #*#\
Repeat
oldScore = f(M;, D)
i++
M; = op(M;-1, A;)
\k where Op(MZ;l, Al):

argmazopm, Ayes; f (op™ (Mi-1, A;), D)
**\

if (.Z\42 #Mfinal) then
Recalculate By,
Endif
Until oldScore > f(M;, D)

Forward phase of the MM PC(T) algorithm as a HCS::
First of all, let’s demonstrate the forward phase of the
MM PC(T) algorithm can be transformed into a Hill Climb-
ing search using a specific search space (set of models). The
idea of MMPC(T) (forward phase) is also the same as
HCS, stepwise it generates a model by improving the quality
function on each step. In M M PC(T) a model can be defined
as:

Definition 2. (Model) Let T be a target variable and CPC is
a set of candidate parent-children of T, without distinguishing
among both parent and children variables. Then model M is an
undirected graph which is defined by variables V =T U CPC
and edges E = {< T, z >, Vz € CPC}.

To measure the quality of a model, we define a scoring
function as:

Definition 3. (Quality Measuring) Let D be a dataset with
a faithful distribution P and M is a model. The quality of
model M can be measured by a function f(M, D), where
f(M, D)= MI(T, CPC) and its value increases when good
variables are added to CPC.

Operator also defined as:

Definition 4. (Operator) Let T is a target variable. Operator
can be defined by AddUndirectedEdge(T, X) which corre-
sponds to add X to the set of CPC(T).

Mutual Information (MI) has the property that MI(X, Y U
W) > MI(X,Y) means MI always increasing by including
additional variables. Furthermore, following property of con-
ditional mutual information justify our choice of MI [17]:

Conditional mutual information between X and Y given a
set of variables Z defined as:

MIX, YUW |Z)=MI(X,Y | Z)+ MI(X, W | ZUY)

(D

If Z is an empty set and Mutual Information (MI) used to

measure the strength of the Assoc (Assoc = MI) then equation
1 can be written as:

Assoc(T, CPCUX) = Assoc(T, CPC)+Assoc(T, X | CPC)

So to maximize f(M,D) it needs to maximize
Assoc(T, X | CPC) and it is the “MaxMinHeuristic”
of the MMPC(T) algorithm. At each step MMPC(T)
algorithm searches within the neighborhood to improve the
quality function and select the best model. This neighborhood
space over the models obtained by applying the one operator
AddUndirectedEdge(T, X).

With the above three definitions, we can easily describe
the forward phase of the M M PC(T') algorithm works as hill
climbing search.

A. Our Proposal of Incremental MMPC(T)

After showing the HCS behavior of the M M PC(T) al-
gorithm (forward phase) we are able to adapt TOCO and
RSS heuristics of Alcobe approach (Algo. 3) with model
M, scoring function f and operator as previously defined.
Our [nitial model M, corresponds to an empty set of CPC
(My ={T}). Incremental MMPC(T) starts from an initial
model M, and then searches in the neighborhood to find the
best one. This iterative process continues until all remaining
variables find the weak dependencies. So the search path in
iMMPC is a sequence of the variables added in the set of
CPC(T) incrementally. Each step of the search path can be
called intermediate model and for each intermediate model
(or search step) we store the k neighboring models having the
association value very close to the best one, as a set 5 where
k is a user input value, greater the value of k guarantees more
significant model.

On the arrival of new data iMMPC(T) first verify the
previously learned path and define the initial model M ; from
which the search will be resumed. If the initial model is a best
model then it will continue to improve an existing model in
the light of a set B (set of best arguments) to introduce new
variables in the final model, otherwise it will recalculate the
set of best arguments. We maintain the set 55 in descending
order. Relearning process limits the search space by using the
set 5.

Backward phase of M M PC has no concern as calculations
of Assoc remains the same in iIMMPC.

V. Toy EXAMPLE

Now we are providing a simple example for the better
understanding of an incremental M M PC(T) algorithm. The



Orignal Model

AddUndirectedEdge(T,X | XEV)p

AddUndirectedEdge(T,X | XEE)pup-

JL

,7B0 ={ X4, X3, X7, X2}
Path ={ X4}

r
,/B1={X3,X7,X2, X5}
Path ={ X4, X3 }

‘B2 =[ X7, X2, X5, X1}
7 Path={X4,X3, X7}

Figure 1. Toy example

original undirected acyclic graph of the incoming data stream
is shown in the figure 1.

The data fed to the algorithm is sampled from the distribu-
tion of the original graph and we are interested in identifying
CPC(X6).

We are going to present two cases correspond to the two
columns in figure 1. In the first one we handle data D
and other is to handle data D U D’. First case will start
by searching the whole neighborhood space and storing the
reduced search space (with k = 4) B. In second case the
incremental algorithm will reduce the search space by using
the reduced search space B. So it starts from an initial model
My which contains an only target variable and empty set of
CPC. In the first iteration, it generates the neighborhood by
applying the operator AddUndirected Edge(My, X) and then
calculate the association between X6 and each of the seven
other variables. Suppose the maximum value is obtained for

fma.x

(M4,DuD’)

=

BO ={ X4, X3, XT, X2}
Path ={ X4}

fma.x

(Mz,DuD’)

B1 ={ X3, X7, X2, X5}
Path ={ X4, X3}

B2 ={ X7, X2, X5 , X1}
Path ={ X4, X3, X7 }

X4 variable, and f(My) < f(My), so X4 is added in the
CPC(T). At this step, we store the four best variables which
have the association value closest to the maximum one so, for
instance set B0 = {X4, X3, X7, X2}.

Next iteration starts from a model M; and repeats the
same process. Suppose the maximum association value found
by applying the AddUndirectedEdge(My, X 3) operator and
f(M2) > f(My), so X3 is added in the CPC (T). We store
the four best variables which have the association value closest
to the maximum one so, set B1 = {X3, X7, X2, X5}. And
the same in third iteration where X7 is added in the list of
CPC, also the set of the best operator is stored as B32.

Now we cannot proceed because there is no other model
having the maximum value greater than f(Ms). In other
words we can say that the remaining variables have the zero
association with the target variable given any subset of CPC.

On the arrival of new data D’, our algorithm will re-
learn the model for data D U D’. Again it starts from the
initial model and generates the neighborhood by applying



the AddUndirected Edge(My, X) operator for only those
variables which are stored in the set of best arguments found
in the previous learning process. So here the search space
reduced for only four models. Again supposed the variable
X4 has a maximum association value so, it added in the list
of CPC(T). Here we also verify the search path, if the search
path is not in the same sequence then we need to recalculate
the set of best operators.

The complexity of our algorithm if we consider the above
the best case then at first time forward phase needs 3(n — 2)
comparisons and for next incremental stage it requires only
3k comparisons. In average case if new data changes then the
complexity will be O(2k + n). For the worst case when the
distribution of the entire data is changed or model learning
process starts from scratch then it needs maximum compar-
isons O(3n).

This simple example illustrates the interest of our incre-
mental approach. In high dimension, & < n and lot of Assoc
computations are saved.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an incremental version of
local search Max-Min Parent-children algorithm of Bayesian
Network structure learning. We applied incremental hill climb-
ing approach to discover the set of CPC of a target T. We store
the most strong dependencies as a set of best arguments. It
reduces the search space for new data by considering only the
strong dependencies. This approach improves the performance
of the algorithm systematically and reducing the complexity
significantly.

In the further, we plan to carry out more systematic exper-
imentation on real datasets to confirm the interest of applying
TOCO and RSS heuristics in CPC discovery and then extend
this work by incrementally identifying the whole structure. We
also plan to apply optimize measuring by storing sufficient
statistics. Furthermore, dealing with non-stationary domains
by handling shift or drift detection.
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