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INVERSE PROBLEM FOR THE HEAT EQUATION AND THE

SCHRÖDINGER EQUATION ON A TREE

LIVIU I. IGNAT, ADEMIR F. PAZOTO, AND LIONEL ROSIER

Abstract. In this paper we establish global Carleman estimates for the heat and Schrödinger
equations on a network. The heat equation is considered on a general tree and the Schrödinger
equation on a star-shaped tree. The Carleman inequalities are used to prove the Lipschitz
stability for an inverse problem consisting in retrieving a stationary potential in the heat (resp.
Schrödinger) equation from boundary measurements.

1. Introduction

In this paper we consider two inverse problems on a network formed by the edges of a tree.
The problems we address here enter in the framework of quantum graphs. The name quantum
graph is used for a graph considered as a one-dimensional singular variety and equipped with
a differential operator. Those quantum graphs are metric spaces which can be written as the
union of finitely many intervals, which are compact or [0,∞) and any two of these intervals are
either disjoint or intersect only at one of their endpoints.

Quantum graphs arise as simplified models in mathematics, physics, chemistry, and engi-
neering (e.g., nanotechnology and microelectronics), when one considers propagation of waves
through a quasi-one-dimensional system that looks like a thin neighborhood of a graph. We can
mention in particular the quantum wires and thin waveguides. Differential operators on metric
graphs arise in a variety of applications, to quote a few: carbon nano-structures [28], photonic
crystals [16], high-temperature granular superconductors [1], quantum waveguides [12], free-
electron theory of conjugated molecules in chemistry, quantum chaos, etc. For more details we
refer the reader to the review papers [25], [27], [26], [15] and the references therein for more
informations on this topic.

To be more precise we consider the heat equation on a 1-D network Γ given by the edges of
a general tree and the Schrödinger equation on a star-shaped tree.

The first system we consider is the following one



ut − ∆Γu + pu = 0, in Γ × (0, T ),

u = h, on ∂Γ × (0, T ),

u(·, 0) = u0, in Γ,

(1.1)

where ∆Γ is the Laplace operator on the network Γ. The system is closed with the coupling
conditions at the internal nodes of the tree, namely the continuity and the Kirchhoff’s law on the
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problem.
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flux at all internal vertices of Γ. Here, u is a collection of functions uα each of them satisfying
a heat equation on some edge of the network.

Simultaneously with problem (1.1) we consider the following problem





iut + ∆Γu + pu = 0, in Γ × (0, T ),

u = h, on ∂Γ × (0, T ),

u(·, 0) = u0, in Γ,

(1.2)

under similar coupling conditions as in the previous model.
In both cases we are interested in determining the potential p, a collection of functions defined

on the edges of Γ, from boundary measurements. In the case of the first system, we are able
to prove that we can recover p using only N − 1 measurements, where N is the total number
of exterior nodes of the network Γ. However, in the case of the second system, besides of the
fact that we need to deal with a star-shaped network, we only can recover the potential p from
measurements performed at all the exterior nodes of Γ.

The use of Carleman estimates to achieve uniqueness and stability results in inverse problems
is well known. Some authors use local Carleman inequalities and deduce uniqueness and Hölder
estimates. Others make use of global Carleman inequalities and deduce Lipschitz stability results
and hence uniqueness results. We shall follow that second approach.

Inverse problems with a finite number of measurements have been widely studied by Bukhgeim
and Klibanov (see [8], [21], and [22]) by means of Carleman estimates (see also the book [20] and
the references therein). For a wide class of partial differential equations, their method provides
the stability in the inverse problem, whenever a suitable Carleman estimate is available. Since
[8], there have been many works based upon their methodology.

The theory of global Carleman estimates for parabolic operator has been largely developed
since the work by Fursikov-Imanuvilov [17] and it has been applied to many situations (e.g.
to prove the controllability along the trajectories or the stability in inverse problems). Since a
complete list of references is too long we refer the reader to [34] for a quite complete review of
the state of art.

Concerning the Schrödinger equation we refer to [4, 6, 9, 10, 30] where Carleman estimates
are proved and used to establish the stability for some inverse problems (see also [19, 29] for
some other Carleman estimates for Schrödinger equation).

The same approach has given many results for the wave equation. Since a complete list
is too long we quote only some of them, related to the same inverse problem consisting in
retrieving a stationary potential in wave equation: [31] and [33] for Dirichlet boundary data and
a Neumann measurement and [18] for Neumann boundary data and a Dirichlet measurement.
These references are based on the use of local or global Carleman estimates. In the framework of
Carleman inequalities on networks we mention the recent paper [3] where the authors establish
a global Carleman estimate for the wave equation on a star-shaped tree and used it to derive the
Lipschitz stability in an inverse problem. The Carleman estimate in [3] involves some positive
definite matrix introduced in [7] to derive a Carleman estimate for the one-dimensional heat
equation with discontinuous coefficients.
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As far as we know, the determination of a time-independent potential for the heat or Schrödinger
equation in a network-like structure has not been addressed in the literature yet. This type of
problems has been studied for example for membranes or elastic strings (see for instance [2] and
the references therein).

Let us now state the main results of the paper. For a given initial data u0 and a given
boundary data h, we denote by u(p) the solution of the above systems associated with the
potential p ∈ L∞(Γ,R). We introduce the space

H2,1(Γ × (0, T )) := L2(0, T ;H2(Γ)) ∩H1(0, T ;L2(Γ)).

(See below Section 2 for the definition of H2(Γ).) We also introduce the ball Bm(0) := {q ∈
L∞(Γ,R); ||q||L∞(Γ) ≤ m}. Then the following stability results hold.

Theorem 1.1. Assume that p ∈ L∞(Γ), u0 = u0(x), h = h(x, t) and r > 0 are such that the
solution u(p) of (1.1) fulfills u(p) ∈ H2,1(Γ × (0, T )), ∂tu(p) ∈ H2,1(Γ × (0, T )), and such that
for some t0 ∈ (0, T ) it holds

|u(p)(·, t0)| ≥ r a.e. on Γ.

Then, for any m > 0 there exists a constant C = C(m, ||∂tu(p)||L∞(Γ×(0,T )), r) such that for any
q ∈ Bm(0) satisfying

∂x[u(p) − u(q)](v, .) ∈ H1(0, T ) for all exterior nodes v,

we have

‖p−q‖L2(Γ)

≤ C
(
‖[u(p) − u(q)](·, t0)‖H2(Γ) +

∑

v∈E

‖∂x[u(p) − u(q)](v, ·)‖H1(0,T )

)
,

where E denotes the set of all the exterior vertices of Γ except one.

For the second system, under the assumption that the network is a star-shaped tree, we can
prove a similar stability result.

Theorem 1.2. Assume that p ∈ L∞(Γ; R), u0 = u0(x), h = h(x, t) and r > 0 are such that the
solution of (1.2) satisfies

• u0(x) ∈ R or iu0(x) ∈ R a.e. in Γ,
• |u0(x)| ≥ r > 0 a.e. in Γ, and
• ∂tu(p) ∈ H2,1(Γ × (0, T )).

Then, for any m ≥ 0, there exists a constant C = C(m, ||∂tu(p)||H2,1(Γ×(0,T )), r) > 0 such that
for any q ∈ Bm(0) satisfying

∂tu(q) ∈ H2,1(Γ × (0, T )),

we have

||p − q||L2(Γ) ≤ C
∑

v∈∂Γ

||∂x[u(p) − u(q)](v, .)||H1(0,T )·
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The above theorems extend to networks classical results on inverse problems. To prove those
results, we need to establish (new) global Carleman estimates for the heat (resp. the Schrödinger)
equation on trees. Note that if we impose Kirchhoff-type conditions to the weight function at
the internal vertices, the Carleman estimate cannot be derived. In our Carleman estimates,
the weight function has to fulfill some nonlinear flux condition at each internal vertex. On the
other hand, for the Schrödinger equation posed on a star-shaped tree with N external vertices,
we consider a combination of N weight functions in order to cancel some “bad” terms at the
internal vertex involving time derivatives. That strategy was used in [5], with two different
weight functions, in order to improve the observation region for the wave equation.

The article is organized as follows. In Section 2 we introduce the notations and some classical
facts about the heat and Schrödinger equations on trees. Section 3 presents the analysis in the
case of the heat equation. The Schrödinger equation is considered in Section 4. Finally we
discuss some open problems in Section 5.

2. Notations and Preliminaries

Let Γ = (V,E) be a graph where V is the set of vertices and E the set of edges. The edges are
assumed to be of finite length and their ends are the vertices of V . For each v ∈ V we denote
Ev = {e ∈ E : v ∈ e}. The multiplicity of a vertex of Γ is equal to the number of edges that
branch out from it. If the multiplicity is equal to one, the vertex is said to be exterior, otherwise
it is said to be interior. We assume that Γ does not contain vertices with multiplicity two, since
they are irrelevant for our models.

From now on, we assume that Γ is a tree, that is, Γ is a planar finite connected graph without
circuit (closed path). We fix an orientation of Γ and for each oriented edge e, we denote by I(e)
its initial vertex and by T (e) its terminal one.

We identify every edge e of Γ with an interval Ie, where Ie = [0, le], le being the length of e.
This identification introduces a coordinate xe along the edge e.

Let v be a vertex of V and e be an edge in Ev. We set

i(v, e) =

{
0 if v = I(e),

le if v = T (e).

We identify any function u on Γ with a collection {ue}e∈E of functions ue defined on the edges
e of Γ. Each ue can be considered as a function on the interval Ie. In fact, we use the same
notation ue for both the function on the edge e and the function on the interval Ie identified with
e. For a function u : Γ → C, u = {ue}e∈E , we denote by f(u) : Γ → C the family {f(ue)}e∈E ,
where f(ue) : e→ C.

A function u = {ue}e∈E is continuous if and only if ue is continuous on Ie for every e ∈ E,
and u is continuous at the vertices of Γ:

ue(i(v, e)) = ue
′

(i(v, e′)), ∀ e, e′ ∈ Ev.

The space Lp(Γ), 1 ≤ p < ∞ consists of all the functions u = {ue}e∈E on Γ that belong to
Lp(Ie) for each edge e ∈ E. That space is endowed with the norm

‖u‖pLp(Γ) =
∑

e∈E

‖ue‖pLp(Ie)
<∞.
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Similarly, the space L∞(Γ) consists of all the functions u = {ue}e∈E that belong to L∞(Ie) for
each edge e ∈ E. The corresponding norm is

‖u‖L∞(Γ) = sup
e∈E

‖ue‖L∞(Ie) <∞.

The Sobolev space Hm(Γ), with m ∈ N
∗, consists of all the continuous functions on Γ that

belong to Hm(Ie) for each e ∈ E. It is endowed with the norm

‖u‖2
Hm(Γ) =

∑

e∈E

‖ue‖2
Hm(e) <∞.

The spaces L2(Γ) and Hm(Γ) are Hilbert spaces when endowed with the inner products

(u,v)L2(Γ) =
∑

e∈E

(ue, ve)L2(Ie) =
∑

e∈E

∫

Ie

ue(x)ve(x)dx

and

(u,v)Hm(Γ) =
∑

e∈E

(ue, ve)Hm(Ie) =
∑

e∈E

m∑

k=0

∫

Ie

dkue

dxk
dkve

dxk
dx.

H1
0 (Γ) denotes the set of functions in H1(Γ) that vanish at the exterior vertices. We now

introduce the Laplace operator ∆Γ on the tree Γ. Even if it is a standard procedure, we prefer
to recall it following [11], for the sake of completeness. Consider the sesquilinear continuous
form ϕ on H1

0 (Γ) defined by

ϕ(u,v) = (ux,vx)L2(Γ) =
∑

e∈E

∫

Ie

uex(x)v
e
x(x)dx.

We denote by D(∆Γ) the set of all the functions u ∈ H1
0 (Γ) such that the linear map v ∈

H1
0 (Γ) → ϕu(v) := ϕ(u,v) satisfies

|ϕu(v)| ≤ C‖v‖L2(Γ) for all v ∈ H1
0 (Γ).

For u ∈ D(∆Γ), we can extend ϕu to a linear continuous mapping on L2(Γ). There is a unique
element in L2(Γ), denoted by ∆Γu, such that

ϕ(u,v) = −(∆Γu,v)L2(Γ) for all v ∈ H1
0 (Γ).

We now define the normal exterior derivative of a function u = {ue}e∈E at the endpoints of
the edges. For each e ∈ E and v an endpoint of e we consider the normal derivative of the
restriction of u to the edge e of Ev evaluated at i(v, e) to be defined by:

∂ue

∂ne
(i(v, e)) =

{ −uex(0+) if i(v, e) = 0,

uex(le−) if i(v, e) = le.

With this notation it is easy to characterize D(∆Γ) (see [11]):

D(∆Γ) =
{
u = {ue}e∈E ∈ H2(Γ) ∩H1

0 (Γ);
∑

e∈Ev

∂ue

∂ne
(i(v, e)) = 0 for any interior vertex v

}

and
(∆Γu)e = (ue)xx for all e ∈ E, u ∈ D(∆Γ).
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In other words D(∆Γ) is the space of all the continuous functions u = {ue}e∈E on Γ, such that
for each edge e ∈ E, ue ∈ H2(Ie), and which vanish at each exterior node and fulfill the following
Kirchhoff-type condition

∑

e∈E; T (e)=v

uex(le−) −
∑

e∈E; I(e)=v

uex(0+) = 0

at each interior node v. It is easy to verify that (∆Γ, D(∆Γ)) is a linear, unbounded, self-adjoint,
dissipative operator on L2(Γ), i.e. ℜ(∆Γu,u)L2(Γ) ≤ 0 for all u ∈ D(∆Γ).

3. The heat equation

3.1. Preliminaries and notations. In this section we introduce the notations for the elements
of the considered tree. We mainly follow the notations of [14].

We first describe the procedure to index the edges and vertices of the tree. We first choose an
exterior vertex, called the root of the tree and denoted by R. The remaining edges and vertices
will be denoted by eα and Oα, respectively, where α = (α1, . . . , αk) is a multi-index (taking
value in {1} ∪

⋃
k≥2 N

k). The multi-indices are defined by induction in the following way. For
the edge containing the root R we choose the index 1. That edge is denoted by e1 and its second
end is denoted by O1. Assume now that the interior vertex Oα, which is the end of the edge eα,
has multiplicity equal to mα +1. The mα edges, different from eα, that branch out from Oα are
denoted by eαβ with β ∈ {1, . . . ,mα}. (See Figure 1.)

Let now I be the set of the interior vertices of Γ and E be the set of the exterior vertices of
Γ, R being excepted. We denote by

II = {α,Oα ∈ I}, IE = {α,Oα ∈ E}.
the sets of the indices for the interior and exterior vertices (except the root R). With these
notations I = II ∪ IE is the set of the indices of all the vertices except the root R.

The length of the edge eα will be denoted by lα. Each eα is parameterized by the interval
[0, lα], so that the end Oα of eα corresponds to x = lα while the origin of eα corresponds to
x = 0.

3.2. Carleman estimate for the heat equation. In this section we derive a Carleman es-
timate for the heat equation on a tree. The following properties for a function u = {uα}α∈I :
Γ → R will be relevant for our work.

(C1) Continuity condition at the internal vertices: uα(lα) = uαβ(0) for all α ∈ II and β ∈
[[1,mα]].

(C2) Flux condition at the internal vertices: uαx(lα) =
mα∑
β=1

uαβx (0) for all α ∈ II.

(C3) Vanishing condition at the root R and at the external vertices: u(v) = 0 for all v ∈ {R}∪E.

We introduce the set

Z = {u = {uα}α∈I : Γ × [0, T ] → R; uα ∈ C2,1([0, lα] × [0, T ]), u(·, t) satisfies (C1)-(C3)}.
Note that u(·, t) ∈ D(∆Γ) for u ∈ Z and t ∈ [0, T ]. The aim of this section is to define a
continuous weight function ψ = {ψα}α∈I : Γ → (0,∞) and a constant Cψ > 0 such that if we
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No measurement

Measurement

R

e1

e132

e131

e122

e121

e1211

e1212

O11
O12

O121

O1211 O122

O1

e13

e12e11

O13

O131

O132

O1212

Figure 1. A tree with 10 edges.

set

θ(x, t) =
eλψ(x)

t(T − t)
, ϕ(x, t) =

eλCψ − eλψ(x)

t(T − t)
, x ∈ Γ, t ∈ (0, T ),

we have the following Carleman estimate.

Proposition 3.1. There exist a continuous function ψ : Γ → (0,+∞) and some positive con-
stants λ0, s0, C such that for all λ ≥ λ0, s ≥ s0 and q ∈ Z, it holds

∫ T

0

∫

Γ

(
(sθ)−1(|qt|2 + |∆Γq|2) + λ2(sθ)|qx|2 + λ4(sθ)3|q|2

)
e−2sϕdxdt

+

∫ T

0
λ(sθ)(|qx|2e−2sϕ)(R, t)dt

≤ C
(∫ T

0

∫

Γ
|qt + ∆Γq|2e−2sϕdxdt+

∑

v∈E

∫ T

0
λ(sθ)(|qx|2e−2sϕ)(v, t)dt

)
. (3.3)
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In the above proposition we have used the following notations |q|2 = {|qα|2}α∈I , |qt|2 =
{|qαt |2}α∈I , |qx|2 = {|qαx |2}α∈I , etc. and

∫

Γ
u dx =

∑

α∈I

∫

Iα

uαdx.

Remark 3.2. (1) The same inequality holds for the operator ∂t − ∆Γ instead of ∂t + ∆Γ

just by changing t into T − t.
(2) In the definition of Z, we can replace C2,1 by H2,1, as well.
(3) We note that the result is false with only N −2 measurements for a star-shaped tree with

N edges of length 1. Indeed, a non trivial solution of the heat equation that vanishes on
N − 2 edges, at the internal vertex and at all the external vertices does exist.

Proof. Let us consider the operator P = ∂t + ∆Γ. Set u = e−sϕq and w = e−sϕP (esϕu).
Following [32] we obtain

w = Mu = ut + sϕtu + (∆Γu + 2sϕxux + s(∆Γϕ)u + s2|ϕx|2u) = M1u +M2u,

where

M1u = ∆Γu + sϕtu + s2|ϕx|2u (3.4)

and

M2u = ut + 2sϕxux + s(∆Γϕ)u (3.5)

are the self-adjoint and skew-adjoint parts of M , respectively. Then

‖w‖2 = ‖M1u +M2u‖2 = ‖M1u‖2 + ‖M2u‖2 + 2(M1u,M2u),

where ‖ · ‖ and (·, ·) denote the norm and the inner product of L2(Γ × (0, T )), respectively.

Step 1. Exact computation of (M1u,M2u).
Recall that

(M1u,M2u) =
∑

α∈I

∫ T

0

∫ lα

0
(M1u)α(M2u)αdxdt.

We compute the integral term in the r.h.s. of the above identity only for one (arbitrary) edge
eα, that we denote by e for simplicity. We assume that e is parameterized by x ∈ [0, l]. Also,

where there is no confusion, we use the symbols
∫∫

and
∫

to denote
∫ T
0

∫ l
0 and

∫ T
0 , respectively.

We write
∫ T

0

∫ l

0
(M1u)(M2u) dxdt = I1 + I2 + I3 + I4
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with

I1 =

∫ T

0

∫ l

0
uxxut,

I2 =

∫ T

0

∫ l

0
uxx(2sϕxux + sϕxxu),

I3 =

∫ T

0

∫ l

0
(sϕtu+ s2ϕ2

xu)(ut + 2sϕxux),

I4 =

∫ T

0

∫ l

0
(sϕtu+ s2ϕ2

xu)(sϕxxu).

For I1 we have that

I1 = −
∫∫

uxuxt +

∫
uxut

∣∣∣
l

0
=

∫
uxut

∣∣∣
l

0
.

We write the second term as I2 = I1
2 + I2

2 where

I1
2 = 2s

∫∫
uxxϕxux and I2

2 = s

∫∫
uxxϕxxu.

Thus

I1
2 = −s

∫∫
ϕxx|ux|2 + s

∫
ϕx|ux|2

∣∣∣
l

0

and

I2
2 = −s

∫∫
ux(ϕ3xu+ ϕxxux) + s

∫
uxϕxxu

∣∣∣
l

0

=
s

2

∫∫
ϕ4xu

2 − s

∫
ϕ3x

u2

2

∣∣∣
l

0
− s

∫∫
ϕxx|ux|2 + s

∫
ϕxxuux

∣∣∣
l

0
.

I3 is decomposed as I3 = I1
3 + I2

3 where

I1
3 =

∫∫
(sϕtu+ s2|ϕx|2u)ut

I2
3 =

∫∫
(sϕtu+ s2|ϕx|2u)(2sϕxux).

Then

I1
3 = −

∫∫
(sϕtt + 2s2ϕxϕxt)

|u|2
2
,

I2
3 =

∫∫
sϕx(sϕt + s2|ϕx|2)∂x(|u|2)

= −s2
∫∫ (

(ϕxϕt)x + s(ϕ3
x)x

)
|u|2 +

∫
sϕx(sϕt + s2|ϕx|2)|u|2

∣∣∣
l

0
.

Finally,

I4 =

∫∫
(s2ϕt + s3|ϕx|2)ϕxx|u|2.
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We conclude that for the edge e,
∫ T

0

∫ l

0
M1uM2u dxdt = −2s

∫ T

0

∫ l

0
ϕxx|ux|2 +

∫ T

0

∫ l

0
|u|2

[s
2
(ϕ4x − ϕtt) − s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]

+

∫ T

0

[
uxut + sϕxxuux + s|ux|2ϕx + |u|2

(
− s

2
ϕ3x + s2ϕxϕt + s3(ϕx)

3
)]∣∣∣

l

0
. (3.6)

Summing now the above identity over all the edges {eα}α∈I we obtain the exact expression of
the scalar product (M1u,M2u):

(M1u,M2u) = −2s

∫ T

0

∫

Γ
(∆Γϕ)|ux|2 +

∫ T

0

∫

Γ
|u|2

[s
2
(ϕ4x −ϕtt) − s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]

+
∑

α∈I

∫ T

0

[
uαxu

α
t + sϕαxxu

αuαx + s|uαx |2ϕαx + |uα|2
(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]∣∣∣
lα

0
. (3.7)

Step 2. Terms in the inner product related to the internal nodes.
Let us pick an internal node Oα. Using our previous notations, its parent edge is eα and its
children edges are denoted by eαβ with β ∈ [[1,mα]]. Let us denote by Xα the sum of the

boundary terms involving this internal node Oα in the right hand side of (3.7). Thus

Xα =

∫ T

0

[
uαxu

α
t + sϕαxxu

αuαx + s|uαx |2ϕαx + |uα|2
(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]
(lα, t)dt

−
∫ T

0

∑

β∈[[1,mα]]

[
uαβx uαβt + sϕαβxxu

αβuαβx + s|uαβx |2ϕαβx

+ |uαβ |2
(
− s

2
ϕαβ3x + s2ϕαβx ϕαβt + s3(ϕαβx )3

)]
(0, t)dt.

Moreover, in (3.7) we also have contributions from the exterior nodes in E and from the root R.
These contributions are given by

Y = −s
∫ T

0
|u1
x|2ϕ1

x(0, t)dt+ s
∑

α∈IE

∫ T

0
|uαx |2ϕαx(lα, t)dt. (3.8)

Let us now define the weight function ψ = {ψα}α∈I on the tree as follows. The components
ψα : [0, lα] → R are chosen in such a way that ψα ∈ C∞([0, lα]) and

(B1) |ψαx (x)|2 + ψαxx(x) ≥ 0 on [0, lα],

(B2) ψαx > 0 on [0, lα],

(B3) 3
4Cψ ≥ ψα > 2

3Cψ on [0, lα], for some positive constant Cψ,

(B4) |ψαxx| ≤ Kψαx on [0, lα] for some positive constant K,

(B5) ψα(lα) = ψαβ(0) for all α ∈ II, β ∈ [[1,mα]],
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(B6) ψαβx (0) − (mα + 1)ψαx (lα) > 0 for all α ∈ II, β ∈ [[1,mα]],

(B7)
∑

β∈[[1,mα]]

(ψαβx (0))3−(ψαx (lα))3−(mα+1)ψαx (lα)
∣∣∣ψαx (lα)−

∑
β∈[[1,mα]]

ψαβx (0)
∣∣∣
2
> 0 for all α ∈ II.

Finding a set of functions as above is easy. We can even take ψα to be affine, ψα(x) = aαx+bα.
The coefficients aα and bα are positive numbers that satisfy

(P1) 3
4Cψ ≥ aαlα + bα > bα >

2
3Cψ for all α ∈ I,

(P2) aαlα + bα = bαβ for all α ∈ II and β ∈ [[1,mα]],

(P3) aαβ − (mα + 1)aα > 0 for all α ∈ II and β ∈ [[1,mα]],

(P4)
∑

β∈[[1,mα]]

(aαβ)
3 − (aα)3 − (mα + 1)aα

∣∣∣aα −
∑

β∈[[1,mα]]

aαβ

∣∣∣
2
> 0 for all α ∈ II.

Let us first deal with the conditions (P2)-(P4). We define the constants corresponding to the
edge e1 by a1 = 2 and b1 = 1. Assuming that we have already constructed aα and bα for some
multi-index α, then bαβ is given by (P2). Next, we have to find aαβ large enough to satisfy (P3)-

(P4). Let us choose aαβ = rαaα. Obviously, for large enough rα, depending on mα, conditions

(P3) and (P4) are satisfied. Finally, assume that all the coefficients aα and bα have been defined
to satisfy (P2)-(P4). Adding 2

3Cψ to all the bαβ , we see that (P1) is fulfilled for Cψ large enough,

while (P2)-(P4) still hold true.

Let us split Xα into Xα = Xα
1 +Xα

2 +Xα
3 +Xα

4 , where

Xα
1 :=

∫ T

0

[
[uαxu

α
t ](lα, t) −

∑

β∈[[1,mα]]

[uαβx uαβt ](0, t)
]
dt,

Xα
2 :=

∫ T

0

[
[sϕαxxu

αuαx ](lα, t) −
∑

β∈[[1,mα]]

[sϕαβxxu
αβuαβx ](0, t)

]
dt,

Xα
3 :=

∫ T

0

[
[s|uαx |2ϕαx ](lα, t) −

∑

β∈[[1,mα]]

[s|uαβx |2ϕαβx ](0, t)
]
dt,

Xα
4 :=

∫ T

0

{[
|uα|2

(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]
(lα, t)

−
∑

β∈[[1,mα]]

[
|uαβ |2

(
− s

2
ϕαβ3x + s2ϕαβx ϕαβt + s3(ϕαβx )3

)]
(0, t)

}
dt.

We now estimate each term Xα
i , i = 1, ..., 4. Using the definition of the function u we have for

any index α ∈ I the following identities

uαx = e−sϕ
α

(−sϕαxqα + qαx ), uαt = e−sϕ
α

(−sϕαt qα + qαt ).
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Let us set u(Oα, t) = uα(lα, t) = uαβ(0, t) and ϕ(Oα, t) = ϕα(lα, t) = ϕαβ(0, t) for any α ∈ II
and β ∈ [[1,mα]]. With these notations we have

Xα
1 =

∫ T

0

(
uαxu

α
t (lα, t) −

∑

β∈[[1,mα]]

uαβx uαβt (0, t)
)
dt

=

∫ T

0
ut(Oα, t)e

−sϕ(Oα,t)
(
− sϕαxq

α(lα) + s
∑

β∈[[1,mα]]

ϕαβx qαβ(0) + qαx (lα) −
∑

β∈[[1,mα]]

qαβx (0)
)
dt

=

∫ T

0
ut(Oα, t)e

−sϕ(Oα,t)
(
− sϕαxq

α(lα) + s
∑

β∈[[1,mα]]

ϕαβx qαβ(0)
)
dt

=

∫ T

0
ut(Oα, t)u(Oα, t)

(
− sϕαx(lα) + s

∑

β∈[[1,mα]]

ϕαβx (0)
)
dt

= −
∫ T

0

(
− sϕαxt(lα, t) + s

∑

β∈[[1,mα]]

ϕαβxt (0, t)
) |u(Oα, t)|2

2
dt. (3.9)

Let us estimate Xα
2 . Using property (B4) we infer that

|ϕαxx| =
λeλψ

α

t(T − t)
|λ(ψαx )2 + ψαxx| ≤

T 2

4
|ϕαx |2 +K|ϕαx |.

This gives that

|Xα
2 | =

∣∣∣
∫ T

0

(
sϕαxxu

αuαx(lα, t) − s
∑

β∈[[1,mα]]

ϕαβxxu
αβuαβx (0, t)

)
dt
∣∣∣

≤ s2

2

∫ T

0
|uα|2(T

2

4
|ϕαx | +K)2|ϕαx |(lα, t)dt+

1

2

∫ T

0
|ϕαx ||uαx |2(lα, t)dt

+
∑

β∈[[1,mα]]

{s2
2

∫ T

0
|uαβ |2(T

2

4
|ϕαβx | +K)2|ϕαβx |(0, t)dt+

1

2

∫ T

0
|ϕαβx ||uαβx |2(0, t)dt

}

=
s2

2

∫ T

0
|u(Oα, t)|2

[
(
T 2

4
|ϕαx | +K)2|ϕαx |(lα, t) +

∑

β∈[[1,mα]]

(
T 2

4
|ϕαβx | +K)2|ϕαβx |(0, t)

]
dt

+
1

2

∫ T

0

[
|ϕαx ||uαx |2(lα, t)dt+

∑

β∈[[1,mα]]

|ϕαβx ||uαβx |2(0, t)
]
dt. (3.10)

To estimate the term
∫ T
0 |ϕαx ||uαx |2(lα, t)dt which occurs in (3.10) and in Xα

3 , we notice that

uαx(lα, t) −
∑

β∈[[1,mα]]

uαβx (0, t) = e−sϕ(Oα,t)(−s)
(
ϕαx(lα, t) −

∑

β∈[[1,mα]]

ϕαβx (0, t)
)
q(Oα, t),
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hence

|uαx(lα, t)|2 ≤ (mα + 1)
( ∑

β∈[[1,mα]]

|uαβx (0, t)|2 + s2|u(Oα, t)|2
∣∣∣ϕαx(lα, t) −

∑

β∈[[1,mα]]

ϕαβx (0, t)
∣∣∣
2)
.

(3.11)
We infer that
∫ T

0
|ϕαx ||uαx |2(lα, t)dt

≤ (mα + 1)

∫ T

0
|ϕαx(lα, t)|

( ∑

β∈[[1,mα]]

|uαβx (0, t)|2 + s2|u(Oα, t)|2
∣∣∣ϕαx(lα, t) −

∑

β∈[[1,mα]]

ϕαβx (0, t)
∣∣∣
2)

(3.12)

Combined to (3.10) and to the fact that ϕαβx (0, t) ≤ 0 by (B2), this yields

Xα
2 +Xα

3

≥ −s
2

2

∫ T

0
|u(Oα, t)|2

[
(
T 2

4
|ϕαx | +K)2|ϕαx |(lα, t) +

∑

β∈[[1,mα]]

(
T 2

4
|ϕαβx | +K)2|ϕαβx |(0, t)

]
dt

+ (s− 1

2
)

∫ T

0

∑

β∈[[1,mα]]

|ϕαβx ||uαβx |2(0, t)dt

− (s+
1

2
)(mα + 1)

∫ T

0
|ϕαx(lα, t)|

( ∑

β∈[[1,mα]]

|uαβx (0, t)|2 + s2|u(Oα, t)|2
∣∣ϕαx(lα, t) −

∑

β∈[[1,mα]]

ϕαβx (0, t)
∣∣2
)
.

(3.13)

Using the definition of Xα and estimates (3.9), (3.13) we obtain that

Xα ≥ Zα1 + Zα2

where

Zα1 = −
∫ T

0

(
− sϕαxt(lα, t) + s

∑

β∈[[1,mα]]

ϕαβxt (0, t)
) |u(Oα, t)|2

2
dt

− s2

2

∫ T

0
|u(Oα, t)|2

[
(
T 2

4
|ϕαx | +K)2|ϕαx |(lα, t) +

∑

β∈[[1,mα]]

(
T 2

4
|ϕαβx | +K)2|ϕαβx |(0, t)

]
dt

− (s3 +
1

2
s2)(mα + 1)

∫ T

0
|u(Oα, t)|2|ϕαx(lα, t)|

∣∣∣ϕαx(lα, t) −
∑

β∈[[1,mα]]

ϕαβx (0, t)
∣∣∣
2
dt

+

∫ T

0
|u(Oα, t)|2|

(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]
(lα, t)dt

−
∫ T

0
|u(Oα, t)|2

∑

β∈[[1,mα]]

(
− s

2
ϕαβ3x + s2ϕαβx ϕαβt + s3(ϕαβx )3

)
(0, t)dt
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and

Zα2 = (s−1

2
)

∑

β∈[[1,mα]]

∫ T

0

[
|ϕαβx ||uαβx |2

]
(0, t)dt−(s+

1

2
)(mα+1)

∫ T

0

[
|ϕαx(lα, t)|

∑

β∈[[1,mα]]

|uαβx (0, t)|2
]
dt.

We notice that |ϕαx |3 ≥ c(λθ)3 while, with (B3),

|ϕαx | + |ϕαx |2 + |ϕαxt| + |ϕαxϕαt | + |ϕα3x| ≤ c(λθ)3.

It follows that

Zα1 =

∫ T

0
|u(Oα, t)|2×

×
[
s3
(
(ϕαx)3(lα, t) −

∑

β∈[[1,mα]]

(ϕαβx )3(0, t) − (mα + 1)|ϕαx(lα, t)|
∣∣∣ϕαx(lα, t) −

∑

β∈[[1,mα]]

ϕαβx (0, t)
∣∣∣
2)

+ . . .
]

=

∫ T

0
|u(Oα, t)|2×

×
[
(sλθ)3

(
− (ψαx )3(lα) +

∑

β∈[[1,mα]]

(ψαβx )3(0) − (mα + 1)|ψαx (lα)|
∣∣∣ψαx (lα) −

∑

β∈[[1,mα]]

ψαβx (0)
∣∣∣
2)

+O(s2λ3θ3)
]

and

Zα2 =

∫ T

0

∑

β∈[[1,mα]]

|uαβx (0, t)|2
[
sλθ
(
ψαβx (0) − (mα + 1)|ψαx (lα)|

)
+O(λθ)

]
dt.

Looking at the coefficient of s3 in Zα1 and of s in Zα2 and using (B6), (B7), and (3.12), we
obtain that for s ≥ s0 and λ ≥ λ0 (with s0, λ0 large enough)

Xα ≥ Zα1 + Zα2

≥ C

∫ T

0
s3λ3θ3|u(Oα, t)|2dt+ C

∫ T

0
sλθ
(
|uαx(lα, t)|2 +

∑

β∈[[1,mα]]

|uαβx (0, t)|2
)
dt. (3.14)

In particular, Xα > 0.

Step 3. Estimation of the integrals along the edges.
We need the following lemma.

Lemma 3.3. [32, Claim 1] There exist λ1 ≥ λ0, s1 ≥ s0 and A > 0 such that for all λ ≥ λ1,
s ≥ s1, it holds

∫ T

0

∫

Γ
|u|2

[s
2
(ϕ4x − ϕtt) − s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]
dxdt ≥ Aλs3

∫ T

0

∫

Γ
|u|2|ϕx|3dxdt.

(3.15)
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As the proof of [32, Claim 1] does not involve any integration by parts in x, it is still valid in
our context.

The following lemma is inspired by [32, Claim 2].

Lemma 3.4. There exist s2 ≥ s1, λ2 ≥ λ1, and a positive constant C such that for all λ ≥ λ2

and s ≥ s2

λs

∫ T

0

∫

Γ
|ϕx||ux|2 + λs−1

∫ T

0

∫

Γ
|ϕx|−1|∆Γu|2

≤ C
(
s−1‖M1u‖2 + λs3

∫ T

0

∫

Γ
|ϕx|3|u|2 + λs

∫ T

0

∑

α∈I

|ϕαxuαuαx |(0) + |ϕαxuαuαx |(lα)

+ λs

∫ T

0

∑

α∈I

|(|ϕαx |)x||uα|2(0) + |(|ϕαx |)x||uα|2(lα)
)
. (3.16)

Proof. Let us pick any edge eα. To simplify the writing, we remove the index α in our compu-
tations. Using the definition of M1u (see (3.4)) we have that

s−1

∫ T

0

∫ l

0
|ϕx|−1|uxx|2 = s−1

∫ T

0

∫ l

0
|ϕx|−1|M1u− sϕtu− s2ϕ2

xu|2

≤ Cs−1

∫ T

0

∫ l

0
|ϕx|−1

[
|M1u|2 + s2|ϕt|2u2 + s4|ϕx|4u2

]
.

Using property (B3) we get that |ϕt| ≤ C|ϕx|2. Therefore, we have for some constant A > 0

s−1

∫ T

0

∫ l

0
|ϕx|−1|uxx|2 ≤ A

(‖M1u‖2

λs
+ s3

∫ T

0

∫ l

0
|ϕx|3u2

)
. (3.17)

The first term in the left hand side of (3.16) satisfies

λs

∫∫
|ϕx||ux|2 = λs

(∫∫
|ϕx|(−uxx)u−

∫∫
(|ϕx|)xuxu+

∫ T

0
|ϕx|uux

∣∣∣
l

0

)

≤ λ

2s

∫∫
|ϕx|−1|uxx|2 +

λs3

2

∫∫
|ϕx|3|u|2 +

λs

2

∫∫
(|ϕx|)xx|u|2 + λs

∫ T

0

(
|ϕx|uux − (|ϕx|)x

|u|2
2

) ∣∣∣
l

0

≤ λ

2
A

(‖M1u‖2

λs
+ s3

∫∫
|ϕx|3u2

)

+
λs3

2

∫∫
|ϕx|3|u|2 +

λs

2

∫∫
(|ϕx|)xx|u|2 + λs

∫ T

0

(
|ϕx|uux − (|ϕx|)x

|u|2
2

) ∣∣∣
l

0

≤ A

2

(
s−1‖M1u‖2 + s3λ

∫∫
|ϕx|3u2

)
+
λs3

2

∫∫
|ϕx|3|u|2 +

λs

2

∫∫
(|ϕx|)xx|u|2

+ λs

∫ T

0

(
|ϕx||u||ux| + |(|ϕx|)x|

|u|2
2

)
(0) + λs

∫ T

0

(
|ϕx||u||ux| + |(|ϕx|)x|

|u|2
2

)
(l).

(3.18)

The claim follows by summing (3.17) and (3.18) over all the edges. �
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Step 4. Conclusion.
By (3.7), (3.15) and (B1), we get for λ ≥ 1

‖w‖2 = ‖M1u +M2u‖2

= ‖M1u‖2 + ‖M2u‖2 + 2(M1u,M2u)

= ‖M1u‖2 + ‖M2u‖2 + 2
{∑

α∈II

Xα + Y

− 2s

∫ T

0

∫

Γ
ϕxx|ux|2 +

∫ T

0

∫

Γ
|u|2

[s
2
(ϕ4x −ϕtt) − s2(|ϕ2

x|)t − s3ϕx(|ϕx|2)x
]}

≥ ‖M1u‖2 + ‖M2u‖2 + 2
{∑

α∈II

Xα + Y

+ 2s

∫ T

0

∫

Γ
(λ2ψ2

x + λψxx)θ|ux|2 +Aλs3
∫ T

0

∫

Γ
|u|2|ϕx|3

}

≥ ‖M1u‖2 + ‖M2u‖2 +
∑

α∈II

Xα + Y +Aλs3
∫ T

0

∫

Γ
|u|2|ϕx|2. (3.19)

Multiplying (3.16) by A/2C and adding it to (3.19) we get

‖M2u‖2 + ‖M1u‖2(1 − A

2s
) +

Aλs3

2

∫∫
|u|2|ϕx|3 +

Aλs

2C

∫∫
|ϕx||ux|2 +

Aλ

2sC

∫∫
|ϕx|−1|∆Γu|2

+
∑

α∈II

Xα + Y ≤ ‖w‖2 +
A

2
B, (3.20)

where

B = B1 +B2

= λs

∫ T

0

∑

α∈I

|ϕαxuαuαx |(0) + |ϕαxuαuαx |(lα) + λs

∫ T

0

∑

α∈I

|(|ϕαx |)x||uα|2(0) + |(|ϕαx |)x||uα|2(lα)
)
.

We now prove that for s large enough, the term B is small compared to
∑

α∈II
Xα, so that

B can be absorbed by the left hand side of (3.20). Using (3.14) and the fact that u vanishes at
the vertices of E ∪ R = ∂Γ, we see that

B2 ≤ Cλ3s

∫ T

0

∑

α∈I

θ|u(Oα, t)|2dt = Cλ3s

∫ T

0

∑

α∈II

θ|u(Oα, t)|2dt ≤
C

s2

∑

α∈II

Xα. (3.21)
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Using again the fact that u vanishes at the vertices of ∂Γ, we obtain with (3.14) that

B1 ≤ Cλs

∫ T

0

∑

α∈II

|ϕαx uα|(Oα, t)
(
|uαx(lα, t)| +

∑

β∈[[1,mα]]

|uαβx (0, t)|
)

≤ C

∫ T

0

∑

α∈II

(
(sλ)2|ϕαx ||uα|2(Oα, t) + |ϕαx(Oα, t)|

(
|uαx(lα, t)|2 +

∑

β∈[[1,mα]]

|uαβx (0, t)|2
)
dt

≤ C

s

∑

α∈II

Xα. (3.22)

Gathering together (3.20), (3.21) and (3.22), we obtain

‖M2u‖2 + ‖M1u‖2(1 − A

2s
) +

Aλs3

2

∫ T

0

∫

Γ
|u|2|ϕx|3 +

Aλs

2C

∫∫
|ϕx||ux|2 +

Aλ

2sC

∫ T

0

∫

Γ
|ϕx|−1|∆Γu|2

+ (1 − C

s
)
∑

α∈II

Xα + Y ≤ ‖w‖2.

Writing explicitly the term Y and tacking into account the sign of the functions ψαx occurring
in Y , we get for s and λ large enough

‖M1u‖2 + ‖M2u‖2 + λs3
∫ T

0

∫

Γ
|u|2|ϕx|3 + λs

∫ T

0

∫

Γ
|ϕx||ux|2 + λs−1

∫ T

0

∫

Γ
|ϕx|−1|∆Γu|2

+
∑

α∈II

Xα +

∫ T

0
λsθ1|ux|2(R, t)dt ≤ C

(
‖w‖2 +

∫ T

0

∑

α∈IE

λsθα|uαx |2(lα, t)dt
)
. (3.23)

Finally, using the definition of M2 we get

λs−1

∫ T

0

∫

Γ
|ϕx|−1|ut|2dxdt ≤ Cλs−1

∫ T

0

∫

Γ
|ϕx|−1

(
|M2u|2 + s2|ϕx|2|ux|2 + s2|ϕxx|2|u|2

)

≤ C

∫ T

0

∫

Γ
s−1|M2u|2 + λs|ϕx||ux|2 + λs|ϕx|−1|ϕxx|2|u|2

)
.(3.24)

From (3.23) and (3.24), we infer that for s ≥ s3 and λ ≥ λ3 (with s3, λ3 large enough) we have
that

‖M1u‖2 + ‖M2u‖2 + λs3
∫ T

0

∫

Γ
|u|2|ϕx|3 + λs

∫ T

0

∫

Γ
|ϕx||ux|2 + λs−1

∫ T

0

∫

Γ
|ϕx|−1(|∆Γu|2 + |ut|2)

+
∑

α∈II

Xα +

∫ T

0
λsθ1|ux|2(R, t)dt ≤ C

(
‖w‖2 +

∫ T

0

∑

α∈IE

λsθα|uαx |2(lα, t)dt
)
.

Replacing u by e−sϕq in the last inequality, we readily obtain (3.3). �
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3.3. Inverse problem. Before proving the stability result in Theorem 1.1 we need to analyze
the following system:





uαt (x, t) = uαxx(x, t) + bα(x)uα(x, t) +Rα(x, t)fα(x), (x, t) ∈ (0, lα) × (0, T ), α ∈ I,

uα(lα, t) = 0, t ∈ (0, T ), α ∈ IE,

u1(0, t) = 0, t ∈ (0, T ),

uα(lα, t) = uαβ(0, t), t ∈ (0, T ), α ∈ II, β ∈ [[1,mα]],

uαx(lα, t) =
mα∑
β=1

uαβx (0, t), t ∈ (0, T ), α ∈ II,

(3.25)
where b = {bα}α∈I ∈ L∞(Γ).

Proposition 3.5. Assume that u = {uα}α∈I is a solution of (3.25) which satisfies ut ∈ H2,1(Γ×
(0, T )). If R = {Rα(x, t)}α∈I is such that Rt ∈ L∞(Γ × (0, T )) and that

|R(x, t0)| ≥ r > 0, for a.e. x ∈ Γ and some t0 ∈ (0, T ), (3.26)

then there exists a positive constant C = C(||Rt||L∞(Γ×(0,T )), ||b||L∞(Γ), r) such that

‖f‖L2(Γ) ≤ C

(
‖u(·, t0)‖H2(Γ) +

∑

v∈E

‖∂xtu(v, ·)‖L2(0,T )

)
(3.27)

for any f ∈ L2(Γ).

Proof. We proceed as in [34]. Set z = ∂tu. Then z = {zα}α∈I satisfies





zαt (x, t) = zαxx(x, t) + bα(x)zα(x, t) +Rαt (x, t)fα(x), (x, t) ∈ (0, lα) × (0, T ), α ∈ I,

zα(lα, t) = 0, t ∈ (0, T ), α ∈ IE,

z1(0, t) = 0, t ∈ (0, T ),

zα(lα, t) = zαβ(0, t), t ∈ (0, T ), α ∈ II, β ∈ [[1,mα]],

zαx (lα, t) =
mα∑
β=1

zαβx (0, t), t ∈ (0, T ), α ∈ II.

(3.28)
On the other hand,

R(x, t)f(x) = ∂tu(x, t) − (∆Γu)(x, t) − bu(x, t). (3.29)

Using a change of variables it is sufficient to prove (3.27) when t0 = T/2.



INVERSE PROBLEM FOR THE HEAT EQUATION AND THE SCHRÖDINGER EQUATION ON A TREE 19

We now apply the Carleman estimate (3.3) with q = z = ∂tu (and some fixed λ > 0)

∫ T

0

∫

Γ

[
(sθ)−1|∂ttu|2 + sθ|∂xtu|2 + (sθ)3|∂tu|2

]
e−2sϕ+

∫ T

0
(sθ)(|∂xtu|2e−2sϕ)(R, t)dt

≤ C
(∫ T

0

∫

Γ
|∂ttu − ∆Γ∂tu|2e−2sϕ+

∑

v∈E

∫ T

0
sθ(|∂xtu|2e−2sϕ)(v, t)dt

)

≤ C
(∫ T

0

∫

Γ

(
|(∂tR)f |2 + |∂tu|2

)
e−2sϕ+

∑

v∈E

∫ T

0
sθ(|∂xtu|2e−2sϕ)(v, t)dt

)
,

which gives, for s large enough,

∫ T

0

∫

Γ

[
(sθ)−1|∂ttu|2 + sθ|∂xtu|2 + (sθ)3|∂tu|2

]
e−2sϕ+

∫ T

0
(sθ)(|∂xtu|2e−2sϕ)(R, t)dt

≤ C
(∫ T

0

∫

Γ
|(∂tR)f |2e−2sϕ+

∑

v∈E

∫ T

0
sθ(|∂xtu|2e−2sϕ)(v, t)dt

)
.

Since limt→0 e
−2sϕ(x,t) = 0 for x ∈ Γ and |ϕt(x, t)| ≤ Cθ2(x, t) for all x ∈ Γ and t > 0, we get

∫

Γ
|∂tu(x,

T

2
)|2e−2sϕ(x,T

2
)dx =

∫ T/2

0

∂

∂t

(∫

Γ
|∂tu(x, t)|2e−2sϕ(x,t)dx

)
dt

=

∫ T/2

0

∫

Γ

[
2∂tu∂ttu − 2s∂tϕ|∂tu|2

]
e−2sϕ(x,t)dxdt

≤
∫ T/2

0

∫

Γ

(
2|∂tu||∂ttu| + Csθ2|∂tu|2

)
e−2sϕ(x,t)dxdt

≤ C

∫ T/2

0

∫

Γ

(
(s2θ)−1|∂ttu|2 + (sθ)2|∂tu|2

)
e−2sϕ(x,t)dxdt

≤ C

s

∫ T

0

∫

Γ
|(∂tR)f |2e−2sϕdxdt+ Ce−Cs

∑

v∈E

∫ T

0
|∂xtu|2(v, t)dt. (3.30)

Using (3.26), (3.29) and (3.30) we obtain that

∫

Γ
|f(x)|2e−2sϕ(x,T/2)dx ≤ C

∫

Γ
|R(x, T/2)f(x)|2e−2sϕ(x,T/2)dx

≤ C

∫

Γ

(
|∂tu(x,

T

2
)|2 + |∆Γu(x,

T

2
)|2 + |u(x,

T

2
)|2
)
e−2sϕ(x,T/2)dx

≤ C

s

∫ T

0

∫

Γ
|(∂tR)f |2e−2sϕ dxdt+ Ce−Cs

∑

v∈E

∫ T

0
|∂xtu|2(v, t)dt+ C‖u(·, T

2
)‖2
H2(Γ).
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Since ∂tR ∈ L∞(Γ × (0, T )), it holds
∫

Γ
|f(x)|2e−2sϕ(x,T/2)dx

≤ C

s

∫ T

0

∫

Γ
|f |2e−2sϕdxdt+ Ce−Cs

∑

v∈E

∫ T

0
|∂xtu|2(v, t)dt+ C‖u(·, T

2
)‖2
H2(Γ).

It follows from the definition of ϕ that

ϕ(x,
T

2
) ≤ ϕ(x, t) for all (x, t) ∈ Γ × (0, T ),

so that ∫ T

0

∫

Γ
|f(x)|2e−2sϕ(x,t)dxdt ≤ T

∫

Γ
|f(x)|2e−2sϕ(x,T/2)dt.

Therefore

(1 − CT

s
)

∫

Γ
|f(x)|2e−2sϕ(x,T/2)dt ≤ C

∑

v∈E

∫ T

0
|∂xtu|2(v, t)dt+ C‖u(·, T

2
)‖2
H2(Γ).

The desired inequality follows for s large enough. �

We are now able to prove the stability result for system (1.1).

Proof of Theorem 1.1. Let us denote

w = u(p) − u(q).

It satisfies the following system
{

wt = ∆Γw − qw + Rf in Γ × (0, T ),
w(x, t) = 0, on ∂Γ × (0, T ),

where f = q − p, R = u(p). Note that R ∈ C([0, T ];H1(Γ)) ⊂ C(Γ × [0, T ]), for u ∈
L2(0, T ;H2(Γ)) and ut ∈ L2(0, T ;L2(Γ)). Using our hypothesis, we see that |R(·, t0)| ≥ r > 0
on Γ, hence we can apply Proposition 3.5 to obtain

‖p − q‖L2(Γ) ≤ C
(
‖[u(p) − u(q)](·, t0)‖H2(Γ)) +

∑

v∈E

‖∂x[u(p) − u(q)](v, ·)‖H1(0,T )

)
,

where C = C(‖∂tu(p)‖L∞(Γ×(0,T )), ‖q‖L∞(Γ), r). The proof is now completed. �

4. Schrödinger equation on a star-shaped tree

In this section, we consider a network Γ which is a star-shaped tree constituted by N edges
ej (with N ≥ 3) connected at the internal node O. Here, the parameterization of the edge ej is
chosen so that the origin O of ej corresponds to x = 0, while the endpoint Oj of ej corresponds
to x = lj , for all j ∈ [[1, N ]].
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O1

O

e1
e3

e4

O2

O3

O4
e2

Figure 2. A star-shaped tree with 4 edges

We consider the following Cauchy problem

iyj,t + yj,xx + pj(x)yj = fj(x, t), x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ), (4.31)

yj(0, t) = yl(0, t), t ∈ (0, T ), j, l ∈ [[1, N ]], (4.32)
∑

1≤j≤N

yj,x(0, t) = 0, t ∈ (0, T ), (4.33)

y(lj , t) = 0, j ∈ [[1, N ]], t ∈ (0, T ), (4.34)

y(x, 0) = y0(x), x ∈ Γ, (4.35)

where p = {pj}j=1,N ∈ L∞(Γ) is some given potential function. Our main aim is to prove the
stability for the inverse problem consisting in retrieving the potential p from the measurement
of yx(lj , t) for j ∈ [[1, N ]]. This is done thanks to some Carleman estimate in following the
classical Bukhgeim-Klibanov method.

The first step will be the proof of a Carleman inequality on Γ. The key point is that choosing
only one weight function ψ = {ψj}j=1,N : Γ → R as in the case of the heat equation is not
convenient since we fail to control some boundary terms. Instead, we consider a family of
weights {ψk}k=1,N allowing us to get rid of some bad boundary terms.
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4.1. Carleman estimate. Assume given a family (ψkj )1≤j,k≤N of functions fulfilling the follow-
ing properties

ψkj : [0, lj ] → R is of class C2, ∀j, k ∈ [[1, N ]], (4.36)

ψk1j1 (0) = ψk2j2 (0), ∀j1, k1, j2, k2 ∈ [[1, N ]], (4.37)

|(ψkj )′(x)|2 + (ψkj )
′′(x) ≥ 0, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (4.38)

(ψkj )
′(x) 6= 0, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (4.39)

C

2
≥ ψkj (x) >

C

3
, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (4.40)

where C > 0 is some positive constant. We also assume that the following flux conditions at
x = 0 are satisfied:

∑

1≤j≤N

(ψkj )
′(0) = 0, ∀k ∈ [[1, N ]], (4.41)

∑

1≤k≤N

(ψkj )
′(0) = 0, ∀j ∈ [[1, N ]], (4.42)

∑

1≤k≤N

|(ψkj )′(0)|2 = C1, ∀j ∈ [[1, N ]], (4.43)

∑

1≤k≤N

(ψkj )
′′(0) = C2, ∀j ∈ [[1, N ]], (4.44)

∑

1≤k≤N

[(ψkj )
′(0)]3 > 0, ∀j ∈ [[1, N ]], (4.45)

for some constants C1 > 0 and C2 ∈ R. Such a family of weights functions (ψkj )1≤j,k≤N exists.

It is sufficient to pick (affine) functions of the form ψkj (x) = akjx+ 5
12C with C >> 1 and

akj :=

{
N − 1 if j = k,
−1 if j 6= k.

Let us introduce the families of weights

θkj (x, t) =
eλψ

k
j (x)

t(T − t)
, ϕkj (x, t) =

eλC − eλψ
k
j (x)

t(T − t)
,

and the class of functions

Z = {q = (qj)j=1,N ∈ C(Γ×[0, T ]); qj ∈ C2,1([0, lj ]×[0, T ]) ∀j ∈ [[1, N ]], and (4.32)−(4.34) hold}.

Proposition 4.1. Assume that the family of weights (ψjk) fulfills (4.36)-(4.45). Then there exist
some constants λ0 ≥ 1, s0 ≥ 1 and C0 > 0 such that for all λ ≥ λ0, all s ≥ s0, and all q ∈ Z, it
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holds

∑

1≤j,k≤N

∫ T

0

∫ lj

0
[λ2sθkj |qj,x|2 + λ4(sθkj )

3|qj |2 + |(M̃k
1 q)j |2 + |(M̃k

2 q)j |2]e−2sϕk
j dxdt

≤ C0

∑

1≤j,k≤N

(∫ T

0

∫ lj

0
|qj,t + iqj,xx|2e−2sϕk

j dxdt+

∫ T

0
λsθkj (lj)|qj,x(lj)|2e−2sϕk

j dt

)
, (4.46)

where i =
√
−1 and M̃k

1 and M̃k
2 denote the operators

(M̃k
1 q)j := [s(ϕkj,t + iϕkj,xx) − 2is2|ϕkj,x|2]qj + 2isϕkj,xqj,x, (4.47)

(M̃k
2 q)j := [−s(ϕkj,t + iϕkj,xx) + 2is2|ϕkj,x|2]qj + qj,t − 2isϕkj,xqj,x + iqj,xx. (4.48)

Proof. In what follows, the letter c will denote a constant (independent of s, λ, q, j, k) which
may vary from line to line. Let q ∈ Z be given, and for j, k ∈ [[1, N ]], let

ukj = e−sϕ
k
j qj , wkj = e−sϕ

k
jL(esϕ

k
j ukj )

where L denotes the operator

L = ∂t + i∂2
x.

Straightforward computations show that wk = Mkuk with

wkj = (Mkuk)j := ukj,t + sϕkj,tu
k
j + i(ukj,xx + 2sϕkj,xu

k
j,x + sϕkj,xxu

k
j + s2|ϕkj,x|2ukj ),

the operator Mk acting simply on the components of uk along the different edges. Let Mk
1 and

Mk
2 denote respectively the (formal) adjoint and skew-adjoint parts of the operator Mk. We

readily obtain that

(Mk
1 uk)j = i(2sϕkj,xu

k
j,x + sϕkj,xxu

k
j ) + sϕkj,tu

k
j (4.49)

(Mk
2 uk)j = ukj,t + i(ukj,xx + s2|ϕkj,x|2ukj ). (4.50)

Letting (M̃k
1 q)j := esϕ

k
j (Mk

1 uk)j and (M̃k
2 q)j := esϕ

k
j (Mk

2 uk)j , we easily check that (4.47) and
(4.48) hold. On the other hand,

||wk||2 = ||Mk
1 uk +Mk

2 uk||2 = ||Mk
1 uk||2 + ||Mk

2 uk||2 + 2 Re (Mk
1 uk,Mk

2 uk)

where (u,v) :=
∑

1≤j≤N

∫ T
0

∫ lj
0 uj(x, t)vj(x, t)dxdt and ||w||2 = (w,w). The proof of the Carle-

man estimate is inspired by those of [30, Proposition 2.1]. In the first step, we compute precisely
Re (Mk

1 uk,Mk
2 uk). In the second step, we check that the boundary terms related to the internal

node O give positive contributions. The third step is completely similar to the second step in
the proof of [30, Proposition 2.1].

Step 1. Exact computation of Re (Mk
1 uk,Mk

2 uk).
We intend to compute

Re (Mk
1 uk,Mk

2 uk) = Re
∑

1≤j≤N

∫ T

0

∫ lj

0
(Mk

1 u
k)j (Mk

2 u
k)jdxdt.
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Let us fix any pair (j, k) of indices in [[1, N ]] and let us compute
∫ T
0

∫ lj
0 (Mk

1 u
k)j (Mk

2 u
k)jdxdt.

For the sake of simplicity, we shall drop the indices j and k during the computations, and we

shall write
∫∫
u for

∫ T
0

∫ lj
0 u(x, t)dxdt, and

∫
h for

∫ T
0 h(t)dt. Then

2Re

∫ T

0

∫ lj

0
(Mk

1 u
k)j(Mk

2 u
k)j dxdt = 2Re

∫∫
[i(2sϕxux + sϕxxu) + sϕtu][ut − i(uxx + s2|ϕx|2u)]

= I1 + I2 + I3

where

I1 = 2Re

∫∫
i(2sϕxux + sϕxxu)(ut − i(uxx + s2|ϕx|2u)),

I2 = 2Re

∫∫
sϕtu(ut − iuxx),

I3 = 2Re

∫∫
sϕtu(−is2|ϕx|2u).

Obviously, I3 = 0. Let us begin with the computation of I1.

I1 = 2Re

∫∫
(2sϕxux + sϕxxu)(uxx + s2|ϕx|2u)

+2Re

∫∫
i(2sϕxux + sϕxxu)ut = I1

1 + I2
1 .

To calculate I1
1 , we need to evaluate the real part of the integral term J :=

∫∫
uxxϕxux. Inte-

grating by part yields

J = −
∫∫

ux(ϕxxux + ϕxuxx) +

∫
ϕx|ux|2

∣∣∣
l

0
,

where l stands for lj . On the other hand

2Re

∫∫
uxϕxuxx =

∫∫
ϕx(uxuxx + uxuxx) =

∫∫
ϕx∂x|ux|2

= −
∫∫

ϕxx|ux|2 +

∫
ϕx|ux|2

∣∣∣
l

0
.

Therefore

2Re J = −2

∫∫
ϕxx|ux|2 +

∫∫
ϕxx|ux|2 −

∫
ϕx|ux|2

∣∣∣
l

0
+ 2

∫
ϕx|ux|2

∣∣∣
l

0

= −
∫∫

ϕxx|ux|2 +

∫
ϕx|ux|2

∣∣∣
l

0
.
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It follows that

I1
1 = 2 Re

{
2sJ + s

∫∫
ϕxxuuxx + 2s3

∫∫
(ϕx)

3uxu+ s3
∫∫

ϕxx|ϕx|2|u|2
}

= 4s Re J − 2s Re

∫∫
(ϕ3xu+ ϕxxux)ux + 2s Re

∫
ϕxxuux

∣∣∣
l

0
+ 2s3

∫∫
(ϕx)

3∂x|u|2

+2s3
∫∫

ϕxx|ϕx|2|u|2

= 2s{−
∫∫

ϕxx|ux|2 +

∫
ϕx|ux|2

∣∣∣
l

0
} + s

(∫∫
ϕ4x|u|2 −

∫
[ϕ3x|u|2]l0 − 2

∫∫
ϕxx|ux|2

)

+2s Re

∫
ϕxxuux

∣∣∣
l

0
− 6s3

∫∫
(ϕx)

2ϕxx|u|2 + 2s3
∫

(ϕx)
3|u|2

∣∣∣
l

0
+ 2s3

∫∫
ϕxx|ϕx|2|u|2

= −4s

∫∫
ϕxx|ux|2 + s

∫∫
ϕ4x|u|2 − 4s3

∫∫
(ϕx)

2ϕxx|u|2

+

∫
[2sϕx|ux|2 + (−sϕ3x + 2s3(ϕx)

3)|u|2 + 2sϕxxRe (uux)]
∣∣∣
l

0
.

On the other hand,

I2
1 = i

∫∫
(2sϕxux + sϕxxu)ut − i

∫∫
(2sϕxux + sϕxxu)ut

= −i
∫∫

(2sϕxtux + 2sϕxuxt + sϕxxtu+ sϕxxut)u

+i

∫∫
2s(ϕxxut + ϕxuxt)u− i

∫
2sϕxuut

∣∣∣
l

0
− i

∫∫
sϕxxuut

= −i
∫∫

(sϕxxt|u|2 + 2sϕxtuxu) − i

∫
2sϕxuut

∣∣∣
l

0

= i

∫∫
sϕxt(uux + uxu) − i

∫
sϕxt|u|2

∣∣∣
l

0
− 2is

∫∫
ϕxtuxu− i

∫
2sϕxuut

∣∣∣
l

0

= i

∫∫
sϕxt(uux − uxu) + i

∫
[sϕx(uut − utu)]

∣∣∣
l

0
.

It remains to estimate I2.

I2 =

∫∫
sϕt(uut + uut) +

∫∫
sϕt(−iuuxx + iuuxx) =: I1

2 + I2
2 .
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We find that

I1
2 = −

∫∫
sϕtt|u|2,

I2
2 = is

∫∫
(ϕxtu+ ϕtux)ux − is

∫
ϕtuux

∣∣∣
l

0

−is
∫∫

(ϕtxu+ ϕtux)ux + is

∫
ϕtuux

∣∣∣
l

0

= 2 Re

∫∫
(is)ϕxtuux + 2 Re

∫
(−is)ϕtuux

∣∣∣
l

0
.

Thus

I1 + I2 + I3

= −4s

∫∫
ϕxx|ux|2 + s

∫∫
ϕ4x|u|2 − 4s3

∫∫
|ϕx|2ϕxx|u|2

+i

∫∫
sϕxt(uux − uxu) − s

∫∫
ϕtt|u|2 + 2 Re

∫∫
(is)ϕtxuux

+

∫
[2sϕx|ux|2 + (−sϕ3x + 2s3(ϕx)

3)|u|2 + 2sϕxx Re (uux)

+isϕx(uut − utu) + 2 Re {(−is)ϕtuux}]
∣∣∣
l

0
.

We conclude that (with the indices written again)

∑

1≤k≤N

||wk||2 =
∑

1≤k≤N

[
||Mk

1 uk||2 + ||Mk
2 uk||2

]

+
∑

1≤j,k≤N

{
−4s

∫ T

0

∫ lj

0
ϕkj,xx|ukj,x|2 − 4s Im

∫ T

0

∫ lj

0
ϕkj,xtu

k
ju

k
j,x

+

∫ T

0

∫ lj

0
|ukj |2[s(ϕkj,4x − ϕkj,tt) − 4s3(ϕkj,x)

2ϕkj,xx]

+

∫ T

0
[2sϕkj,x|ukj,x|2 + (−sϕkj,3x + 2s3(ϕkj,x)

3)|ukj |2 + 2sϕkj,xx Re (ukju
k
j,x)

+2sϕkj,t Re (−iukjukj,x) + isϕkj,x(u
k
ju

k
j,t − ukj,tu

k
j )]
∣∣∣
l

0

}
. (4.51)
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Step 2. Estimation of the boundary terms at the internal node O.
We estimate each term in

∑

j,k

(−2s)

∫ T

0
ϕkj,x(0)|ukj,x(0)|2 +

∑

j,k

∫ T

0
(sϕkj,3x(0) − 2s3(ϕkj,x(0))3)|u(0)|2

+
∑

j,k

(−2s)

∫ T

0
ϕkj,xx(0) Re (u(0)ukj,x(0)) +

∑

j,k

(−2s)

∫ T

0
ϕkj,t(0) Re (−iu(0)ukj,x(0))

+
∑

j,k

∫ T

0
(−is)ϕkj,x(0)(u(0)ut(0) − ut(0)u(0)) =: J1 + J2 + J3 + J4 + J5.

In the above equation and in the following ones, we write merely

u(0) := ukj (0, t), ϕ(0) = ϕkj (0, t), etc.

Using (4.42), (4.43), and (4.33) (for the qj ’s) we see that

J1 = (−2s)
∑

j

∫ T

0

∑

k

ϕkj,x(0)|e−sϕ(0)(−sϕkj,xqj + qj,x)|2

= −2s3
∫ T

0

∑

j,k

(ϕkj,x(0))3|u(0)|2 − 2s
∑

j

∫ T

0
(
∑

k

ϕkj,x(0))e−2sϕ(0)|qj,x(0)|2

+4s2Re
∑

j

∫ T

0
(
∑

k

[ϕkj,x(0)]2)u(0)qj,x(0)

= −2s3
∫ T

0

∑

j,k

(ϕkj,x(0))3|u(0)|2.

Therefore

J1 + J2 =
∑

j,k

∫ T

0
(sϕkj,3x(0) − 4s3(ϕkj,x(0))3)|u(0)|2. (4.52)

On the other hand, using (4.43), (4.44) and (4.33), we have that

J3 = −2s
∑

j,k

∫ T

0
ϕkj,xx(0) Re [u(0)e−sϕ(0)(−sϕkj,x(0)qj(0) + qj,x(0))]

= 2s2 Re

∫ T

0


∑

j,k

ϕkj,xx(0)ϕkj,x(0)


 |u(0)|2

+2sλRe

∫ T

0

u(0)e−sϕ(0)eλψ(0)

t(T − t)

∑

j

(
∑

k

(ψkj )
′′(0) + λ

∑

k

[(ψkj )
′(0)]2

)
qj,x(0)

= 2s2 Re

∫ T

0


∑

j,k

ϕkj,xx(0)ϕkj,x(0)


 |u(0)|2. (4.53)
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Combining (4.52), (4.53) and (4.45), we obtain that for s ≥ s1 and λ ≥ λ1,

J1 + J2 + J3 ≥ cs3λ3
∑

j,k

∫ T

0

(
eλψ

k
j (0)

t(T − t)

)3

|u(0)|2. (4.54)

Finally, we claim that J4 = J5 = 0. Indeed, using (4.33), we obtain that

J4 = −2s Im
(∫ T

0
ϕt(0)u(0)

∑

j,k

ukj,x(0)dt
)

= −2s Im

∫ T

0
ϕt(0)u(0)

∑

j,k

(−sϕkj,x(0)q(0) + qj,x(0))e−sϕ(0)dt

= 0,

while J5 = 0 by (4.41). Thus we conclude that

J1 + J2 + J3 + J4 + J5 ≥ cs3λ3

∫ T

0

(
eλψ(0)

t(T − t)

)3

|u(0)|2. (4.55)

for s ≥ s1, λ ≥ λ1.

Step 3. Estimation of the integrals along the edges.
Direct estimations as in [30, Proposition 2.1] (without any integration by parts) yield that for
some constant A > 0

∑

j,k

{(−4s)

∫ T

0

∫ lj

0
ϕkj,xx|ukj,x|2 − 4s Im

∫ T

0

∫ lj

0
ϕkj,xtu

k
ju

k
j,x

+

∫ T

0

∫ lj

0
|ukj |2[s(ϕkj,4x − ϕkj,tt) − 4s3(ϕkj,x)

2ϕkj,xx]}

≥ A
∑

j,k

{λ2s

∫ T

0

∫ lj

0

eλψ
k
j

t(T − t)
|(ψkj )′ukj,x|2 + λs3

∫ T

0

∫ lj

0
|ϕkj,x|3|ukj |2} (4.56)

provided that s ≥ s2, λ ≥ λ2. Combining (4.51), (4.55) and (4.56), we infer that

∑

j,k

{∫ T

0

∫ lj

0
[|(Mk

1 uk)j |2 + |(Mk
2 uk)j |2] + λ2s

∫ T

0

∫ lj

0

eλψ
k
j

t(T − t)
|(ψkj )′ukj,x|2 + λs3

∫ T

0

∫ lj

0
|ϕkj,x|3|ukj |2

+cs3λ3

∫ T

0

(
eλψ(0)

t(T − t)

)3

|u(0)|2


 ≤ c

∑

j,k

(∫ T

0

∫ lj

0
|wkj |2 + s

∫ T

0
|ϕkj,x(lj)| |ukj,x(lj)|2dt

)
. (4.57)

Replacing ukj by e−sϕ
k
j qj in (4.57) gives (4.46). �

Remark 4.2. Note that (4.46) is still valid if, in the definition of Z, one replaces

qj ∈ C2,1([0, lj ] × [0, T ]) ∀j ∈ [[1, N ]]
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by
q ∈ H2,1(Γ × (0, T )).

4.2. The boundary problem. We consider the following boundary initial-value problem



iuj,t + uj,xx + pj(x)uj = 0, x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ),
uj(0, t) = ul(0, t), j, k ∈ [[1, N ]], t ∈ (0, T ),∑

1≤j≤N uj,x(0, t) = 0, t ∈ (0, T ),

uj(lj , t) = hj(t), j ∈ [[1, N ]], t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Γ.

(4.58)

In what follows we fix the initial data u0 and the boundary data h = {hj}j=1,N , and we denote
by u(p) the solution of the system (4.58) associated with the potential p ∈ L∞(Γ).

Theorem 4.3. Assume that p ∈ L∞(Γ; R), u0 ∈ L∞(Γ) and r > 0 are such that

• u0(x) ∈ R or iu0(x) ∈ R a.e. in Γ,
• |u0(x)| ≥ r > 0 a.e. in Γ, and
• ∂tu(p) ∈ H2,1(Γ × (0, T )).

Then, for any m ≥ 0, there exists a constant C = C(m, ||∂tu(p)||H2,1(Γ×(0,T )), r) > 0 such that
for any q ∈ Bm(0) ⊂ L∞(Γ; R) satisfying

∂tu(q) ∈ H2,1(Γ × (0, T )),

we have that
||p − q||L2(Γ) ≤ C

∑

1≤j≤N

||∂x[u(p) − u(q)]j(lj , .)||H1(0,T )·

Proof. Pick any p,q as in the statement of the theorem, and introduce the difference y :=
u(p) − u(q) of the corresponding solutions of (4.58). Then y fulfills the system





iyj,t + yj,xx + qj(x)yj = fj(x)Rj(x, t), x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ),
yj(0, t) = yl(0, t), j, k ∈ [[1, N ]], t ∈ (0, T ),∑

1≤j≤N yj,x(0, t) = 0, t ∈ (0, T ),

yj(lj , t) = 0, j ∈ [[1, N ]], t ∈ (0, T ),
y(x, 0) = 0, x ∈ Γ,

(4.59)

with fj = qj − pj (real valued) and Rj := (u(p))j . To complete the proof of Theorem 4.3, we
need the following result.

Proposition 4.4. Suppose that R = {Rj}j=1,N satisfies

• R(x, 0) ∈ R or iR(x, 0) ∈ R a.e. in Γ,
• |R(x, 0)| ≥ r > 0 a.e. in Γ,
• R ∈ H1(0, T ;L∞(Γ)), and
• ∂ty ∈ H2,1(Γ × (0, T )).

Then for any m ≥ 0 there exists a constant C = C(m, ||Rt||L2(0,T ;L∞(Γ)), r) such that for any

q ∈ L∞(Γ,R) with ||q||L∞(Γ) ≤ m and for all f ∈ L2(Γ,R), the solution y of (4.59) satisfies

||f ||L2(Γ) ≤ C
∑

1≤j≤N

||yj,x(lj , .)||H1(0,T )· (4.60)
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Proof of Proposition 4.4. Let f ∈ L2(Γ; R) and R ∈ H1(0, T ;L∞(Γ)) be such that R(x, 0) ∈ R

a.e. in Γ, and let y be the solution of (4.59). We take the even-conjugate extensions of y and

R to the interval (−T, T ); i.e., we set y(x, t) = y(x,−t) for t ∈ (−T, 0) and similarly for R.
Since R(x, 0) ∈ R a.e. in Γ, we have that R ∈ H1(−T, T ;L∞(Γ)), and y satisfies the system
(4.59) in Γ × (−T, T ). In the case when R(x, 0) ∈ iR a.e. in Γ, the proof is still valid by taking
odd-conjugate extensions.

Let z(x, t) = yt(x,−t). Then z satisfies the following system:




zj,t + izj,xx + iqj(x)zj = ifj(x)Rj,t(x, t), x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (−T, T ),
zj(0, t) = zl(0, t), j, k ∈ [[1, N ]], t ∈ (−T, T ),∑

1≤j≤N zj,x(0, t) = 0, t ∈ (−T, T ),

zj(lj , t) = 0, j ∈ [[1, N ]], t ∈ (−T, T ),
z(x, 0) = −i f(x)R(x, 0), x ∈ Γ.

(4.61)

We apply Proposition 4.1, but on the time interval (−T, T ) instead of (0, T ). Therefore, here
we consider

θkj (x, t) =
eλψ

k
j (x)

(T + t)(T − t)
, ϕkj (x, t) =

eλC − eλψ
k
j (x)

(T + t)(T − t)
, ∀(x, t) ∈ Γ × (−T, T ).

As in the proof of Proposition 4.1, we introduce wkj = e−sϕ
k
j zj , (M̃k

2 z)j = esϕ
k
j (Mk

2 wk)j and

(Mk
2 wk)j = wkj,t + i(wkj,xx + s2|ϕkj,x|2wkj ). Next, we set

J =
∑

1≤j,k≤N

∫ 0

−T

∫ lj

0
e−2sϕk

j (M̃k
2 z)jzjdxdt.

Then we have

J =
∑

j,k

∫ 0

−T

∫ lj

0
(Mk

2 wk)jwkj dxdt

=
∑

j,k

{
∫ 0

−T

∫ lj

0
wkj,tw

k
j dxdt+ i

∫ 0

−T

∫ lj

0
(−|wkj,x|2 + s2|ϕkj,x|2|wkj |2)dxdt+ i

∫ 0

−T
wkj,xw

k
j

∣∣∣
lj

0
dt}.

Note that, by (4.61) and (4.41),
∑

j

wkj,x(0)wkj (0) =
∑

j

(zj,x(0) − sϕkj,x(0)z(0))e−2sϕ(0)z(0) = 0.

Therefore

Re (J) =
1

2

∑

j,k

∫ lj

0
|wkj (x, 0)|2dxdt =

1

2

∑

j,k

∫ lj

0
e−2sϕk

j (x,0)|f(x)|2|R(x, 0)|2dx.

Using the hypothesis on R(x, 0), we infer that

Re (J) ≥ r2

2

∑

j,k

∫ lj

0
e−2sϕk

j (x,0)|f(x)|2dx. (4.62)
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On the other hand, we have that

|J | ≤
∑

j,k





(∫ 0

−T

∫ lj

0
e−2sϕk

j |(M̃k
2 z)j)|2dxdt

) 1

2
(∫ 0

−T

∫ lj

0
e−2sϕk

j |zj |2dxdt
) 1

2





≤ 1

2

∑

j,k

{
λ−2s−

3

2

∫ 0

−T

∫ lj

0
e−2sϕk

j |(M̃k
2 z)j |2dxdt+ λ2s

3

2

∫ 0

−T

∫ lj

0
e−2sϕk

j |zj |2dxdt
}

≤ cλ−2s−
3

2

∑

j,k

{∫ 0

−T

∫ lj

0
e−2sϕk

j |(M̃k
2 z)j |2dxdt+ λ4s3

∫ 0

−T

∫ lj

0
(θkj )

3e−2sϕk
j |zj |2dxdt

}
, (4.63)

where we used the fact that

θkj ≥ T−2.

From (4.63), the Carleman estimate (4.46) (applied on the interval (−T, T ) instead of (0, T )),

and the fact that ϕkj (x, 0) ≤ ϕkj (x, t) for all (x, t) ∈ (0, lj) × (−T, T ), that θkj e
−2sϕk

j is bounded

from above in (0, lj)× (−T, T ), that q ∈ L∞(Γ), and that Rt ∈ L2(−T, T ;L∞(Γ)), we infer that
for s and λ large enough

|J | ≤ cλ−2s−
3

2

∑

j,k

{∫ T

−T

∫ lj

0
e−2sϕk

j |f Rt|2dxdt+ λs

∫ T

−T
θkj e

−2sϕk
j |zj,x(lj , t)|2dt

}

≤ cλ−2s−
3

2

∑

j,k

∫ lj

0
e−2sϕk

j (x,0)|f |2dx+ cλ−1s−
1

2

∑

j

∫ T

−T
|zj,x(lj , t)|2dt. (4.64)

It follows from (4.62), (4.64), and the fact that z(x, t) = −z(x,−t) for (x, t) ∈ Γ× (−T, 0), that
for s and λ large enough

∑

j,k

∫ lj

0
e−2sϕk

j (x,0)|f(x)|2dx ≤ c
∑

j

∫ 0

−T
|zj,x(lj , t)|2dt. (4.65)

Then (4.60) follows from (4.65) since

e−2sϕk
j (x,0) ≥ e−2sT−2(eλC−1).

This completes the proof of Proposition 4.4 and of Theorem 4.3. �

5. Open problems

We now mention a few open problems related to our work. One of them is whether it is
possible to reduce the number of measurements at the boundaries. It could be interesting to
combine the ideas of the paper with those appearing in [13], [14] where less measurements on
the boundary are needed but some rationality assumptions on the lengths of the edges have to
be made. For the Schrödinger equation, the question whether a Carleman estimate on a tree
with N exterior vertices can be written with only one weight function and N − 1 boundary
observations seems to be challenging.
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The extension of the present work to more general graphs with other kind of coupling is also
an open problem. We recall here the works of Kostrykin and Schrader [23, 24] where self-adjoint
Laplace operators with general coupling conditions are introduced.
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[3] L. Baudouin, E. Crépeau and J. Valein. Global Carleman estimate on a network for the wave equation and
application to an inverse problem, preprint (hal-00576296), 2011.

[4] L. Baudouin, A. Mercado. An inverse problem for Schrödinger equations with discontinuous main coefficient.
Appl. Anal. Vol. 87, no. 10-11, 11451165, 2008.

[5] L. Baudouin, A. Mercado, A. Osses. A global Carleman estimate in a transmission wave equation and
application to a one-measurement inverse problem. Inverse Problems Vol. 23, no. 1, 257278, 2007.

[6] L. Baudouin and J.-P. Puel. Uniqueness and stability in an inverse problem for the Schrödinger equation.
Inverse Problems, 18(6):1537–1554, 2002.

[7] A. Benabdallah, Y. Dermenjian and J. Le Rousseau. Carleman estimates for the one-dimensional heat equa-
tion with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math.
Anal. Appl. Vol. 336, no. 2, 865887, 2007.
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[13] R. Dáger. Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim.,

43(2):590–623 (electronic), 2004.
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