
HAL Id: hal-00595115
https://hal.science/hal-00595115

Submitted on 23 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a System Architecture for Resilient Computing
Miruna Stoicescu, Jean-Charles Fabre, Matthieu Roy

To cite this version:
Miruna Stoicescu, Jean-Charles Fabre, Matthieu Roy. Towards a System Architecture for Resilient
Computing. 2011. �hal-00595115�

https://hal.science/hal-00595115
https://hal.archives-ouvertes.fr


Towards a System Architecture
for Resilient Computing

Miruna STOICESCU∗ Jean-Charles FABRE Matthieu ROY
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France

Abstract—Nowadays, systems are not only becoming increas-
ingly complex and heterogeneous but are also opened towards
their environment by means of context-awareness. Furthermore,
in the vast majority of cases, their specifications periodically
evolve, leading to new versions. As resilient systems are expected
to continuously provide trustworthy services, they must cope with
changes coming from the environment or from the specifications
and reconfigure in order to adapt to them. We propose a
framework for designing and developing such systems.

Keywords—reconfigurable, adaptive, pervasive, fault-tolerant

I. PROBLEM STATEMENT

The evolution of systems is ineluctable and leads to the no-
tion of resilient computing[3]. Among the evolution scenarios
that can occur during the operational life of a fault-tolerant
application, we focus on those that may have an impact on
the fault tolerance mechanisms:

• one or several changes in the application assumptions
which influence the choice of the fault tolerance mecha-
nism,

• changes in the requirements in terms of fault tolerance,
• changes in the system configuration (e.g. number of

processors, memory resources, network bandwidth).

The essence of a resilient application lies in the fact that when
faced with any of these changes or even with a combination
of them, it must adapt itself while ensuring the observance of
the safety criteria.

Fig. 1. Context-aware fault tolerance computing

This work has been supported by the french national agency (ANR) under
contract ANR-BLAN-SIMI10-LS-100618-6-01.

∗ Corresponding author: miruna.stoicescu@laas.fr

We view the evolution of a system during its operational
life as a trajectory in a space characterized by the parameters
which can cause the aforementioned evolution. The three evo-
lution scenarios can be aggregated into a frame of reference for
this space, the three axes being: the application assumptions
(e.g., whether it is deterministic or not), the fault tolerance
requirements (e.g., the fault model) and the current system
configuration (e.g., the resources it is using). We claim that
a system’s evolution can be represented in this vector space
as shown in Figure 1. The combination of these three types
of information indicates the most convenient fault tolerance
mechanism to use, if any exists.

Given this frame of reference, we consider that each fault
tolerance mechanism covers a certain region of space as shown
in Figure 1 . Obviously, the union of all our fault tolerance
mechanisms does not cover the entire space. A monitor keeps
track of values in terms of the three axes and allows placing
the state of the system for a given configuration in a certain
region of this space. A change observed by the monitor triggers
a transition towards a new region which might be covered by
another fault tolerance mechanism or might be empty if there
is currently no solution. In this case, we can still give some
indications as to what must be adjusted in order to reach a
region for which a fault tolerance mechanism exists.

Once our view of the problem stated, a certain number of
issues arise, such as: how do we associate fault tolerance
mechanisms with the combination of the three measures?
how do we describe these fault tolerance mechanisms in a
way which allows us to change them dynamically? how do
we actually perform the transition from one mechanism to
another? The following section presents our view on these
matters.

II. OUR APPROACH

Separation of concerns is a generally accepted idea for
introducing fault tolerance mechanisms in an application in a
flexible way which allows subsequent modification and reuse.
According to this principle, software architectures consist of
two layers where the base provides the required functionalities
and the top contains the fault tolerance mechanism(s). As we
target the adaptation of fault tolerance mechanisms, we must
manage the dynamics of the top layer, which can have two
causes:

• The application layer remains unchanged but the fault
tolerance mechanism must be modified either because the
fault model changes or because an event in the environ-
ment, such as resource availability, makes it unsuitable.

• Changes in the top layer are indirectly triggered by
modifications in the application layer which make the

mailto:miruna.stoicescu@laas.fr


fault tolerance mechanism unsuitable. In this case both
layers execute a transition to a new state.

In order to achieve the adaptation of the fault tolerance
mechanisms in both scenarios, we build on the representation
from the previous section and refine it in three steps.

A. Description of the frame of reference

The three parameters labeling our axes are actually multidi-
mensional vectors but for the sake of visibility we have chosen
an elementary representation.

• The fault tolerance requirements are part of the non-
functional specifications of an application. Our main
focus is on the fault model, i.e., the types of faults which
must be tolerated by the application. We base our fault
model classification on known types [1], e.g., physical
faults, design faults.

• The application assumptions regroup the characteristics
of an application which have an impact on the choice of
the fault tolerance mechanism but are not the same as the
functional specifications of the application. These char-
acteristics include: whether the application is stateless or
stateful (i.e., if in case of failure we must rebuild its state
for it to keep running), whether its state is accessible or
not and whether the application is deterministic or not.

• The system configuration contains information such as
the number of processors available, the available band-
width, the memory resources.

B. Fault Tolerance Mechanisms

In order to place the mechanisms in the previously described
frame of reference, we must first be able to classify them
using the given criteria. In our approach, there are three steps
in the selection process for finding the most adequate fault
tolerance mechanism for an application: first, the fault model
is identified, then the application assumptions and finally the
current system configuration. The same process will be applied
for classifying them.

C. System evolution

The state of a fault-tolerant application represents a point
in the space given by our frame of reference. The application
being fault-tolerant, this point must be in a region covered by
a certain mechanism. A change (in terms of one of the three
axes) is equivalent to a new state of the application, therefore
a new point. As our purpose is to guarantee resilience when
facing change, the application must always be “accompanied”
by an adequate fault tolerance mechanism on its evolutionary
trajectory. Therefore, we must either provide a fault tolerance
mechanism encompassing a region which contains the new
point or, should we fail to do so, “guide” the application
towards a new region where a mechanism can be provided.
We must design and build our fault tolerance mechanisms
in view of such transitions and adaptations. The “distance”
between two mechanisms as represented in our frame of
reference should be equivalent to the difference between their
implementations. If the new mechanism is close to the old
one, we should be able to generate it through minor adjust-
ments. The transition between distant mechanisms will most
likely demand more complex modifications or even complete
replacement.

The planned development process for achieving the smooth
and safe transition between fault tolerance mechanisms con-
sists of the following elements:

• a complete classification of the fault tolerance mecha-
nisms we intend to use

• a method for describing and storing configurations cor-
responding to the fault tolerance mechanisms

• a set of tools allowing us to develop applications which
are easily reconfigurable at runtime

• one or several algorithms for performing the transition
between mechanisms

III. CONCLUSION AND PERSPECTIVES

Our work lies at the intersection of three research domains,
namely Fault Tolerant computing, Autonomic Computing [2]
and Ubiquitous Systems. The fault tolerance mechanisms we
are considering are well-established solutions for certain use-
cases/scenarios. This has led us to the concept of design
patterns for fault tolerance, by drawing a parallel with the
design patterns from software engineering. Each fault toler-
ance design pattern has an associated architecture. In order
to operate a transition between fault tolerance mechanisms,
we must be able to manipulate the configuration through its
description file. A design principle that is commonly accepted
in the area of reconfigurable systems is the use of component-
based technologies (CBSE) for developing the management
framework. We will use component-based middleware as a
basic layer for our adaptive architecture. Finally, a decision
needs to be made concerning the granularity of the reconfig-
uration. We can imagine two approaches for replacing a fault
tolerance mechanism with another one:

• an atomic approach, where the old mechanism is com-
pletely replaced by the new one

• a differential approach, where we operate at a finer level
by adding/removing the components corresponding to the
difference between the two mechanisms

The transitions between mechanisms will most likely be
described through state-machines. The algorithms behind the
transitions could lead to design patterns for system evolution.

REFERENCES

[1] A. Avizienis, J-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1:11–33, January 2004.

[2] J-O. Kephart and D-M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[3] J-C. Laprie. From dependability to resilience. In International Conference
on Dependable Systems and Networks (DSN 2008), Anchorage, AK, USA,
pp. G8-G9, volume 8, 2008.

Miruna Stoicescu is a 1st year PhD student
at LAAS–CNRS. Her research interests include
reconfigurable systems and ubiquitous computing.
She received the Research Master’s degree in
Computer Science and Telecommunications,
Multimedia stream, from Institut National
Polytechnique de Toulouse, France in 2010, the
Certified Engineer degree from Ecole Nationale
Supérieure d’Electronique, d’Electrotechnique,
d’Informatique, de Télécommunications et
d’Hydraulique de Toulouse, France in 2010 and

the Certified Engineer degree from the Polytechnic University of Bucharest,
Romania in 2009.


	Problem Statement
	Our Approach
	Description of the frame of reference
	Fault Tolerance Mechanisms
	System evolution

	Conclusion and perspectives
	References
	Biographies
	Miruna Stoicescu


