Stefan Schneider 
email: sschneider@eit.uni-kl.de
  
Lothar Litz 
email: litz@eit.uni-kl.de
  
Mickaël Danancher 
email: mikael.danancher@lurpa.ens-cachan.fr
  
Timed Residuals for Fault Detection and Isolation in Discrete Event Systems

Keywords: Discrete Event System, Timed Automata, Timed Residuals I

In this paper a new attempt for fault detection and isolation in discrete event systems is proposed. An identified model constitutes a timed observer of the fault-free system behavior. Non-acceptable plant operation is detected by comparing the behavior of the model with the observed system output. For fault isolation, timed residuals and generic fault symptoms -early and late events -are introduced. Time bounds are composed using Boolean conditions and statistical analysis. In case of a fault, timed and untimed residuals are concluded in order to refine a set of potential faulty candidates. The method is applied to the given benchmark system of a virtual production plant with an external controller.

INTRODUCTION

Fault Detection and Isolation (FDI) in industrial systems focuses on the reduction of production downtimes to increase availability. A particular challenge in this field is the development of diagnosis tools for large complex discrete event systems (DES). Several signal and model based approaches for different diagnosis applications have been introduced. Model based concepts perform a comparison of the modeled and the observed system behavior. In case of a deviation a fault is detected and isolated. The applied models can be characterized by two properties. First, models including faulty behavior and models which represent the fault-free behavior can be distinguished. The second property indicates whether the model includes time information or not. One example in literature is the diagnoser structure that models fault-free behavior as well as the behavior for given faults without considering time constraints. This class of models is studied in detail in [START_REF] Sampath | Diagnosability of Discrete-Event Systems[END_REF] and an extension to dense-time automata is given in [START_REF] Tripakis | Fault Diagnosis for Timed Automata[END_REF]. A Boolean decentralized structure with timed diagnosers is presented in [START_REF] Sayed Mouchaweh | Decentralized diagnosis based on Boolean discrete event models: application on manufacturing systems[END_REF] and an approach to timed FDI using fault-free models and template language is proposed in [START_REF] Pandalai | Template Languages for Fault Monitoring of timed Discrete Event Systems[END_REF].

In this work timed residuals using timed fault-free models are introduced. Previous works provided an identification algorithm [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF] to identify a monolithic automaton based on measured system data collected during fault-free system evolutions. An observer structure is used for fault detection purpose. Further developments presented a distributed approach [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF] of untimed automata for DES. In order to reproduce concurrent system behavior the global system is divided into subsystems. Partial automata are identified to build a network with additional scalable restrictions on the behavior. A set of untimed residuals was introduced in [START_REF] Roth | A residual inspired approach for fault localization in DES[END_REF] to perform fault isolation of the fault symptoms unexpected and missed behavior for a monolithic model. This enables a precise isolation of logic faults that occurred in the system. An extension of the fault-free model approach is presented in this paper considering new time based aspects. The fault symptoms early and late events are covered by timed residuals. Both timed and untimed residuals are treated as a compound.

The paper is structured as follows. In section 2 the timed model of a DES is introduced. A formal definition of the timed automaton model is given. The timed identification and composition of partial automata is explained. Section 3 deals with timed FDI. Time related faults are treated in detail including an illustrative example calculation. A case study of the benchmark system is given in section 4.

II. TIMED MODEL OF A DES

A. Problem classification

The observed system is considered as a closed-loop DES with information exchange between plant and controller. Since no knowledge about the control algorithm or plant structure is used the system is treated as a black box. Binary sensor signals are interpreted as controller inputs I and binary actuator signals as controller outputs O. Fig. 1 gives a schematic of the input/output (I/O) relation. In the following the controller is assumed fault-free, i.e. the controller software behaves deterministically. The physical system is non-deterministic because of temporal process variations. A DES state represents the combined state of controller and plant. FDI efforts are restricted to sensor and actuator faults of the plant. 

B. Timed model definition

To discuss timed fault detection and isolation an appropriate formal model must be defined. According to the timed automaton with guards described in [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] an eight-tuple is introduced which is able to produce the same external behavior as the closed-loop DES with respect to time constraints. It is denoted as Timed Autonomous Automaton with Output (TAAO).

( )

0 TAAO , , , , , , , X x C g Tra TG = Ω λ (1) 
X : Finite set of states p Ω = Ω will be used to interpret the external behavior of the DES. The explanation is given in section timed model identification.

C with cardinality C X = contains as many clocks as states.

g assigns a clock c C ∈ to a state x : g X C → (2) 
where ( ) g x addresses the clock c of state x . The mapping is bijective. A clock interpretation f is defined as

: f C + → ℝ (3) 
where ( )

f c represents the time value of clock c .
Tra is denoted as

Tra X TG C X ⊆ × × × . ( 4 
)
An element of the set is interpreted as

( ) ( ) ( ) , , ' , ' , ' x tguard x x g x x Tra ∈ . ( 5 
)
The element ( ) ' g x represents the clock to be reset with this transition. Always the clock of the succeeding state '

x is reset to zero, hence the transition labels are simplified and consist only of the time constraints ( )

, ' tguard x x .
TG contains Boolean conditions expressed as functions of clocks. A time guard tguard TG ∈ is denoted as

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
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, ' .

x x x x MIN MAX tguard x x f g x f g x = ≥ τ ∧ ≤ τ (6) 
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x
x x x x MIN MAX f g x   ∈ τ τ 
 of tguard is used alternatively. λ assigns an output u ∈ Ω to a model state x defined as

: X λ → Ω . ( 7 
)
When x is activated ( )

x λ
ascertains the output of the TAAO.

Remark:

A distinction is drawn between logical and temporal nondeterminism. A TAAO is logical deterministic if all guards are mutually exclusive out of a given state. A TAAO is always temporal non-deterministic since a transition may occur at any time within the defined time bounds.

C. Timed model identification

DES with large number of I/Os are basically able to exhibit a lot of different behavior patterns. Building a model by hand which is able to reproduce all system states is impracticable and usually even impossible. To resolve this difficulty an identification approach is chosen.

For FDI purposes the TAAO has to be identified. It is essential that the DES performs similar repetitive production cycles to obtain an appropriate data base. The data set contains the observed controller input and controller output sequences of the closed-loop DES in Fig. 1. They are called DES output sequences in the following. In this work we assume that the observed DES behavior is fault-free. Initially, the eight-tuple except TG is identified. The appropriate algorithm is available in [START_REF] Roth | Identification and fault diagnosis of industrial closed-loop discrete event systems[END_REF]. Ω is used to accumulate the observed fault-free DES outputs. They are arranged in I/O vectors ( )

,

DES m u j IO j IO j = … (8) 
with -th j event step and m number of controller I/Os, 2 .

m Ω ≤

The I/O enumeration convention is declared as follows. i IO is defined as

1 i i IO I i r = ∀ ≤ ≤ with controller inputs 1 , , r I I … and 1 i r i IO O i s + = ∀ ≤ ≤ with controller outputs 1 , , s O O …
and m r s = + as defined in [START_REF] Roth | Identification and fault diagnosis of industrial closed-loop discrete event systems[END_REF].

The concept for identification of TG is presented in the following. Based on all observed I/O vector sequences of the DES the corresponding time sequences are determined. With each new generated I/O vector a time span between two DES states is observed. This time span is called state sojourn time.

With the identified TAAO so far and the determined state sojourn times a density interval distribution can be assigned to each transition. It shows how many times a modeled transition is observed within a defined time interval. Fig. 2 illustrates an example distribution of the benchmark system. Each transition in the automata model is related to one distribution. It may be noted that the obtained statistical data can be roughly approximated by a normal distribution. A statistical analysis leads to the determination of lower and upper time bounds for each transition in a generic way, e.g. 

D. Distributed subsystems

For DES with a high degree of concurrency it is advantageous to identify subsystems based on sub-vectors of the I/O vector. A global model is composed of subsystem by grouping related sensor and actuator components. This partitioning operation is performed either using expert a-priori knowledge or automatically by means of optimization algorithms as treated in [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF]. Partitioning is not a subject of this paper. The explanation of the timed residuals is restricted to the monolithic model approach. The extension to distributed models is straightforward.

III. FAULT DETECTION AND ISOLATION

A. Fault detection

FDI is performed based on the identified TAAO. Fig. 3 shows the basic online monitoring concept. The evaluator structure to observe the behavior of the DES is based on the timed system model. It is assumed that the current model state x is known. In case the DES generates a new event the model tries to reproduce the observed behavior. If the model contains a corresponding solution no deviation between the modeled and observed is concluded and the observed behavior is interpreted as acceptable. If the evaluator is not able to reproduce the observed behavior no succeeding state '

x can be determined based on x and identified time bounds. Hence, a fault is declared.

The output of a DES is a sequence of timed events. Each event is described by a new I/O vector ( ), DES u j where ( ) ( )

1 .
DES DES u j u j ≠ -To generate an event at least one I/O must change its value. The evolution of a single i IO is denoted as single event .

IOi e Evolution Set ES contains all single events IOi e between two I/O vectors ( ) u j and ( )

u k ( ) ( ) ( ) ( ) ( ) ( ) ( ) _1 0 1 , _ 0 1 0 IOi i i IOi i i e if IO j IO k ES u j u k e if IO j IO k  = ∧ =    =   = ∧ =     (9) 
1 i m ∀ ≤ ≤ for the -th i vector element.

i IO can change its value either from 1 to 0 denoted with _ 0

IOi e or from 0 to 1 denoted with _1.

IOi e

Since more than one I/O can change its value during an event step, the evolution set can be interpreted as the set of all occurred single events between two I/O vectors.

To accept an observed DES behavior, an active state x and a timed transition

( ) ( ) ( )
, , ' , ' , ' , x tguard x x g x x see [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF], must exist which satisfy the logic condition

( ) ( ) ( ) ( ) ( ) ( ) , ' , DES ES x x ES x u j λ λ = λ (10) 
and the temporal condition

( , ') tguard x x true = . ( 11 
)
It is assumed that no fault was detected in the ( )

1 -th j - step ( ) ( ) 1 . DES x u j λ = -
Fault detection is performed using the TAAO as fault-free system model. ( )

x λ and ( ) ' x λ
determine the outputs of the model of x and '

x according to definition [START_REF] Roth | A residual inspired approach for fault localization in DES[END_REF]. Based on the known x and all possible succeeding model states the logic condition checks whether the resulting ES is equal to the ES of the current model output ( ) , ' , ( '), '

x
x x MAX x tguard x x g x x max ∀ τ . ( 12 
)
In this section it is distinguished between logical and temporal misbehavior of the system and the fault detection is explained. If any of the described faults is detected the following fault isolation strategies are applied. 

B. Residual approach

When a fault has been detected goal to isolate the fault by determining sensors and actuators which may cause the system to behave in a non-acceptable way. Since these hardware components are directly connected with the controller it is possible to determine faulty candidates by analyzing exclusively the controller I/Os. The residual approach of Roth introduced in [START_REF] Roth | A residual inspired approach for fault localization in DES[END_REF] is an appropriate way to obtain a small number of I/Os which could be related to an observed logic fault. This work presents an attempt to formalize the deadlock symptom and the extension to timed residuals in order to handle the generic fault symptoms early and late events.

C. Deadlock isolation

The isolation strategy of a deadlock fault is based on the known residual Res4 defined in [START_REF] Roth | A residual inspired approach for fault localization in DES[END_REF]. It x The union is applied to cover all possible states '

x with an existing transition from x to '.

x Since no behavior is observed any of the identified model transitions could be missed and hence all related single events could be the reason for the missing observation. ' Res4 denotes a special case of the missed behavior residual with

( ) ( ) ( ) { } , . DES ES x u j λ =
It contains each missing single event which is possibly related to a deadlock fault.

D. Early and late behavior isolation

Faulty components can be isolated by determining behavior which is observed but unexpected or by missed events in a given context. In addition to these logical fault symptoms timed residuals 1 TRes and 2 TRes are introduced to deal with early and late events. A behavior which is observed out of time may be related to a faulty component.

The Time Guarded Evolution Set TGES contains all future and past single events between x and a succeeding state '.

x It represents the modeled behavior which is expected to occur in the future or past with respect to the determined state sojourn time. The TGES is denoted as 

( ) ( ) ( ) ( ) { ( ) ( ) ( ) ( ) ( ) ( )} , ' , ' , ' , ' | x x x x MIN MAX TGES x x ES x x f g x f g x λ λ τ τ = < ∨ > ( 
) ( ) ( ) , ' x x MIN f g x early < τ → (15) ( ) ( ) ( ) , ' x x MAX f g x late > τ → (16) If ( ) ( ) ( ) , ' x x MIN f g x τ <
holds, the actual observation ( ) DES u j occurred before the transition from x to '

x may be taken due to the time bounds. In this case TGES contains the single events of the modeled fault-free system behavior marked by the label early.

If ( ) ( ) ( ) , ' x x MAX f g x τ >
holds, the actual observation ( ) DES u j occurred after the transition from x to '

x may be taken due to the time bounds. In this case TGES contains the single events of the modeled fault-free system behavior marked by the label late.

The timed residual specification 1 TRes represents a set of expected single events IOi e which occurred early and late based on the current active model state x .

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , ' , ' , ' 1 , , , ' DES DES x tguard x x g x x TRes x u j ES x u j TGES x x λ ∀ = ∩         ∩ ( 17 
)
1 TRes is the intersection of the observed DES evolution ( ) ( ) ( )

, DES ES
x u j λ and all single events which are expected to occur in future or past no matter which following state is taken

( ) ( ) ( ) ( ) , , ' , ' , '
, ' x tguard x x g x x TGES x x ∀ ∩ . The system evolution contains the single events between the output state x and the observed DES I/O vector ( ) DES u j which led to fault detection. The residual compares the behavior of the model with the actual observed system output. If the current observation of single events is equal to a behavior which should already have occurred (late behavior) or which has not yet been expected (early behavior) the according events are given by the residuals. It is also possible to give a less strict formulation using the union operation. This leads to the notation of the timed residual 2 TRes . TRes since it contains more elements. The results of both timed residuals are two small sets with possible faulty system components. In case of a fault the system operator should check the candidates of 1 TRes . If the fault cannot be found at these components the resulting elements of 2 TRes should be considered to cover a wider field of potential candidates. In the following the attempt of timed residuals is applied to an illustrative example.

E. Illustrative example

A calculation is shown for the example TAAO in Fig. 4. It is assumed that 1

x is the current active state of the model and the new observed DES I/O vector is

( ) ( ) 1,1 DES u j = at time ( ) ( ) 1 5 f g x = . Since ( ) ( ) 1 
f g x is smaller than the maximum upper time bound no deadlock occurred. The first step is to check whether the observed behavior can be reproduced by the model or not. Therefore the logical and temporal conditions for both successive states are applied. 

, , DES x ES x x ES x u j λ λ = λ ( ) ( ) ( ) ( ) ( ) 2 1 2 1 : 
, , DES x ES x x ES x u j λ λ ≠ λ (19) ( ) ( ) ( ) ( ) ( ) ( ) 3 1 3 1 : 
The logic condition does not hold for 3

x . The list of potential successive states is thus reduced to 2

x . The temporal condition yields ( )

1 2 , tguard x x false = (21) since ( ) ( ) 1 5 
f g x = is not within the time bounds of the considered transition between 1

x and 2

x , a fault is detected. For fault isolation ( ) ( ) ( )

, DES ES
x u j λ is calculated to determine the evolution of the system. (

, _1

DES IO ES x u j e λ = (22) 
Next, the modeled behavior is determined which is expected to occur in past or in future with respect to the clock ( ) ( )

1 f g x of the active state 1 . x ( ) { } 1 2 1 , _1 , IO TGES x x e late = (23) 
( ) { } 1 3 2 , _ 0 , IO TGES x x e early = (24) 
TGES of 1 x and 2

x contains the single event 1 _1 IO e and the information that the occurrence would be late with respect to the state sojourn time. For the second transition the corresponding information is generated resulting in the single event 2 _ 0 IO e and the early attribute. With the information about the observed and the modeled behavior it is possible to check whether the observed behavior is out of time and which single events have to be considered.

1 TRes is determined as The calculation results in an empty set because of the fact that the transitions to both following states of the active state 1 x are characterized by different evolutions. Since no resulting candidates are obtained 2 TRes is applied. .

( ) ( ) ( ) ( ) ( ) ( ) { } { } { } ( ) { } 1 1 2 1 3 1 1 2 1 , , , _1 
( ) ( ) ( ) ( ) ( ) ( ) { } { } { } ( ) { } 1 1 2 1 3 1 1 2 1 2 , , , _1 

IO e

To obtain the temporal information the TGES is considered again and the entire result is determined as 1 { _1}, .

IO e late This information is interpreted as 1 IO has changed its value from zero to one later than expected.

F. Residual interpretation

With the introduction of timed residuals another important class of fault symptoms is considered. It is shown logical and timed fault symptoms have to be distinguished. The presented fault detection approach is able to detect faults of both of the two domains. Timed residuals are an extension of the existing logical residuals. Hence, the fault isolation strategy must consider the combination of logical and timed residual calculation. A suitable scheme is illustrated in Fig. 5. Two dimensions of fault isolation are shown. Unexpected and missed behavior symptoms constitute the logical dimension. The timed residuals investigating the expected behavior which occurs early or late represent the timed dimension.

IV. CASE STUDY

The proposed benchmark system (Fig. 6) is the virtual pick and place station of the ITS PLC simulation environment for industrial systems. Running on a PC it is connected with a real programmable logic controller (PLC) via a data acquisition box to build a virtual automated manufacturing system. Multiple virtual sensors S and actuators A are available to control the system. Each component is labeled based on its type and an individual number.

In the following the specification of the system structure and production process for this work is outlined. Conveyor (S2, A0) provides parts and conveyor (S3, A1) empty boxes to the corresponding pick and place station. The gripper is moved horizontally between the two conveyors by two double acting pneumatic cylinders (S4, S5, A2, A3, A4, A5) and vertically using the single acting pneumatic cylinder (S6, S7, A6). Parcels are placed inside a box using the magnetic gripper (S8, A7). The detailed description of the benchmark system refers to [START_REF] Philippot | Survey on diagnosis of a pick and place benchmark[END_REF]. A production cycle is specified as the filling of one box with nine parts. Initially, one box and a sequence of parts are transported. Parts are sorted consecutively into the box without consideration about the type of each part. The fully loaded box is then delivered to the exit conveyor belt. The system model is composed of distributed partial automata. Four TAAOs are identified, one for each of the two horizontal cylinders, one for the vertical cylinder including the gripper and one for the conveyors. The identification data is based on twenty production cycles of fault-free system evolutions. Time bounds are generated according to the presented attempt using µ and 3σ .

The simulated system enables introducing a variety of faults into the production system. In the following the investigated faults are related to the vertical operating cylinder exclusively. Three different faults are simulated:

Fault #1: After sorting the first parcel into the box, the extended vertical cylinder pulls back. Its arrival in the upper position is indicated by sensor S6. The sensor value is supposed to switch from zero to one as soon as the cylinder is completely contracted. It is assumed that sensor S6 is faulty. It is forced to switch early before the cylinder reaches its initial position.

Fault #2:

The situation is the same as described with fault #1. S6 is assumed to be faulty again. In this case the sensor is forced to switch late from zero to one.

Fault #3:

A stuck open fault of actuator A7 after the first parcel has been sorted represents to the third fault case. When the second parcel arrives at the pick station, the vertical cylinder is located in its upper initial position. Afterwards, the cylinder is supposed to move down in order to grip the object. S6 switches to zero and the controller awaits the response of S7, reporting the complete extension of the cylinder. It is assumed that A7 is faulty. It is not able to start working and the plant remains in a deadlock state.

The FDI results are summarized in Table 1. With the presented method it is possible to detect all given faults in real time. Only very few false alarms are generated due to properly chosen time bounds. Fault #1 is related to the generic fault symptom early event. No deadlock has occurred, hence set ' Res4 remains empty. TRes1 and 2 TRes contain the same result as all outgoing transitions of the active state have at least 6 _1

S e

as mutual single event. The sets return S6 as a potential faulty component which showed early behavior. timed residuals of fault #2 are listed in the second row. In this case S6 is isolated as well as the potential faulty component since the corresponding event is observed late. A deadlock is simulated by inducing fault #3. The event of the cylinder extension is not 

Residuals Fault

Res4' TRes1 TRes2

Fault . By applying the method of timed residuals all faulty components are isolated accurately.

V. CONCLUSIONS Timed residuals and timed fault detection is presented as a new attempt for FDI in DES. A timed automaton model denoted as TAAO is introduced. Fault detection is performed based on identified logic and timed conditions. The generic fault symptoms deadlock as well as early and late behavior are treated to isolate a small set of potential faulty candidates. The ability of the method is demonstrated by means of the given benchmark system.

Figure 1 .

 1 Figure 1. Closed-loop DES

Figure 2 .

 2 Figure 2. Measured density interval distribution of the benchmark system (interval length = , ' x x MAX τ maximum time bound of all transitions. Multiple guards can apply the same bounds. The identified TAAO is able to reproduce the observed timed behavior of the closed-loop DES.

  based on x before the expiration of the maximum possible time bound of all potential transitions from x

Figure 3 .

 3 Figure 3. FDI conception

(

  

2

 2 TRes is usually less restrictive than 1

Figure 4 .

 4 Figure 4. Example automaton ( ) ( )

2

 2 TRes consists of the single event 1 _1

Figure 5 .Figure 6 .

 56 Figure 5. Fault isolation dimensions

  maximum possible time bound. Therefore ' Res4 is calculated to determine the single events which may be related to the fault. One can recognize that the faulty component A7 is represented in the residual set by the 7 _1 A e
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