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SEMI-ALGEBRAIC CANONICAL DECOMPOSITION OF MULTI-WAY ARRA  YS AND JOINT
EIGENVALUE DECOMPOSITION

Xavier Luciani’? and Laurent Albera!2

Inserm, UMR 642, France artUniversité de Rennes 1, LTSI, Rennes, F-35000, France

ABSTRACT called JET (Joint Eigenvalue decomposition algorithm dase

, . . . . on Triangular matrices).
A semi-algebraic algorithm based on Joint EigenValue De- g )

composition (JEVD) is proposed to compute the CP de-

composition of multi-way arrays. The iterative part of the 2. JOINT EIGENVALUE DECOMPOSITION

method is thus limited to the JEVD computation. In addition _ ) ) )

it involves less restrictive hypothesis than other recentis gyt[he f?llowmg, the subset dfl included in[z; ] is denoted
algebraic approaches. We also propose an original JEVBY [; YIN- o .

te?:hnique b%ged on theU factorizgtioﬂ. Numerica?l exam- The JEVD problem COﬂSISt.S in flndl_ng argk?lgepve_zctor ma-
ples highlight the main advantages of the proposed methoddx A from a set of non-defective matricdd "™’ verifying:

to solve both the JEVD and CP problems. Vi € [1; Kln, M® — AD® A1, )

Index Terms— Tensor decomposition, CP, PARAFAC,

. . e . . i i (k)
joint eigenvalue decomposition, non defective matrices. where the diagonal matricesD™’ are unknown. It can

be shown that the JEVD is unique up to a permutation and
a scaling of the columns ol within conditions on matrices
1. INTRODUCTION D™ [12].
Although it is encountered in other contexts such as 2-D
Tensor or multi-way array decompositions are used in NUDOA estimation [13], few authors have addressed the JEVD
merous application areas such as Psycometrics [1], Biomeg@roblem. Two main kinds of Jacobi-like algorithms have been
ical Engineering [2] or Chemometrics [3]. Thanks to its developed based on either thR factorization [14] or the
uniqueness property [4, 5], the CP decomposition (for CANpolar decomposition [15, 16, 17] of.

DECOMP/PARAFAC) [1, 6] is probably the most popular  We propose here a third Jacobi-like approach, based on
nowadays. the LU factorization of the eigenvector matrix and we show
Many iterative algorithms have been proposed to computthat the iterative optimization is then reduced to the sefoc

the CP decomposition. One of the most famous resorts tonly one triangular matrix.

an iterative Alternating Least Squares (ALS) procedure [6] . ) o ) .
However these approaches suffer from classical conveegenPefinition 1 A unit matrix is a matrix whose all the diagonal
problems (local minima, slow convergence or high computaglements are equal to 1.

tional cost per iteration). Recently, an Enhanced Line Gear Definition 2 An ¢ tary triangular matrix L(i,j)(a) isa

(ELS) [7, 8] procedure has allowed to confine this disadvan i | trix wh di | X
tage but it still exist some simple cases for which any iterg it trianguiar matrix whose non-cdiagonal components are

tive algorithm fails [9]. An other approach is to rephrase th 250 &Cept the (i, 7)-th one, which is equal to a.

CP decomposition as a joint diagonalization problem [5, 10, A generalization of theLU factorization easily shows

11]. Notably, the "Closed Form Solution" (CFS) presented irthat any non-singular square mattik can be factorized as

[10] and [11] resorts to the Joint EigenValue DecompositionA = LV AII whereL is a unit lower triangular matrixy is

(JEVD) of a set of non-defective matrices. These methods unit upper triangular matrix\ is a diagonal matrix anfil

can be called semi-algebraic since they algebraicallyitewr iS @ permutation matrix. Thereby, due to the indetermirsacie

the CP problem into a more classical matrix problem, whictPf the JEVD problem, the matrid solving (1) can be chosen

is then iteratively solved by means of a Jacobi-like procedu }Bfrcggfe];gri? tﬁeﬁ rg;ﬁg‘géh% uftir|1(<)jsg 3:] igtlleor\]/%?ltl;[iyén-gﬁlea‘g En\{’:\?rix

However such methods generally involve some strongest hy: : . b,

pothesis to work. For instance, CFS requires that the rank o and a unit upper triangular matrix verifying:

the considered tensor does not exceed two of its dimensions. Vk e [ K|y, LM% L=vD®»v )
We propose here a new formulation of the CP decompo-

sition as a JEVD problem, leading to a novel semi-algebraigvhere thek matricesR"™ = VD)V~ are upper trian-

solution, named SALT (Semi-ALgebraic Tensor decomposigular. As a consequende performs the joint triangulariza-

tion) which does not impose this limitation. At this occa- tion of matricesM ¥, Let us propose a Jacobi-like procedure

sion we first propose an original Jacobi-like JEVD algorithm to identify it, based on the following lemma:



Lemma 1 Any unit lower triangular matrix L of size (N x
N) can be factorized as a product of M = N(N — 1)/2
elementary lower triangular matrices.

The proofis skipped due to the lack of space. Now by takind"™

into account that elementary lower triangular matrices-com
mute, (2) and lemma 1 yield:

I {&m }mep;m, such that Vi € [1; K],
M

R® =] (L<m>(xm))’

m=1

1 M
MY T L (@m), (3)
m=1

where each index» corresponds to a distinct couplg {)

(I < j < i < N). As a consequence, ideally, we have to
found onlyM parameters.,,, to triangularize thé{ matrices
M™ Instead of simultaneously identifying theke param-
eters, a Jacobi-like procedure will repeat several sequehc
M sequential optimizations until convergence, each optimiz
tion with respect to only one parameter. A sequenck/aip-

timizations is generally called a sweep. Thereby, we thek lo
for a matrixL of the formL = []"_, [T, L") (als),

whereNj is the number of sweeps.

V(k,m,ns) € [1; KN, X[2; M|, X[1; Ns]n, we define:

M(k,O,l) M(k) (4)
—1
M FoLms) (L(l)(y;zs)) M(k,M,nsfl)L(l)(y?s) (5)
plEmns) (L(m) (yzf))*l MEm=Lina) p(m) (o

(6)
A natural way to compute the optiméh, n,)-th parameter
xs is given by:

n

V(m,ne) € [1; Mlw, x[1; Nan, @7 = Argmin,ne (¢ (y2))
with:

-1

>

qg=1

K
Cm,n8 (yz;) _ Z

=1

N 2
> (g

p=q+1

Components ofM*™"s) are deduced from those of
M Fm=1ne) within only a few computations. This is an

computing the roots of its derivative. Finalll, is estimated

by sequentially minimizing theV,M criteria (" "< and we
deduce the estimate of each upper triangular maki%’

m (2).

V\/(e )now show how the unit upper triangular maf¥ixcan

be algebraically computed from the set of matrided’ —
VD"V~ Such a computation is achieved component by

component. The relationship betwe#®), v and D
yields:

v(i,§) € [1; NTji, (R(k)v) = (VD(M)

0,3 0,3

So we haverk € [1; K], Y(i,j) € [1; N3 with i < j:

G- S, @

p=i+1

Since D™ is actually the diagonal matrix of eigenvalues
of R and sinceR™ is a triangular matrix, the diagonal
components ofD™ are known and equal to the diagonal
components oRR®). Then the left-hand side of (7) becomes

(R.g'{?? - Rg’?) Vi,;. Now, let:

J
1,7 k
= 3 R

p=i+1

and

be thek-th components of vectors®/) andb(*?), respec-
tively. Then (7) can be rewritten as follows:

V(i,5) € [N, i < g Viya®?) = b0,

Thereby, the identification df; ; in the least square sense is
given by:
QBT plid)

V(i,4) € [ NI, i < j, Vij = NI

(8)
The use of (8) requires to scan the. valuesfobmj —1to 1
for a given value ofi. Indeedp~17) only depends o ;
which is equal to 1. Consequently, from (8), we can compute

advantage of using elementary triangular matrices. In,deecJ/f1 ;» then we deducé’~2) and so on. Columns o¥’

(4)-(6) yield:
V(k, m, TLS) S [1; K][N, X[l; M][N, X[l; NS][N,
Mk MEm=Eme) i p £ andg # j,
M}(}ﬁ],m,ns) _ysz;Z’M71’nS) + M]S{C(],M71’7LS)

if p=iandq # 7,
MEG™") =y MY g M)
if p#iandqg = 7,
(k,m,ng) ng\2 (kym—1,ns) (kym—1,ng)
Mi,j = (Ym) Mj,i +Mi,j
Fyne (Mi(f:’mflyns) _ M;”;ymfl,ns)) )

are obtained by repeating this process fogatl [1; N]n. We
finally computeA from L andV'.

3. ASEMI-ALGEBRAIC CP DECOMPOSITION

The CP decomposition states that for apyth order tensor
(or Q-way array)T = (T, ,.i,) Of size (1 x --- x Ig), it
exists a minimal integeR such that7” can be exactly decom-

posed as:
R

Tirrviq =9 X

r=1

(1
11,7

L X@
ZQ,'N

9)

whereX (9 defines the-th "factor” matrix of sizgI; X R).

Consequently)(™ ™= can be expressed as a fourth degreeR is called the tensor rank. The problem is thus to find@he

polynomial in variabley>s and thus easily minimized by

factor matrices fronv".



Tensor dimensions can be merged in order to store all temows whose entries are non-zero (hypoth@si, this subset
sor entries in a single "unfolding” matrix. Obviously, teer is notempty and¥ —' can thus be estimated by the JET algo-
are many possible unfolding matrices. This choice has an intithm. Then one can immediately deducg; ¥ andY 7+
pact on the identifiability conditions and on the performesc from (11).

of the CP method. We defing = 1,1, ---I;. LetT(P) At this stage, colummnr of Yf,?” can be reshaped into
be the(r{ x 7, ) unfolding matrix of 7~ given by: a P-th order, rank-1 tens@y'y”’ whose factor vectors are
ther-th columns of theP matricesX(l), e ,X<P>, respec-
V(m,n) € [1;7F)n x [1; wgﬂ]w, T(P)mn = Tiy e igs tively. Thereby a simple rank-1 HOSVD [18] 3" pro-
(10) vides their estimation. In the same way, the columof
with: Y ¢ 7*Y can be reshaped in(§ — P)-th order, rank-1 tensor
P o Y27+ whose factor vectors are tieth columns of matri-
m=ir+ Y (ig—Drf in=ipa+ Y (ig— Dby cesX PV X (@) which can be estimated from the rank-
g=2 a=P+2 1 HOSVD of Y @7V Finally, we have just to repeat both

operations for all the values to solve the problem.
We must choose a permutation of the tensor dimensions
and aP value that ensur@{;, H, and#3. This set of condi-

Any unfolding matrix of 7~ can be merely obtained by per-
muting the tensor dimensions and varying fh@alue. Then
by using the Khatri-Rao product denoteddbyand after some

straightforward computations, (9) can be rewritten as: tions is necessary and sufficient to compute the CP decompo-
sition using the SALT algorithm. It is worth mentioning that
TP =Y VY ZroT these conditions become weak for high order arrays. Natably
_ at orders higher than 3, the rank of the considered tensotis n
with: required to exceed two of its dimensions contrary to the CFS
Y3 =x® o xt Ve xt2o...0 X9 (b>a). algorithm. Note tha#{; and?, imply R < min(wf,ng).

Even if several candidates often fulfill the conditions, we-r
As the SALT method is considered( P) has to be of rank ommend to choose a value Bfand a permutation of the ten-
R (hypothesigH;). Let U SV be the singular value decom- sor dimensions that give matric&% P) andY ¢~ """ with
position of T'(P), truncated at ordeR. Thus it exists a non the highest maximal rank. In practice, this usually leads to
singular square matrikV’ of size(R x R) such that: maximize mir{r?, ngll)_
YU =Uw and Y@V T =w sV (11)
4. NUMERICAL RESULTS

Recalling thaty @7 = X9 o Y """ and using  4.1. Performances comparison of the JET algorithm
the definition of the Khatri-Rao produck ¢'“*"T can be

seen as an horizontal block matrix: The JET algorithm is compared to the sh-rt [15] and JUST
[16] methods by means of Monte-Carlo (MC) simulations.
y @roT = [qb‘”Yg?*l’P“)T, . ,qb“Q)Y()?’l’P“)T} , Entries of the eigenvectod and diagonal matriceD*) are
(12)  randomly drawn according to a standard normal distribution
where ... /@) are thel,, diagonal matrices built A Gaussian white noise is added to the matrix set to be jointly
from the I, rows of matrix X@ . As a consequence, (11) diag_onalized. Algorithms are evaluated aqcording to a nor-
and (12) y(i?eld: ' malized root mean squared error on the estimated eigenvecto
matrix, denoted by 4. We vary the SNR fromi0 dB to 70
Sy = [poT ... F(IQ)T} dB whereads andN are fixed tol0 and5, respectively. The
7 ’ median value of 4 obtained from the 100 MC runs is plotted

g Z1,P+1) (i . on figure 1(a). It appears thatHi dB, JET and sh-rt provide

where """ = YT eOWT for anyi € [ o). very closed results. Conversely, beyariddB, the JET algo-

All matricesT'”) and matrixy (g ~""*" are of size(rg, | x  rithm consistently outperforms both techniques based en th

R). Assuming that these are full column rank (hypothe-polar decomposition.

sis Hs), then they all admit a Moore-Penrose matrix in-

\(/irj;dbeerl]g%?ngyt'o[l_zeé%fiy’ we can define for any couple 4.2. Performance comparison of the SALT algorithm

(41.i3) (i1 a(ia) We have compared SALT with the CFS and ALS with ELS

CH e b (ELSALS) algorithms. Implemented versions of SALT and
= W Tty @ Pty @ h P gty CFS resort to the JET algorithm to solve the JEVD prob-
— WOTAEWT lem. The ELS procedure is run every 3 ALS iterations.
n ’ Each algorithm gives for each factor matrix a normalized

where A(i2) — 414 (i2) are diagonal matrices. As a root mean squared estimation error whose median values are

result, W~ performs the JEVD of the set of matricé  computed from 100 MC experiments and denotedrk?f/.
which are full rank. Assuming thak (?) has at least two Our estimation criteriony is then: ry = é Z(f:l rgf).



- JUST w0l : : L ELSALS ] 10

sh-rt | ELSALS

N

. . — i : A
107 JET- 3 107 SALT | 10 CFS— g JU—

>
=107 ! =
&
o

SALT

10 20 30 50 60 70 10 20 20 0 70 80 90 100 107 3 " 5 5 7 3

20 20 50 6l 5
SNR (dB) SNR (dB) Rank

(a) The JEVD problem. (b) CP decomposition with correlated factors. (c) CP decomposition of 8-th order tensors.

Fig. 1. JEVD and CP decomposition algorithm comparison. Evolutibthe estimation errors.
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