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We present here an original method of computing the magnetic induction in a conductor thanks to a post-processing from the boundary
elements method (BEM). The paper gives the main keys of the algorithm, from the theoretical aspect as well as the practical one. This
general formulation is then applied to simulated cases and finally to a real underwater electric system under cathodic protection.

Index Terms—Computation theory, conductors, magnetic fields.

I. INTRODUCTION

C OMPUTING the induction flux in a conductive media
seems to be mastered since the appearance of the finite el-

ement method (FEM). Indeed this method consists in meshing
the all structure studied in tetrahedral elements, which allows
the computation of any electromagnetic values from the knowl-
edge of a physical behavior and a part of boundary values. But
this method has two main drawbacks.

• When computing values (such as the magnetic induction)
in the conductive meshed media (containing currents) with
volume integration, obvious singularities appear, while di-
viding by distances close to zero. Solutions commonly
used are to simply take this element out of the calculation,
which is physically wrong.

• For infinite (or semi-infinite) conductive medias (also
called external problems), it is obviously impossible to
mesh a sufficient volume. In this case, an Infinite Box
technique is commonly used, with a precision depending
on its dimension and the number of meshing elements.
This box size has to be tested to find the best compromise.

This method is efficient in internal cases (when currents are
“contained” in a finite conductive media) where no currents
spread at the computation point. As a main drawback, compro-
mise between meshing precision (and hence results accuracy)
and memory available has to be well chosen. But the advantage
of working with sparse matrixes, permitting the use of an im-
portant quantity of elements, is undeniable.

Since the recent developments of computational capabilities,
huge mathematical calculations are available. This has led to
an interest renewal for the boundary elements (BEM), working
with fulfilled matrixes. Indeed, this last limit numerically re-
stricts the number of admissible meshing elements. But contrary
to the FEM, it works with surface elements, avoiding trouble for
magnetic computations in the conductive media. Moreover, this
method can be used in external cases, representing the infinity
bound by a far equipotential limit where no currents spread
away. The reader can find more precisions on external cases in a
previous publication [1]. The following part first deals with the
calculation formulation.
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II. GENERAL FORMULATION OF THE COMPUTATION METHOD

Let us consider a conductive, linear, homogeneous and
isotropic domain in which flows a static current density.
Laplace equation is verified. The classical equation to compute
the magnetic flux density is the Biot–Savart law:

(1)

In this last equation, the magnetic flux density is computed
at a P point from the knowledge of currents repartition in
with permeability. Remembering that computations will
further be suited in conductors, this last equation induces sin-
gularities. Moreover, for infinite cases (structures immerged in
infinite water), volume meshing is hard to apply.

A. Transformation of This Integral

A main property of the Gradient and its application to the
previous equation give the following equations:

(2)

Another property of the gradient (where a is a scalar and a
vector) allows a new transformation of the formula:

(3)

As we are in a static case, the following equality is verified:

(4)
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Finally, the new equation obtained is

(5)

B. From a Volume to a Surface Integral

Ostogradsky formulas allow projecting a volume integral on
its surfaces. For a vector and the normal vector of the
surface, we have the following transformation:

(6)

This lead to a new formula for the induction computation:

(7)

Here, is the domain conductivity, is the tangential elec-
tric field. is the unitary directional vector of the vector
product between the electric field and the surface normal
vector. An analytic computation is too complicated to realize
with complex boundaries, so a numerical approach is followed
with a surface meshing in elements. A zero order approxima-
tion (quantities set constant by meshing elements) is admitted
with a point matching approach (computations at the geometric
center of elements). This approximation gives sufficient preci-
sion for our study and leads to

(8)

In this new expression, the only unknown is the electric field
at the geometric center of each surface element. This compu-

tation is possible with the BEM [1] and leads to get and
.

C. Computing E on the Boundaries With the BEM

As said before, the main problem remaining is the computa-
tion of the electric field on the boundaries. The numeric formula
to compute it if using BEM is directly shown here [1]:

(9)

The and at the geometric centers are known thanks
to a previous BEM at the end of the resolution step. Only 2N
integral terms remain to be calculated:

(10)

Those two quantities can be easily computed (by a numerical
approach with Gauss points), except when . In this case,
is null and the computation diverges.

We first focus on the computation of , composed of two
components: as we integer an element on itself, the vector will
always be contained in the surface elements, and so perpendic-
ular to the normal vector . Their scalar product is null and so is
the first component. The second term is oriented in the normal
direction (as is the only vector appearing). Its tangential com-
ponent will obviously be null too. Finally, the singularity appar-
ently introduced by the term is removed.

The case of the computation leads to more difficulties.
Indeed, no simplification is possible in this integral term. For-
tunately, some references give clues on induction computation
from polyhedral sources by a projection of volume integral to
a surface one [2]. The calculation point is no more in sources,
avoiding the singularity, and the integral term can be computed.
An example in magnetostatic can be found in [3].

After obtaining those problematic integral terms, the tangen-
tial field at all geometric centers is available, and so is the in-
duction field anywhere in the conductor.

An improvement stands in locating neighbors of a element
to compute their strongest influence (on ) more precisely. As
the general computation is numerically made with Gauss point,
this means adding more integration points in those neighbor el-
ements.

The developed method is applicable to any conductive media
but let us focus on a precise scope.

III. USING THE METHOD IN CORROSION SIMULATION

The aim of this part is to predict the magnetic induction due
to electrochemical phenomenons: protection against corrosion,
also called cathodic protection.

A. Cathodic Protection Context

During its operating life, a steel underwater structure has to
face to corrosion, which damages it physically. To fight against
this phenomenon, two main solutions exist.

• The Sacrificial Anode Cathodic Protection (SACP), which
places a metal (less noble than the iron contained in steel)
anode on the surface to protect. This new anode will be
corroded instead of the structure.

• The Impressed Current Cathodic Protection (ICCP), which
role is to inject currents in the water through platinum an-
odes. This places the steel in its passivation area and pro-
tects it.

In both cases, cathodic protection leads to a circulation of
currents in a conductive media (which is the salted seawater)
from the anode to the cathode [4].

B. Case Studied and Primary Results

The first structure studied is a parallelepipedic steel mock-up
immerged at the centered bottom of a finite salted water volume

. This steel mock-up is covered with an isolating
painting with two rectangular defects (0.08 m 0.02 m). To
protect it, an ICCP system is put at the middle of the structure
with a square platinum anode (0.02 m 0.02 m). The meshed
structure is shown in Fig. 1.
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Fig. 1. Meshing of the seawater volume (on left); the steel mock-up (on right),
with a 1 red anode, 2 green defects, 1 yellow isolated part; units in meters.

Fig. 2. BEM results on the mock-up, with potentials (left) in V and current
densities (right) in A/m .

Fig. 3. Tangential electric field on the mock-up with its modulus in V/m.

Once this meshing is done, the BEM can be applied to get the
missing boundary conditions and [5]. As we are in an
ICCP case, the anode (equal to a 5 current density
within the conductivity ), the cathode polarization law (linking

and , nonlinear) and the isolated part (equal to
zero) are known. The nonlinear BEM (with a Newton Raphson
algorithm, for example) leads to the boundary conditions shown
in Fig. 2.

As those results are obtained, a post-processing step allows
obtaining the magnetic induction.

C. Magnetic Induction Results

As said in the second part of the paper, the induction com-
putation needs the knowledge of the tangent electric field on
the boundaries. A first use of formula (9), with a singularities
pretreatment and neighborhood detection, gives the total elec-
tric field. It is then possible to extract its tangential component
(Fig. 3).

This extracted component rotates around the current sources,
respecting the Gauss law. The N integral terms of (8) are then
calculated to finally obtain the magnetic induction , here
computed on a grid in the water, 0.02 m above the mock-up

(Fig. 4).
To compare these results, a simulation with a FEM software

(Flux3D of the CEDRAT society) is realized. This comparison
is possible thanks to FEM adjustments: first an optimal meshing
of the structure is empirically made. Then the Biot–Savart equa-
tion is computed in the whole domain from the knowledge of the
sources repartition in the conductor (electric field on the bound-
aries is not needed). Finally a post-processing step of re-evalu-
ation of the singularities is performed. The results on the same
grid are shown in Fig. 5.

Fig. 4. Magnetic induction results on the grid with direction vectors and norm
isovalues, color scale in tesla.

Fig. 5. Magnetic induction on the grid with norm isovalues, color scale in tesla.

Fig. 6. Induction results on the grid with norm isovalues, color scale in tesla,
from BEM (on left) and FEM (on right, with Fig. 5 color scale).

Results obtained are roughly the same (even when meshing
more the structure) with less than 5% of the root square differ-
ence between the two results. As said before, the main draw-
backs of the FEM are computations at sources location and
choosing a compromise between refinement of the meshing (so-
lution accuracy) and memory available. This does not happen
with our method but the mandatory post-processing step to get
electromagnetic values in the domain can be considered as a
restraint.

D. Quick Results in External Problem

A similar type of computation and comparison can be made in
external problems. Indeed, the appearance of an infinite bound
only induces a few changes in the computation (which are not
noted here for concision reasons). The comparison of the results
is shown in Fig. 6.

The results (less than 5% difference) and conclusions are
similar to the previous part. The Infinite Box introduces a new
constraint with a compromise to choose between precision and
meshing density. Our method is more efficient in this case.

IV. APPLICATION IN A REAL CASE

One primary goal of world’s Marines is to predict vessels’
electromagnetic field, particularly to evaluate mines threat
(more sensitive to magnetic field than electric one) during
operations. Different components of this field are known, such
as hull magnetization, motors’ fields or corrosion currents. As
the first two can now be easily predicted, Corrosion Related
Magnetic field (CRM) has become one main difficulty. This is
especially due to the presence of sources (corrosion currents)
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Fig. 7. 1:40th ship mock-up (underside) with rectangular cathodes and anodes
in round dielectric patches.

where the field is searched. As said before, the developed
method overcome this difficulty. Moreover, for a so complex
hull structure, main FEM difficulties stand in the volume
meshing of the mock-up with an Infinite Box. Our method only
needs a surface meshing and brings more simplicity in this case.

An algorithm of corrosion diagnosis has been presented in a
previous communication [1]: from a set of close electrical mea-
surements in the water, main goal is to obtain boundary condi-
tions on the structure surface (like in Fig. 2), and thus corroded
areas.

An interesting use of our method would be, from a set of close
electrical measurements, to find corroded areas on the hull and
then predict the magnetic field at a deeper depth. This para-
graph considers a complex geometry, representative of a ship
hull under ICCP. Some electromagnetic measurements are re-
alized below this mock-up, at 2 different depths. The closest
one helps finding corroded areas and the furthest is used to pre-
dict the magnetic field. Unfortunately, as experimentations were
made to check electric field prediction tools, magnetic measure-
ment cannot be used as direct validation.

A frigate mock-up in epoxy is created at a 1/40th scale. This
mock-up gets all ship complex parts, including propellers in
noble metal. On this hull are placed 6 platinum anodes, which
are linked to independent dc generators (providing currents up
to 50 mA). Thirty-six polarizable steel cathodes are also set on
the hull to simulate paint defects (positions chosen from sta-
tistical study of real cases). They can individually be activated
thanks to separated connectivity wires. This can simulate a gen-
eral defect reaching 7% of the hull total surface (Fig. 7).

Unfortunately, those wires make different coils appearing
around the mock-up, which fully overlay the CRM. Only
experimental electric field comparisons at this deeper depth can
be done. This phenomenon does not happen for real vessels
because cathodic currents circulate into the hull (and not in
wires), avoiding this “coil effect”.

The hull is partially immerged in salted and bubbled water
( ; ) and electromagnetic measurements
are made below the hull. This has been realized at the Naval
Research Laboratory (Key West) of the US Navy, with a part-
nership with the French Armament Delegation (Fig. 8).

From the closest electric field measurement, corrosion diag-
nosis leads to good results on the mock-up, with less than 5%
error on hull’s current densities. Those results are available in
a previous publication [1]. From these boundary conditions the
magnetic induction is computed on the deeper line (Fig. 9).

As said before, experimental validations and FEM do not give
usable results. Luckily, we have some points of comparison: an-
alytical results (simplifying the structure to a dipole) give same

Fig. 8. Mock-up in measurement conditions.

Fig. 9. Computation line below the hull (left) and transversal magnetic induc-
tion calculation (tesla) (right).

amplitudes. Then, the magnetic measurements on a real vessel
give similar curve shapes. Finally, electric field computation on
the same line fits results obtained with other checked modeling
tools (based on BEM). A modeling of a real hull with magnetic
measurements would be a good conclusion for this study.

V. CONCLUSION

This paper has presented a powerful tool to get magnetic
induction in conductors, with great advantages in specific
conditions. Such examples are computation in sources or in
external problems. This is the case for underwater structures
under cathodic protection. Some improvements could be made
on computational aspects: tangential electric field evaluation
could be more precise with a better treatment of the neighbor-
hood meshing (with second order integrations). This method
could be applied to other scientific domains, which contain
conductive medias, such as neurobiology for example.
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