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We provide a necessary and sufficient condition for existence of Gaussian cubature formulas. It consists of checking whether some overdetermined linear system has a solution and so complements Mysovskikh's theorem which requires computing common zeros of orthonormal polynomials. Moreover, the size of the linear system shows that existence of a cubature formula imposes severe restrictions on the associated linear functional. For fixed precision (or degree), the larger the number of variables the worse it gets. And for fixed number of variables, the larger the precision the worse it gets. Finally, we also provide an interpretation of the necessary and sufficient condition in terms of existence of a polynomial with very specific properties.

Introduction

In addition of being of self-interest, Gaussian quadrature formulas for onedimensional integrals are particularly important because among all other quadrature formulas with same number of nodes, they have maximum precision. Indeed, when supported on p nodes, they are exact for all polynomials of degree at most 2p -1. Moreover, the nodes are exactly the zeros of the orthogonal polynomial of degree p and existence is guaranteed whenever the moment matrix of the associated linear functional is positive definite.

When its multi-dimensional analogue exists (then called Gaussian cubature formula), it shares those two important properties of support and precision. That is, the nodes of a cubature formula of degree (or precision) 2p -1 are the common zeros of all orthonormal polynomials of degree p. However, and in contrast to the one-dimensional case, its existence is not guaranteed even if the moment matrix of its associated linear functional is positive definite.

To the best of our knowledge, the only necessary and sufficient condition available is [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.7.4] due to Mysovskikh, which states that an n-dimensional Gaussian cubature formula of degree 2m -1 exists if and only if the orhonormal polynomials of degree m have exactly s m-1 := n+m-1 n common zeros. So this condition requires computing those zeros, or, equivalently, all joint eigenvalues of n associated Jacobi matrices; see e.g. [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.6.2]. Equivalently, this amounts to check whether some n multiplication matrices of size n+m-2 m-1 commute pairwise; see [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.6.5].

On the other hand, in Cools et al. [START_REF] Cools | Cubature formulae and orthogonal polynomials[END_REF] one may find several lower bounds on the number of nodes required for a given specific precision; see e.g. [START_REF] Cools | Cubature formulae and orthogonal polynomials[END_REF]Theorem 9,10,11,12,13]. For more details on orthogonal polynomials and cubature formulas, the interested reader is referred to e.g. the excellent book of Dunkl and Xu [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF] and the survey by Cools et al. [START_REF] Cools | Cubature formulae and orthogonal polynomials[END_REF].

Contribution. This paper is concerned with existence of Gaussian cubature formulas associated with a Borel measure µ on R n , with all moments finite. Our contribution is to provide a necessary and sufficient condition for existence, different in spirit from (and complementary to) Mysovskikh's theorem which requires solving polynomial equations, or, equivalently, computing all joint eigenvalues of n Jacobi matrices. Namely, we prove that a Gaussian cubature formula or precision 2m -1 exists if and only if a certain overdetermined linear system has a solution. The coefficient matrix of this linear system comes from expressing the product P α P β of any two orthonormal polynomials P α , P β of degree m, in the basis of orthonormal polynomials (P θ ), of degree at most 2m. In fact, in this expansion, only the constant coefficient and the coefficients of the degree-2m orthonormal polynomials matter. This linear system is always overdetermined and the larger n for fixed m (resp. the larger m for fixed n) the worse it gets. This shows that existence of a Gaussian cubature formula imposes severe restrictions on the associated linear functional.

Finally, we also provide an interpretation of the necessary and sufficient condition, namely that there exists a polynomial Q, which is a linear combination of orthonormal polynomials of degree 2m, and such that

P α (x)P β (x) dµ(x) = P α (x)P β (x) Q(x) dµ(x),
for all pairs (P α , P β ) of orthonormal polynomials of degree m..

Notation, definitions and preliminaries

Let x = (x 1 , . . . , x n ) and let R[x] be the ring of real polynomials in the variables x and R[x] d its subset of polynomials of degree at most d, which is a vector space of dimension s d := n+d d . The number of monomials of degree exactly d is denoted by r d := n+d-1 d . A polynomial f ∈ R[x] d can be identified with its vector of coefficients (f α ) =: f ∈ R s d , in the canonical basis (x α ), α ∈ N n . For any real symmetric matrix A, the notation A 0 (resp. A ≻ 0) stands for A is positive semidefinite (resp. positive definite).

Let us define the graded lexicographic order (Glex) α ≤ gl β on N n , which first creates a partial order by |α| ≤ |β|, and then refines this to a total order by breaking ties when |α| = |β| as would a dictionary with x 1 = a, x 2 = b, etc. For instance with n = 2, the ordering reads 1, x 1 , x 2 , x 2 1 , x 1 x 2 , x 2 2 , . . .. For every integer m ∈ N, let x m ∈ R[x] rm be the column vector of all monomials of degree m, with the < gl ordering. For instance, with n = 2 and k = 3, x 3 ∈ R[x] 4 and x 3 reads

x 3 = (x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 
2 ) T . With any sequence y = (y α ), α ∈ N n , one may associate a linear function

L y : R[x] → R by (2.1) f (= α f α x α ) → L y (f ) = α f α y α , f ∈ R[x].
By a slight abuse of notation, and for any v ∈ R[x] p denote by L y (v) the vector (L y (v j )), j ≤ p. Similarly, for any matrix

V ∈ R[x] p×r denote by L y (V) the matrix (L y (V ij )), i ≤ p, j ≤ r. If µ is a finite and positive Borel measure with finite moments y = (y α ), α ∈ N n , then (2.2) L y (f ) = α∈N n f α y α = α∈N n f α x α dµ(x) = f dµ,
and µ is called a representing measure for y.

Moment matrix. The moment matrix M d (y) associated with a sequence y = (y α ), is the real symmetric matrix with rows and columns indexed by N n d , and whose entry (α,

β) is just L y (x α+β ) (= y α+β ), for every α, β ∈ N n d . Alternatively, M d (y) = L y ((1, x, . . . , x d ) T (1, x, . . . , x d )). Of course, if y has a representing mea- sure µ, then M d (y) 0 for all d ∈ N, because f , M d (y)f = L y (f 2 ) = f 2 dµ ≥ 0, ∀ f ∈ R s d .
However, the converse is not true in general, i.e., M d (y) 0 for all d, does not imply that y has representing measure.

2.1. Orthonormal polynomials. Most of the material of this section is taken from Helton et al. [START_REF] Helton | Measures with zeros in the inverse of their moment matrix[END_REF]. Given µ and y = (y α ), α ∈ N n 2d , as in (2.2), assume that M d (y) ≻ 0 for every d. Then one may define the scalar product

•, • y on R[x] d : f, g y := f , M d (y)g = f g dµ, ∀ f, g ∈ R[x] d .
With d ∈ N fixed, one may also associate a unique family of polynomials

(P α ) ⊂ R[x] d , α ∈ N n d
, orthonormal with respect to µ, as follows:

(2.3) 

       P α ∈ lin.span {x β : β ≤ gl α} P α , P β y = δ α=β , α, β ∈ N n d P α , x β y = 0 if β < gl α P α , x α y > 0, α ∈ N n d ,
1 x 1 x 2 x 2 1 x 1 x 2       .
where the constant M is chosen so that P 2 (11) dµ = 1; eee e.g. [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF][START_REF] Helton | Measures with zeros in the inverse of their moment matrix[END_REF].

Gaussian cubature formula

Given a finite Borel measure µ on K ⊂ R n with all moments finite, points x(i) ∈ R n , and weights γ i ∈ R, i = 1, . . . s, the linear functional

I : L 1 (µ) → R, (3.1) f → I(f ) := s i=1 γ i f (x(i)), f ∈ F ,
is called a cubature formula of degree (or precision) p, if I(f ) = K f dµ for all f ∈ R[x] p ; the points (x(i)) are called the nodes. In other words, the approximation of the integral f dµ by (3.1) is exact for all polynomials of degree at most p.

Cubature formulas are the multivariate analogues of quadrature formulas in the one dimensional case. By Tchakaloff's theorem, given µ on K with finite moments, and d ∈ N, there exists a measure ν finitely supported on at most r d points of K, and whose moments up to order at least d coincide with those of µ; see e.g. Putinar [START_REF] Putinar | A note on Tchakaloff 's theorem[END_REF]. And so there exists a cubature formula of degree d. In the one-dimensional case, the celebrated Gaussian quadrature formula based on d points (called nodes) of K has precision 2d -1 and positive weights. It exists as soon as the moment matrix of order d is positive definite, and all the nodes are zeros of the orthonormal polynomial of degree d. It is an important quadrature because among all quadrature formulas with same number of nodes, it is the one with maximum precision, When its multivariate analogue exists (then called a Gaussian cubature), the nodes are now the common zeros of all orthonormal polynomials of degree d, the precision is also 2d -1, and the weights are also positive. But its existence is not guaranteed even if all moment matrices are positive definite. For a detailed account on cubatures and orhogonal polynomials, the interested reader is referred to the very nice book of Dunkl and Xu [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF], as well as the survey or Cools et al. [START_REF] Cools | Cubature formulae and orthogonal polynomials[END_REF].

3.1. Existence of Gaussian cubature. Mysovskikh's theorem [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.7.4] states that a Gaussian cubature of degree m exists if and only if the orthonormal polynomials P m have exactly n+m-1 n common zeros. And so checking existence reduces to computing all joint eigenvalues of n so-called Jacobi matrices of size s m-1 described in e.g. [4, p. 114]. We here provide an alternative criterion for existence which reduces to check whether a certain overdetermined linear system has a solution.

Let µ be a finite Borel measure with support supp µ = K ⊂ R n , and with all moments y = (y α ), α ∈ N n , finite. We will adopt the same notation in [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]. Let (P α ), α ∈ N n , be a system of orthonormal polynomials with respect to µ, and with each m ∈ N, let P m = [P |α|=m ] ∈ R[x] rm be the (column) vector (P α (m 1 ) , . . . , P α (mr m ) ) T , where (α (mi) ) ⊂ N n m are all monomials of degree m, with α (m1) < gl α (m2) • • • < gl α (mr m ) . For instance with n = 2, 

(3.3) A (0,m) + A (2m,m) u = 0, has a solution u ∈ R r2m .
Proof. Only if part. If there exists a Gaussian cubature (hence of degree 2m -1), there is a finite Borel measure ν supported on the s m-1 common zeros of P m ; see [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.7.4]. Let z = (z α ), α ∈ N n 2m , be the moments up to order 2m, of the Borel measure ν. Since the cubature is exact for polynomials in R[x] 2m-1 ,

z α = L z (x α ) = L y (x α ) = y α , ∀α ∈ N n 2m-1 .
In addition, ν being supported on the common zeros of P m , we also have

L z (P 2 α ) = P α (x) 2 ν(dx) = 0, ∀α ∈ N n m with |α| = m,
that is, all diagonal elements of the positive semidefinite matrix L z (P m P T m ) vanish, which in turn implies L z (P m P T m ) = 0. Combining with (3.2) yields

0 = L z (P γ P β ) = A (0,2m) γβ + 2m-1 j=1 A (j,2m) γβ L z (P j ) =Ly(Pj )=0 +A (2m,2m) γβ L z (P 2m ) = A (0,2m) γβ + A (2m,2m) γβ L z (P 2m ) = A (0,2m) + A (2m,2m) L z (P 2m ) (γ, β) which is (3.3) with u = L z (P 2m ). If part.
Conversely, assume that (3.3) holds for some vector u ∈ R r2m . Consider the sequence z = (z α ), α ∈ N n 2m , with z α = y α for all α ∈ N n 2m-1 and L z (P α ) = u α for all α ∈ N n 2m , with |α| = 2m. (Equivalently, L z (P 2m ) = u.) And indeed such a sequence exists. It suffices to determine z α for all α ∈ N n 2m with |α| = 2m (equivalently, L z (x 2m )). Recall the notation x k = (x α ), α ∈ N n , with |α| = k, and recall that for each d ∈ N, (1, P 1 , . . . , P d ) is a basis of R[x] d , and so,

(3.4)       1 P 1 • • P 2m       =       1 0 • • 0 S 01 S 1 0 • 0 • • • • • • • • • • S 02m S 12m • S (2m-1)2m S 2m       =S       1 x 1 • • x 2m      
for some change of basis matrix S which is invertible and block-lower triangular. And so z solves

u = S 2m L z (x 2m ) + Θ L z (1, x 1 , • • • , x 2m-1 ) T =y2m-1 , where Θ ∈ R r2m×s(2m-1) is the matrix [S 02m | • • • |S (2m-1)2m ], and y 2m-1 = (y α ), |α| ≤ 2m -1. And so L z (x 2m ) = S -1 2m u -S -1 2m Θ y 2m-1 . Next, the moment matrix M m (z), which by definition reads           M m-1 (z) | L z (P T m ) L z (P 1 P T m ) • • L z (P m-1 P T m ) - - L z (P m ) L z (P m P 1 ) T • • • • • • L z (P m P T m-1 ) | L z (P m P T m )           , simplifies to (3.5) M m (z) =   I | 0 - - 0 | L z (P m P T m )   ,
because L z (P i P T j ) = L y (P i P T j ) = 0 for all i = j with i + j ≤ 2m -1. But then we also have L z (P m P T m ) = 0 because from (3.2),

L z (P γ P β ) = A (0,2m) γβ + 2m-1 j=1 A (j,2m) γβ L z (P j ) =Ly(Pj )=0 +A (2m,2m) γβ L z (P 2m ) =u = A (0,2m) + A (2m,2m) u (γ, β) = 0,
for all γ, β ∈ N n m with |γ| = |β| = m. And so M m (z) 0, and rank M m (z) = rank M m-1 (z). By the flat extension theorem of Curto and Fialkow, z is the moment sequence of a finite Borel measure ψ on R n , supported on rank M m (z) = s m-1 distinct points x(k), k = 1, . . . , s m-1 ; see e.g. Curto and Fialkow [START_REF] Curto | Flat extensions of positive moment matrices: recursively generated relations[END_REF][START_REF] Curto | The truncated K-moment problem[END_REF], Lasserre [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]Theorem 3.7], or Laurent [START_REF] Laurent | Revisiting two theorems of Curto and Fialkow on moment matrices[END_REF]. That is, denoting by δ x the Dirac measure at x ∈ R n ,

ψ = sm-1 k=1 γ k δ x(k) ,
for some strictly positive weights γ k . From 0 = L z (P m P T m ) we obtain

0 = L z (P 2 α ) = R n P α (x) 2 dψ(x), ∀α ∈ N n m , with |α| = m,
which proves that each x(k) is a common zero of P m , k = 1, . . . , s m-1 . But by [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Corollary 3.6.4], P m has at most s m-1 common zeros. Therefore, P m has exactly s m-1 common zeros and ψ is supported on all common zeros of P m . By [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]Theorem 3.7.4], µ admits a Gaussian cubature formula of degree 2m-1. Indeed, since z α = y α for all |α| ≤ 2m -1, then for every f

∈ R[x] 2m-1 , f (x) dµ(x) = L y (f ) = L z (f ) = f dψ = sm-1 k=1 γ k f (x(k)),
with γ k > 0 for every k.

By [1, Theorem 7], we also know that the x(k)'s belong to the interior of the convex hull conv K of K.

Observe that existence of a solution u ∈ R r2m for the linear system (3.3) imposes drastic conditions on the linear functional L y because (3.3) is always overdetermined. Moreover, for fixed m (resp. for fixed n) the larger n (resp. the larger m) the worse it gets. This is because t m (= r m (r m + 1)/2) increases faster than r 2m .

Interpretation. We next provide an explicit expression of the vector A (0,2m) as well as the matrix A (2m,2m) , which permits to obtain an interpretation of the condition (3.3).

For γ, β ∈ N m , applying the linear functional L y to both sides of (3.2) yields

(3.6) δ γ=β = L y (P γ P β ) = A (0,2m) γβ , ∀|γ| = |β| = m.
because L y (P k ) = 0 for all k. This provides an explicit expression of the vector A (0,2m) . Similarly, multiplying both sides of (3. LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 avenue du Colonel Roche, 31077 Toulouse Cédex 4, France, Tel: +33561336415 E-mail address: lasserre@laas.fr
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  where δ α=β denotes the usual Kronecker symbol. Existence and uniqueness of such a family is guaranteed by the Gram-Schmidt orhonormalization process following the 'Glex" order of monomials, and by positivity of the moment matrix M d (y). See e.g. [4, Theorem 3.1.11, p. 68]. Computation. Computing the family of orthonormal polynomials is relatively easy once the moment matrix M d (y) is available. Suppose that one wants to compute p σ for some σ ∈ N n d . Build up the submatrix M σ d (y) obtained from M d (y) by keeping only those columns indexed by β ≤ gl σ and with rows indexed by α < gl σ. Hence M σ d (y) has one row less than columns. Complete M σ d (y) with an additional last row described by M σ d (y)[σ, β] = x β , β ≤ gl σ. Then, up to a normalizing constant, P σ = det M σ d (y). For instance with n = 2, d = 2 and σ = (11), one has (2.4) x → P (11) (x) = M det 00 y 10 y 01 y 20 y 11 y 10 y 20 y 11 y 30 y 21 y 01 y 11 y 02 y 21 y 12 y 20 y 30 y 21 y 40 y 31

P 2 =∈ 2 . 3 . 1 .

 2231 (P 20 , P 11 , P 02 ) T . For any sequence z = (z α ) denote by M d (z) the moment matrix, with rows and columns index in N n d , and with entries M d (z)[α, β] = L z (P α P β ), α, β ∈ N n d , where L z : R[x] → R is the linear functional defined in (2.1). In other words, M(z) is the moment matrix expressed in the basis of orthonormal polynomials and can be deduced from M d (z) by a linear transformation. Notice that if z = y then M d (y) is the identity matrix I. Observe that for each γ, β ∈ N n m , with |γ| = |β| = m, R rj , j = 0, 1, . . . , 2m. Let t m := r m (r m + 1)/Theorem Let A (0,2m) be the vector (A (0,2m) γβ ) ∈ R tm , and let A (2m,2m) ∈ R tm×r2m be the matrix whose rows are the vectors A (2m,2m) γβ , defined in (3.2) for γ, β ∈ N n m with |γ| = |β| = m. There exists a Gaussian cubature formula of degree 2m -1 if and only if the linear system

(3. 8 )

 8 L y (P γ P β ) = L y (P γ P β Q), for all β, γ ∈ N n m with |γ|, |β| = m. Equivalently,(3.8) readsP γ (x)P β (x) dµ(x) = P γ (x)P β (x) Q(x) dµ(x),for all β, γ ∈ N n m with |γ|, |β| = m, or in matrix form:I = P m (x)P m (x) T Q(x) dµ(x),Proof. With u as in (3.3) and using (3.6)-(3.7), for all β, γ ∈ N n m with |γ|, |β| = m, one obtainsL y (P γ P β ) = A (0,2m) γβ = (A (2m,2m) u) γ,β = L y   P γ P β ( α∈N n 2m ,|α|=2m u α P α )   = L y P γ P β (u T P 2m ) , which is (3.8) with Q = u T P 2m . Conversely, if (3.8) holds with for some Q = u T P 2m then obviously u is a solution of (3.3).Final remark. One may obtain more information about the polynomial Q of Corollary 3.2. From the proof of Theorem 3.1, for any solution u ∈ R r2m of (3.3), one has u = L z (P 2m ) where z is the moment vector of the measure supported on the s m-1 nodes of the Gaussian cubature. That is,u = L z (P 2m ) = sm-1 k=1 γ k P 2m (x(k)),for some positive weights γ k . On the other hand, the polynomial Q of Corollary 3.2 is of the form u T P 2m where u solves (3.3). Therefore,x → Q(x) = u T P 2m (x) = sm-1 k=1 γ k P 2m (x(k)) T P 2m (x).Hence Q satisfies L y (P α Q) = u T L y (P α P 2m ) = 0, ∀|α| < 2m (in particular Qdµ = 0), andL y (P α Q) = u α = sm-1 k=1γ k P α (x(k)), ∀|α| = 2m.