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EXISTENCE OF GAUSSIAN CUBATURE FORMULAS

JEAN B. LASSERRE

Abstract. We provide a necessary and sufficient condition for existence of
Gaussian cubature formulas. It consists of checking whether some overdeter-
mined linear system has a solution and so complements Mysovskikh’s theorem
which requires computing common zeros of orthonormal polynomials. More-
over, the size of the linear system shows that existence of a cubature formula
imposes severe restrictions on the associated linear functional. For fixed preci-
sion (or degree), the larger the number of variables the worse it gets. And for
fixed number of variables, the larger the precision the worse it gets. Finally,
we also provide an interpretation of the necessary and sufficient condition in
terms of existence of a polynomial with very specific properties.

1. Introduction

In addition of being of self-interest, Gaussian quadrature formulas for one-
dimensional integrals are particularly important because among all other quadra-
ture formulas with same number of nodes, they have maximum precision. Indeed,
when supported on p nodes, they are exact for all polynomials of degree at most
2p− 1. Moreover, the nodes are exactly the zeros of the orthogonal polynomial of
degree p and existence is guaranteed whenever the moment matrix of the associated
linear functional is positive definite.

When its multi-dimensional analogue exists (then called Gaussian cubature for-
mula), it shares those two important properties of support and precision. That is,
the nodes of a cubature formula of degree (or precision) 2p − 1 are the common
zeros of all orthonormal polynomials of degree p. However, and in contrast to the
one-dimensional case, its existence is not guaranteed even if the moment matrix of
its associated linear functional is positive definite.

To the best of our knowledge, the only necessary and sufficient condition avail-
able is [4, Theorem 3.7.4] due to Mysovskikh, which states that an n-dimensional
Gaussian cubature formula of degree 2m − 1 exists if and only if the orhonormal
polynomials of degree m have exactly sm−1 :=

(
n+m−1

n

)
common zeros. So this

condition requires computing those zeros, or, equivalently, all joint eigenvalues of n
associated Jacobi matrices; see e.g. [4, Theorem 3.6.2]. Equivalently, this amounts
to check whether some n multiplication matrices of size

(
n+m−2
m−1

)
commute pairwise;

see [4, Theorem 3.6.5].
On the other hand, in Cools et al. [1] one may find several lower bounds on the

number of nodes required for a given specific precision; see e.g. [1, Theorem 9, 10,
11,12, 13]. For more details on orthogonal polynomials and cubature formulas, the
interested reader is referred to e.g. the excellent book of Dunkl and Xu [4] and the
survey by Cools et al. [1].
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Contribution. This paper is concerned with existence of Gaussian cubature
formulas associated with a Borel measure µ on R

n, with all moments finite. Our
contribution is to provide a necessary and sufficient condition for existence, different
in spirit from (and complementary to) Mysovskikh’s theorem which requires solving
polynomial equations, or, equivalently, computing all joint eigenvalues of n Jacobi
matrices. Namely, we prove that a Gaussian cubature formula or precision 2m− 1
exists if and only if a certain overdetermined linear system has a solution. The
coefficient matrix of this linear system comes from expressing the product PαPβ of
any two orthonormal polynomials Pα, Pβ of degree m, in the basis of orthonormal
polynomials (Pθ), of degree at most 2m. In fact, in this expansion, only the constant
coefficient and the coefficients of the degree-2m orthonormal polynomials matter.
This linear system is always overdetermined and the larger n for fixed m (resp. the
larger m for fixed n) the worse it gets. This shows that existence of a Gaussian
cubature formula imposes severe restrictions on the associated linear functional.

Finally, we also provide an interpretation of the necessary and sufficient condi-
tion, namely that there exists a polynomial Q, which is a linear combination of
orthonormal polynomials of degree 2m, and such that

∫

Pα(x)Pβ(x) dµ(x) =

∫

Pα(x)Pβ(x)Q(x) dµ(x),

for all pairs (Pα, Pβ) of orthonormal polynomials of degree m..

2. Notation, definitions and preliminaries

Let x = (x1, . . . , xn) and let R[x] be the ring of real polynomials in the variables
x and R[x]d its subset of polynomials of degree at most d, which is a vector space

of dimension sd :=
(
n+d
d

)
. The number of monomials of degree exactly d is denoted

by rd :=
(
n+d−1

d

)
. A polynomial f ∈ R[x]d can be identified with its vector of

coefficients (fα) =: f ∈ R
sd , in the canonical basis (xα), α ∈ N

n. For any real
symmetric matrix A, the notation A � 0 (resp. A ≻ 0) stands for A is positive
semidefinite (resp. positive definite).

Let us define the graded lexicographic order (Glex) α ≤gl β on N
n, which first

creates a partial order by |α| ≤ |β|, and then refines this to a total order by breaking
ties when |α| = |β| as would a dictionary with x1 = a, x2 = b, etc. For instance
with n = 2, the ordering reads 1, x1, x2, x

2
1, x1x2, x

2
2, . . ..

For every integer m ∈ N, let xm ∈ R[x]rm be the column vector of all monomials
of degree m, with the <gl ordering. For instance, with n = 2 and k = 3, x3 ∈ R[x]4

and x3 reads

x3 = (x31, x
2
1x2, x1x

2
2, x

3
2)

T .

With any sequence y = (yα), α ∈ N
n, one may associate a linear function

Ly : R[x] → R by

(2.1) f (=
∑

α

fαx
α) 7→ Ly(f) =

∑

α

fα yα, f ∈ R[x].

By a slight abuse of notation, and for any v ∈ R[x]p denote by Ly(v) the vector
(Ly(vj)), j ≤ p. Similarly, for any matrix V ∈ R[x]p×r denote by Ly(V) the
matrix (Ly(Vij)), i ≤ p, j ≤ r. If µ is a finite and positive Borel measure with
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finite moments y = (yα), α ∈ N
n, then

(2.2) Ly(f) =
∑

α∈Nn

fαyα =
∑

α∈Nn

fα

∫

xα dµ(x) =

∫

fdµ,

and µ is called a representing measure for y.

Moment matrix. The moment matrix Md(y) associated with a sequence y =
(yα), is the real symmetric matrix with rows and columns indexed by N

n
d , and

whose entry (α, β) is just Ly(x
α+β) (= yα+β), for every α, β ∈ N

n
d . Alternatively,

Md(y) = Ly((1,x, . . . ,x
d)T (1,x, . . . ,xd)). Of course, if y has a representing mea-

sure µ, then Md(y) � 0 for all d ∈ N, because

〈f ,Md(y)f〉 = Ly(f
2) =

∫

f2 dµ ≥ 0, ∀ f ∈ R
sd .

However, the converse is not true in general, i.e., Md(y) � 0 for all d, does not
imply that y has representing measure.

2.1. Orthonormal polynomials. Most of the material of this section is taken
from Helton et al. [5]. Given µ and y = (yα), α ∈ N

n
2d, as in (2.2), assume that

Md(y) ≻ 0 for every d. Then one may define the scalar product 〈·, ·〉y on R[x]d:

〈f, g〉y := 〈f ,Md(y)g〉 =

∫

fg dµ, ∀ f, g ∈ R[x]d.

With d ∈ N fixed, one may also associate a unique family of polynomials (Pα) ⊂
R[x]d, α ∈ N

n
d , orthonormal with respect to µ, as follows:

(2.3)







Pα ∈ lin.span {xβ : β ≤gl α}
〈Pα, Pβ〉y = δα=β, α, β ∈ N

n
d

〈Pα,x
β〉y = 0 if β <gl α

〈Pα,x
α〉y > 0, α ∈ N

n
d ,

where δα=β denotes the usual Kronecker symbol. Existence and uniqueness of such
a family is guaranteed by the Gram-Schmidt orhonormalization process following
the ‘Glex” order of monomials, and by positivity of the moment matrix Md(y).
See e.g. [4, Theorem 3.1.11, p. 68].

Computation. Computing the family of orthonormal polynomials is relatively
easy once the moment matrix Md(y) is available. Suppose that one wants to
compute pσ for some σ ∈ N

n
d .

Build up the submatrix Mσ
d(y) obtained from Md(y) by keeping only those

columns indexed by β ≤gl σ and with rows indexed by α <gl σ. Hence Mσ
d(y)

has one row less than columns. Complete Mσ
d (y) with an additional last row

described by Mσ
d(y)[σ, β] = xβ , β ≤gl σ. Then, up to a normalizing constant,

Pσ = detMσ
d (y). For instance with n = 2, d = 2 and σ = (11), one has

(2.4) x 7→ P(11)(x) = M det









y00 y10 y01 y20 y11
y10 y20 y11 y30 y21
y01 y11 y02 y21 y12
y20 y30 y21 y40 y31
1 x1 x2 x21 x1x2









.

where the constant M is chosen so that
∫
P 2
(11)dµ = 1; eee e.g. [4, 5].
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3. Gaussian cubature formula

Given a finite Borel measure µ on K ⊂ R
n with all moments finite, points

x(i) ∈ R
n, and weights γi ∈ R, i = 1, . . . s, the linear functional I : L1(µ) → R,

(3.1) f 7→ I(f) :=

s∑

i=1

γif(x(i)), f ∈ F ,

is called a cubature formula of degree (or precision) p, if I(f) =
∫

K
f dµ for all

f ∈ R[x]p; the points (x(i)) are called the nodes. In other words, the approximation
of the integral

∫
fdµ by (3.1) is exact for all polynomials of degree at most p.

Cubature formulas are the multivariate analogues of quadrature formulas in the
one dimensional case. By Tchakaloff’s theorem, given µ on K with finite moments,
and d ∈ N, there exists a measure ν finitely supported on at most rd points of K,
and whose moments up to order at least d coincide with those of µ; see e.g. Putinar
[8]. And so there exists a cubature formula of degree d. In the one-dimensional
case, the celebrated Gaussian quadrature formula based on d points (called nodes)
of K has precision 2d − 1 and positive weights. It exists as soon as the moment
matrix of order d is positive definite, and all the nodes are zeros of the orthonormal
polynomial of degree d. It is an important quadrature because among all quadrature
formulas with same number of nodes, it is the one with maximum precision,

When its multivariate analogue exists (then called a Gaussian cubature), the
nodes are now the common zeros of all orthonormal polynomials of degree d, the
precision is also 2d − 1, and the weights are also positive. But its existence is
not guaranteed even if all moment matrices are positive definite. For a detailed
account on cubatures and orhogonal polynomials, the interested reader is referred
to the very nice book of Dunkl and Xu [4], as well as the survey or Cools et al. [1].

3.1. Existence of Gaussian cubature. Mysovskikh’s theorem [4, Theorem 3.7.4]
states that a Gaussian cubature of degree m exists if and only if the orthonormal
polynomials Pm have exactly

(
n+m−1

n

)
common zeros. And so checking existence

reduces to computing all joint eigenvalues of n so-called Jacobi matrices of size
sm−1 described in e.g. [4, p. 114]. We here provide an alternative criterion for
existence which reduces to check whether a certain overdetermined linear system
has a solution.

Let µ be a finite Borel measure with support suppµ = K ⊂ R
n, and with all

moments y = (yα), α ∈ N
n, finite. We will adopt the same notation in [4]. Let (Pα),

α ∈ N
n, be a system of orthonormal polynomials with respect to µ, and with each

m ∈ N, let Pm = [P|α|=m] ∈ R[x]rm be the (column) vector (Pα(m1) , . . . , Pα(mrm ))T ,

where (α(mi)) ⊂ N
n
m are all monomials of degree m, with α(m1) <gl α

(m2) · · · <gl

α(mrm ). For instance with n = 2,

P2 = (P20, P11, P02)
T .

For any sequence z = (zα) denote by Md(z) the moment matrix, with rows and
columns index in N

n
d , and with entries

Md(z)[α, β] = Lz(Pα Pβ), α, β ∈ N
n
d ,

where Lz : R[x] → R is the linear functional defined in (2.1). In other words, M(z)
is the moment matrix expressed in the basis of orthonormal polynomials and can be
deduced from Md(z) by a linear transformation. Notice that if z = y then Md(y)
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is the identity matrix I.

Observe that for each γ, β ∈ N
n
m, with |γ| = |β| = m,

(3.2) Pγ Pβ = A
(0,2m)
γβ P0 +

2m−1∑

j=1

A
(j,2m)
γβ Pj +A

(2m,2m)
γβ P2m,

for some row vectors A
(j,2m)
γβ ∈ R

rj , j = 0, 1, . . . , 2m. Let tm := rm(rm + 1)/2.

Theorem 3.1. Let A(0,2m) be the vector (A
(0,2m)
γβ ) ∈ R

tm , and let A(2m,2m) ∈

R
tm×r2m be the matrix whose rows are the vectors A

(2m,2m)
γβ , defined in (3.2) for

γ, β ∈ N
n
m with |γ| = |β| = m.

There exists a Gaussian cubature formula of degree 2m − 1 if and only if the
linear system

(3.3) A(0,m) +A(2m,m) u = 0,

has a solution u ∈ R
r2m .

Proof. Only if part. If there exists a Gaussian cubature (hence of degree 2m− 1),
there is a finite Borel measure ν supported on the sm−1 common zeros of Pm; see
[4, Theorem 3.7.4]. Let z = (zα), α ∈ N

n
2m, be the moments up to order 2m, of the

Borel measure ν. Since the cubature is exact for polynomials in R[x]2m−1,

zα = Lz(x
α) = Ly(x

α) = yα, ∀α ∈ N
n
2m−1.

In addition, ν being supported on the common zeros of Pm, we also have

Lz(P
2
α) =

∫

Pα(x)
2ν(dx) = 0, ∀α ∈ N

n
m with |α| = m,

that is, all diagonal elements of the positive semidefinite matrix Lz(PmP
T
m) vanish,

which in turn implies Lz(PmP
T
m) = 0. Combining with (3.2) yields

0 = Lz(PγPβ) = A
(0,2m)
γβ +

2m−1∑

j=1

A
(j,2m)
γβ Lz(Pj)

︸ ︷︷ ︸

=Ly(Pj)=0

+A
(2m,2m)
γβ Lz(P2m)

= A
(0,2m)
γβ +A

(2m,2m)
γβ Lz(P2m)

=
(

A(0,2m) +A(2m,2m) Lz(P2m)
)

(γ, β)

which is (3.3) with u = Lz(P2m).
If part. Conversely, assume that (3.3) holds for some vector u ∈ R

r2m . Consider
the sequence z = (zα), α ∈ N

n
2m, with zα = yα for all α ∈ N

n
2m−1 and Lz(Pα) = uα

for all α ∈ N
n
2m, with |α| = 2m. (Equivalently, Lz(P2m) = u.) And indeed such

a sequence exists. It suffices to determine zα for all α ∈ N
n
2m with |α| = 2m

(equivalently, Lz(x
2m)). Recall the notation xk = (xα), α ∈ N

n, with |α| = k, and
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recall that for each d ∈ N, (1,P1, . . . ,Pd) is a basis of R[x]d, and so,

(3.4)









1
P1

·
·
P2m









=









1 0 · · 0
S01 S1 0 · 0
· · · · ·
· · · · ·

S02m S12m · S(2m−1)2m S2m









︸ ︷︷ ︸

=S









1
x1

·
·
x2m









for some change of basis matrix S which is invertible and block-lower triangular.
And so z solves

u = S2m Lz(x
2m) + ΘLz(1,x

1, · · · ,x2m−1)T
︸ ︷︷ ︸

=y2m−1

,

where Θ ∈ R
r2m×s(2m−1) is the matrix [S02m| · · · |S(2m−1)2m], and y2m−1 = (yα),

|α| ≤ 2m− 1. And so Lz(x
2m) = S−1

2mu− S−1
2mΘy2m−1.

Next, the moment matrix Mm(z), which by definition reads












Mm−1(z) |

Lz(P
T
m)

Lz(P1P
T
m)

·
·

Lz(Pm−1P
T
m)

− −
Lz(Pm) Lz(PmP1)

T · · · · · · Lz(PmP
T
m−1) | Lz(PmP

T
m)













,

simplifies to

(3.5) Mm(z) =





I | 0
− −
0 | Lz(PmP

T
m)



 ,

because Lz(PiP
T
j ) = Ly(PiP

T
j ) = 0 for all i 6= j with i + j ≤ 2m− 1. But then we

also have Lz(PmP
T
m) = 0 because from (3.2),

Lz(PγPβ) = A
(0,2m)
γβ +

2m−1∑

j=1

A
(j,2m)
γβ Lz(Pj)

︸ ︷︷ ︸

=Ly(Pj)=0

+A
(2m,2m)
γβ Lz(P2m)

︸ ︷︷ ︸

=u

=
(

A(0,2m) +A(2m,2m) u
)

(γ, β) = 0,

for all γ, β ∈ N
n
m with |γ| = |β| = m.

And so Mm(z) � 0, and rankMm(z) = rankMm−1(z). By the flat extension
theorem of Curto and Fialkow, z is the moment sequence of a finite Borel measure
ψ on R

n, supported on rankMm(z) = sm−1 distinct points x(k), k = 1, . . . , sm−1;
see e.g. Curto and Fialkow [2, 3], Lasserre [7, Theorem 3.7], or Laurent [6]. That
is, denoting by δx the Dirac measure at x ∈ R

n,

ψ =

sm−1∑

k=1

γk δx(k),

for some strictly positive weights γk. From 0 = Lz(PmP
T
m) we obtain

0 = Lz(P
2
α) =

∫

Rn

Pα(x)
2 dψ(x), ∀α ∈ N

n
m, with |α| = m,
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which proves that each x(k) is a common zero of Pm, k = 1, . . . , sm−1. But by [4,
Corollary 3.6.4], Pm has at most sm−1 common zeros. Therefore, Pm has exactly
sm−1 common zeros and ψ is supported on all common zeros of Pm. By [4, Theorem
3.7.4], µ admits a Gaussian cubature formula of degree 2m−1. Indeed, since zα = yα
for all |α| ≤ 2m− 1, then for every f ∈ R[x]2m−1,

∫

f(x) dµ(x) = Ly(f) = Lz(f) =

∫

fdψ =

sm−1∑

k=1

γk f(x(k)),

with γk > 0 for every k. �

By [1, Theorem 7], we also know that the x(k)’s belong to the interior of the
convex hull convK of K.

Observe that existence of a solution u ∈ R
r2m for the linear system (3.3) imposes

drastic conditions on the linear functional Ly because (3.3) is always overdeter-
mined. Moreover, for fixed m (resp. for fixed n) the larger n (resp. the larger m)
the worse it gets. This is because tm (= rm(rm + 1)/2) increases faster than r2m.

Interpretation. We next provide an explicit expression of the vector A(0,2m) as
well as the matrix A(2m,2m), which permits to obtain an interpretation of the
condition (3.3).

For γ, β ∈ N
m, applying the linear functional Ly to both sides of (3.2) yields

(3.6) δγ=β = Ly(PγPβ) = A
(0,2m)
γβ , ∀|γ| = |β| = m.

because Ly(Pk) = 0 for all k. This provides an explicit expression of the vector

A(0,2m). Similarly, multiplying both sides of (3.2) by Pκ with |κ| = 2m, and
applying again Ly, yields

(3.7) Ly(PγPβPκ) =
∑

|α|=2m

A
(2m,2m)
γβ (α)Ly(PαPκ) = A

(2m,2m)
γβ (κ),

because Ly(PαPκ) = δα=κ. This provides an explicit expression for all the entries

of the matrix A(2m,2m). And we obtain:

Corollary 3.2. There exists a Gaussian cubature of degree m if and only if there
exists a polynomial Q = uT

P2m, for some u ∈ R
r2m , such that

(3.8) Ly(PγPβ) = Ly(PγPβ Q),

for all β, γ ∈ N
n
m with |γ|, |β| = m. Equivalently, (3.8) reads

∫

Pγ(x)Pβ(x) dµ(x) =

∫

Pγ(x)Pβ(x)Q(x) dµ(x),

for all β, γ ∈ N
n
m with |γ|, |β| = m, or in matrix form:

I =

∫

Pm(x)Pm(x)T Q(x) dµ(x),
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Proof. With u as in (3.3) and using (3.6)-(3.7), for all β, γ ∈ N
n
m with |γ|, |β| = m,

one obtains

Ly(PγPβ) = A
(0,2m)
γβ = (A(2m,2m)u)γ,β

= Ly



PγPβ (
∑

α∈Nn
2m,|α|=2m

uαPα)





= Ly

(
PγPβ (u

T
P2m)

)
,

which is (3.8) with Q = uT
P2m. Conversely, if (3.8) holds with for someQ = uT

P2m

then obviously u is a solution of (3.3). �

Final remark. One may obtain more information about the polynomial Q of
Corollary 3.2. From the proof of Theorem 3.1, for any solution u ∈ R

r2m of (3.3),
one has u = Lz(P2m) where z is the moment vector of the measure supported on
the sm−1 nodes of the Gaussian cubature. That is,

u = Lz(P2m) =

sm−1∑

k=1

γk P2m(x(k)),

for some positive weights γk. On the other hand, the polynomial Q of Corollary
3.2 is of the form uT

P2m where u solves (3.3). Therefore,

x 7→ Q(x) = uT
P2m(x) =

sm−1∑

k=1

γk P2m(x(k))TP2m(x).

Hence Q satisfies

Ly(PαQ) = uTLy(Pα P2m) = 0, ∀|α| < 2m

(in particular

∫

Qdµ = 0), and

Ly(PαQ) = uα =

sm−1∑

k=1

γkPα(x(k)), ∀|α| = 2m.
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