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Commutator length of annulus diffeomorphisms

E. Militon

July 11, 2011

Abstract

We study the group Diffr

0(A) of C
r-diffeomorphisms of the closed an-

nulus that are isotopic to the identity. We show that, for r 6= 3, the linear
space of homogeneous quasi-morphisms on the group Diffr

0(A) is one di-
mensional. Therefore, the commutator length on this group is (stably)
unbounded. In particular, this provides an example of a manifold whose
diffeomorphisms group is unbounded in the sense of Burago, Ivanov and
Polterovich.

1 Introduction

Let M be a manifold. For r in N ∪ {∞}, denote by Diffr
0(M) the identity com-

ponent of the group of Cr-diffeomorphism of M . We also write Homeo0(M) =
Diff0

0(M). We study algebraic properties of these groups.
A commutator in Diffr

0(M) is an element of the form [f, g] = f ◦g◦f−1◦g−1.
It is known that, for r 6= dim(M) and r 6= dim(M) + 1 every element in
Diffr

0(M) can be written as a product of commutators. A question naturally
arises: how many commutators shall we need to write a given diffeomorphism
as a product of commutators? For an element f in Diffr

0(M), the commutator
length clr(f) is the minimal number of commutators needed to write f as a
product of commutators. Burago, Ivanov and Polterovich showed in [4] that,
when the manifold M is a sphere or compact and three-dimensional without
boundary, the commutator length is bounded (by 4 in the case of the sphere and
10 in the case of three-dimensional manifolds). They also exhibited a wide class
of open manifolds (portable manifolds), including Rn, for which the commutator
length is bounded by 2. Tsuboi generalized these results for odd-dimensional
compact manifolds and gave a better bound: the commutator length is bounded
by 6 in those cases.

The support supp(f) of a homeomorphism f ofM is defined to be the closure
of the set:

{x ∈ M, f(x) 6= x} .

A homeomorphism f is said to be supported in a ball if there exists a topological
embedding i : B → M of the closed unit ball B of the same dimension as M
such that supp(f) ⊂ i(B) and i(B)∩ ∂M is homeomorphic to an open cell. Like
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for commutators, every element f in Diffr
0(M) can be written as a product of

diffeomorphisms in Diffr
0(M) supported in balls and we define Fragr(f) to be the

minimal number of diffeomorphisms in such a decomposition. Burago, Ivanov,
Polterovich and Tsuboi showed also that the fragmentation norm is bounded in
the case of odd-dimensional manifolds and of open portable manifolds.

The commutator length and the fragmentation norm are two examples of
the more general notion of conjugation-invariant norm on a group introduced
by Burago, Ivanov and Polterovich in [4]. They proved that the fragmentation
norm plays a crucial role: every conjugation-invariant norm on Diffr

0(M) is
bounded if and only if the fragmentation norm is bounded.

In this paper, we consider the case of the closed annulus A. We prove some
estimates on the commutator length and the fragmentation norm, which implie
in particular that they are unbounded, contrarily to the above examples 1. For a
diffeomorphism f in Diffr

0(A), let ρ(f) be the difference of the translation num-
bers of f on the two boundary components (for a precise definition of ρ(f), see
the next section). The following theorem shows that ρ is a quasi-isometry from
Diffr

0(M), endowed with the fragmentation norm or the commutator length, to
R:

Theorem 1.1 Let r be an integer different from 2 and 3. For any diffeomor-
phism f in Diffr

0(A),
∣

∣

∣

∣

|ρ(f)|

4
− clr(f)

∣

∣

∣

∣

≤ 12

and
|ρ(f)− Fragr(f)| ≤ 40.

In fact, the map ρ is a quasi-morphism (this notion will be defined in the
next section) on the group Diffr

0(A) and is essentially the only quasi-morphism
on this group:

Theorem 1.2 If r 6= 2, 3, every homogeneous quasi-morphism on Diffr
0(A) is

colinear to ρ.

Remark: for r = 2 or r = 3, the result holds if we replace Diffr
0(A) by

[Diffr
0(A),Diffr

0(A)], the subgroup generated by commutators. Whether the
equality [Diff3

0(A),Diff3
0(A)] = Diff3

0(A) holds or not is still an open question.
In the next section, we state a proposition which give fine estimates on the

commutator length. We also show that this proposition implie the first part of
Theorem 1.1 and Theorem 1.2. The third section is devoted to the proof of this
proposition. In the fourth section, we prove an analogous proposition on the
fragmentation norm which implies the second part of Theorem 1.1. Finally, in
the last section, we discuss generalizations of these results to other surfaces. We
will prove the following result:

1Observe in particular that, for a manifold M with interior int(M), the boundedness of
Diffr

0
(∂M) and of Diffr

0
(int(M)) does not necessarily implie that Diffr

0
(M) is bounded (com-

pare to [1] ).
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Theorem 1.3 Let M be a surface with non-empty boundary which is different
from the disk and r be a number in N ∪ {∞}. Then the group Diffr

0(M) admits
non-trivial homogeneous quasi-morphisms. In particular, this group is stably
unbounded.

c

c’

A diffeomorphism f which sends the curve c to the curve c′ satisfies ρ(f) = 2

2 Quasimorphisms on Diffr
0(A)

Definition 2.1 Given a group G, a homogeneous quasi-morphism on G is a
map q : G → R which satisfies:

1. ∃D > 0, ∀a, b ∈ G, |q(ab)− q(a)− q(b)| ≤ D.

2. ∀a ∈ G, ∀n ∈ Z, q(an) = nq(a).

The least constant D(q) which satisfies 1) is called the defect of the quasimor-
phism q. The trivial quasimorphism is the quasimorphism which maps every
element of G to 0.

A first connection between commutator length and quasi-morphisms is given
by the following classical lemma:

Lemma 2.1 Suppose G is perfect. If G admits a non-trivial homogeneous
quasi-morphism q, then clG is unbounded. Moreover,

∀g ∈ G, |q(g)| ≤ 2clG(g)D(q).
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Proof. First, we show that q is conjugation invariant. Indeed, for elements
g and h in G:

|q(hgh−1)− q(g)| =
1

n
|q(hgnh−1)− q(gn)| ≤

1

n
D(q)

and q(hgh−1) = q(g). Let g be an element of G with commutator length
clG(g) = n. Then g can be written the following way:

g = [g1, h1][g2, h2] . . . [gn, hn],

where the gi and the hi lie in G. Then,

∣

∣

∣

∣

∣

q(g)−
n
∑

i=1

(q(gi) + q(hig
−1
i h−1

i ))

∣

∣

∣

∣

∣

≤ (2n− 1)D(q)

and, as q(hig
−1
i h−1

i ) = −q(gi),

|q(g)| ≤ 2clG(g)D(q)

for all g in G. Therefore, for every natural integer p,

|q(gp)| = p |q(g)| ≤ 2clG(g
p)D(q).

Hence, clG(g
p) → +∞ when p → +∞ as soon as q(g) 6= 0.

Quasi-morphisms on G are in fact more closely related to commutator length
via the Bavard duality (see [2] and [5]). A typical example is the translation
number on the group HomeoZ(R) of homeomorphisms of R which commute with
integral translations (which is also the group of lifts of orientation-preserving
homeomorphisms of the circle): for every homeomorphism f in HomeoZ(R),

the sequence ( f
n(x)−x

n
)n converges for any x and the limit is independant of

the chosen point x. This limit is called the translation number of f . It actually
defines a quasi-morphism on the group HomeoZ(R) (see [6] for more information
on the translation number).

We now consider the closed annulus A = R/Z × [0, 1]. We build a quasi-
morphism on the identity component Homeo0(A) of the group of homeomor-
phisms of A. The following construction is due to Frederic Le Roux. We denote
by π : R× [0, 1] → A the universal covering of A. Given a homeomorphism f in
Homeo0(A), consider a lift F : R× [0, 1] → R× [0, 1] of f , i.e. a homeomorphism
of R×[0, 1] which satisfies π◦F = f◦π. The maps F0 = FR×{0} and F1 = FR×{1}

belong to the group HomeoZ(R). If we replace F by some other lift F + k, then
both translation numbers of F0 and F1 will increase by k. Thus the difference of
the translation numbers of these homeomorphisms is independant of the lift F
chosen. We denote this number by ρ(f) and call it the torsion number. As the
translation number is a homogeneous quasi-morphism on the group HomeoZ(R),
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ρ is a (nontrivial) homogeneous quasi-morphism on Homeo0(A) which restricts
to a non-trivial quasi-morphism on Diffr

0(A) for every r in N ∪ {∞}.
We first reduce Theorem 1.2 to the following proposition, which gives esti-

mates on the commutator length. We note E the lower integer part and, for an
element f in Diffr

0(A):

α(f) = min
r∈R

|F1(r)− F0(r)| ,

where F is a lift of f (note that this quantity is independant of the choice of
the lift).

Proposition 2.2 Let f 6= IdA be a homeomorphism in Diffr
0(A) and F be a lift

of f . Then, for any r 6= 2, 3:

E

(

α(f) + 3

4

)

+ 9 ≥ clr(f) ≥ E

(

α(f)

4

)

+ 1.

If r = 0, then the 9 appearing in the upper bound may be improved to 5.

This proposition will be shown in the next section. Now, we deduce the first
part of Theorem 1.1 and Theorem 1.2 from Proposition 2.2.

Proof of the first part of Theorem 1.1. It suffices to show that, for
every element f in Diffr

0(A):

||ρ(f)| − α(f)| ≤ 2.

Take a real number r0 in R such that α(f) = |F1(r0)− F0(r0)|, where F is a
lift of f . We will prove that :

|ρ(f)− F1(r0)− F0(r0)| ≤ 2.

For every homeomorphisms G and H in HomeoZ(R), we have the following
classical inequality:

∀r ∈ R, |(G(H(r)) − r)− (G(r) − r)− (H(r) − r)| ≤ 1.

Using this formula, we obtain by induction, for i ∈ {0, 1}:

∀n ∈ N, |Fn
i (r0)− nFi(r0) + (n− 1)r0| ≤ n− 1

and |Fn
1 (r0)− Fn

0 (r0)− n(F1(r0)− F0(r0))| ≤ 2n−2. Dividing by n and taking
the limit n → +∞ allows us to conclude the proof.

Proof of Theorem 1.2. The strategy of the proof is the same as in the
case of the translation number on HomeoZ(R) (see [6]). Let q be a homogeneous
quasi-morphism on Diffr

0(A). Let t be a C∞-diffeomorphism in Diff∞
0 (A) which

is a ”twist”: there exists a lift T of t which satisfies:

∀x ∈ R,

{

T (x, 0) = (x, 0).
T (x, 1) = (x + 1, 1).
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(For instance, one can take t(x, r) = (x+r, r).) Then q−q(t)ρ is a homogeneous
quasi-morphism which vanishes on t and the next lemma allows us to complete
the proof of Theorem 1.2.

Remark: observe that t fixes the boundary but there is no continuous path
of diffeomorphisms fixing the boundary between the identity and t.

Lemma 2.3 Every homogeneous quasi-morphism on Diffr
0(A) which vanishes

on t is trivial, if r 6= 2, 3.

Proof of lemma 2.3. Let q be such a quasi-morphism. Then, for every
integer n ∈ Z and every homeomorphism f in Diffr

0(A), we have

|q(tnf)− q(f)| ≤ D(q).

Let us fix f in Diffr
0(A) and choose an integer n0 such that α(tn0f) < 1 (if α(f) =

minr∈R(F1(r) − F0(r)), then α(tpf) = α(f) + p as long as p > −α(f) and the
other cases are similar or easier). Then, by proposition 2.2, the homeomorphism
tn0f may be written as a product of at most 9 commutators. Therefore, using
lemma 1.2:

|q(tn0f)| ≤ 18D(q)

and |q(f)| ≤ 19D(q). Hence, q is a bounded homogeneous quasimorphism: it is
trivial.

3 Estimation of the commutator length

This section is devoted to the proof of Proposition 2.2. We will first make the
proof in the case r = 0 and then an approximation argument will give the
r > 0 case. We will need a theorem by Eisenbud, Hirsch and Neumann on the
commutator length for lifts of circle homeomorphisms.

Theorem 3.1 (Eisenbud-Hirsch-Neumann (see [7] Theorem 2.3))
A homeomorphism F in HomeoZ(R) can be written as a product of n com-

mutators in HomeoZ(R) if and only if:

min
x∈R

|F (x)− x| < 2n− 1.

3.1 Lower bound of the commutator length for r = 0

Let f be a homeomorphism in Homeo0(A) with cl0(f) = n. Let F denote a lift
of f which can be written as a product of n commutators in the group of lifts
of elements in Homeo0(A) namely

{G ∈ Homeo0(R× [0, 1]), ∀(x, t) ∈ R× [0, 1], G(x+ 1, t) = G(x, t) + (1, 0)} .

Then F0 and F1, which belong to HomeoZ(R), can be written as a product of n
commutators. Using the Eisenbud-Hirsch-Neumann theorem, we get:

min
x∈R

|F0(x)− x| = |F0(x0)− x0| < 2n− 1
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and:
min
x∈R

|F1(x) − x| = |F1(x1)− x1| < 2n− 1.

We may assume that: x0 < x1 < x0 + 1. These inequalities imply that:

α(f) ≤ |F0(x0)− F1(x0)|
≤ |F0(x0)− x0|+ |(F1(x0)− x0)− (F1(x1)− x1)|+ |F1(x1)− x1|
< (2n− 1) + 2 + (2n− 1)
< 4n

The lower bound in Proposition 2.2 is therefore proved.

3.2 Upper bound of the commutator length for r = 0

To get an upper bound, we first compose a given homeomorphism by some
number of commutators to get a homeomorphism which admits a lift which
pointwise fixes the boundary. Then we compose by 2 commutators to get a
homeomorphism with a lift which is the identity in a neighbourhood of the
boundary. Finally, such a homeomorphism can be written as a product of 2
commutators, by a result by Burago, Ivanov and Polterovich.

Let f be a homeomorphism in Homeo0(A). Let k = E(α(f)+3
4 ) + 1.

3.2.1 First step: getting a homeomorphism with a lift which fixes

pointwise the boundary by composing with k commutators

Up to conjugating by (x, r) → (x, 1 − r), we may assume that f is a ”positive
twist”: there exists a lift F of f and a real number x0 which satisfy α(f) =
F1(x0)− F0(x0).

By composing the lift F by an integral translation if necessary, we may
suppose that:

2k − 2 ≤ F1(x0)− x0 < 2k − 1.

Then, as 4k > α(f) + 3:

F0(x0)− x0 = F1(x0)− x0 − α(f) ≥ 2k − 2− α(f) > 1− 2k.

By using the Eisenbud-Hirsch-Neumann theorem, we get that F1 and F0 can be
written as products of k commutators in HomeoZ(R):

{

F1 =
∏k

i=1[gi,1, hi,1]

F0 =
∏k

i=1[gi,0, hi,0]
,

where the gi,j ’s and the hi,j ’s belong to HomeoZ(R).
For every index i, let us take Gi : R× [0, 1] → R× [0, 1] (respectively Hi) a

lift of an element gi (respectively hi) of Homeo0(A) which satisfies:

{

p1 ◦Gi(., 1) = gi,1
p1 ◦Gi(., 0) = gi,0

7



(respectively:
{

p1 ◦Hi(., 1) = hi,1

p1 ◦Hi(., 0) = hi,0
).

Note that the homeomorphisms Hi and Gi exist because the gi,j ’sand the hi,j ’s
are isotopic to the identity. Then the homeomorphism [hk, gk] ◦ [hk−1, gk−1] ◦
. . . ◦ [h1, g1] ◦ f admits a lift which pointwise fixes the boundary.

3.2.2 Second step: a homeomorphism with a lift which pointwise

fixes the boundary can be written as a product of 4 commu-

tators

Fix a homeomorphism f in Homeo0(A) with a lift F which is the identity on
the boundary.

Consider a path c : [0, 1] → A which satisfies the following conditions, where
p1 and p2 are respectively the first and the second projection of A = R/Z×[0, 1]:

• c(0) = (− 1
4 , 0) and c(1) = (14 , 0).

• ∀t ∈ (0, 1), 0 < p2 ◦ c(t) <
1
4 .

• ∀t ∈ [0, 1], p2 ◦ F ◦ c(t) < 1
4 .

• ∀t ∈ [0, 1], p1 ◦ F ◦ c(t) ∈ (− 3
8 ,

3
8 ).

• ∀t ∈ [0, 1], p1 ◦ c(t) ∈ (− 3
8 ,

3
8 )

Let D be the connected component of A− (| − 1
4 ,

1
4 ]× {0} ∪ c([0, 1])) whose

boundary contains the point (0, 0). According to the Schönfliess theorem, there
exists a homeomorphism f1,0 in Homeo0(A) which coincides with f on the clo-
sure of D (which is a closed topological disc) and with support included in
(− 3

8 ,
3
8 ) × [0, 1

2 ) = D1,0. By taking a lace homotopic to the lower boundary
component and close to it and applying the Schönfliess theorem, we can find a
homeomorphism f2,0 which coincides with f−1

1,0 ◦ f (which is the identity on D)
in a neighbourhood of the lower boundary R× {0} and which satisfies:

supp(f2,0) ⊂ (
1

8
,
7

8
)× [0,

1

2
) = D2,0.

With the same technique, we can build homeomorphisms f1,1 and f2,1 in
Homeo0(A) which satisfy:

• the homeomorphism f1,1 ◦ f2,1 coincides with f in a neighbourhood of the
upper boundary R× {1}.

• the support of f1,1 is included in (− 3
8 ,

3
8 )× (12 , 1] = D1,1.

• the support of f2,1 is included in (18 ,
7
8 )× (12 , 1] = D2,1.

Thus, we have f = f1,1 ◦ f2,1 ◦ f1,0 ◦ f2,0 near the boundary.
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Lemma 3.2 Let H denote the closed upper half plane. Then every element in
Homeo0(H) can be written as one commutator.

Proof. Let h be an element in Homeo0(H). Let U be a neighbourhood of
supp(h) and ϕ be a homeomorphism in Homeo0(H) which satisfies the following
conditions:
- the open sets ϕk(U), for k in N, are pairwise disjoint.
- the sequence (ϕk(U))k∈N converges to a singleton {p} which lies on the bound-
ary as k tends to +∞.

Now, consider the homeomorphism g in Homeo0(H) which satisfies:
- g = Id outside

⋃

k∈N
ϕk(U).

- for every non-negative integer k, g|ϕk(U) = ϕk ◦ h ◦ ϕ−k.
Then h = [g, ϕ].
According to the lemma applied in the discs Di,j , each fi,j is a commutator,

thus f coincides with a product of 4 commutators in a neighbourhood of the
boundary. We will see that we can improve this to 2. Using this last lemma,
we may consider homeomorphisms gi,j and hi,j supported in Di,j which satisfy
fi,j = [gi,j , hi,j ]. Note that:

supp(gi,0) ∩ supp(gi,1) = ∅,

supp(hi,0) ∩ supp(hi,1) = ∅,

supp(gi,0) ∩ supp(hi,1) = ∅,

supp(hi,0) ∩ supp(gi,1) = ∅,

and
supp(fi,0) ∩ supp(fi,1) = ∅.

Thus, those pairs of homeomorphisms commute. Therefore:

g = f1,1 ◦ f2,1 ◦ f1,0 ◦ f2,0 = f1,1 ◦ f1,0 ◦ f2,1 ◦ f2,0
= [g1,1, h1,1] ◦ [g1,0, h1,0] ◦ [g2,1, h2,1] ◦ [g2,0, h2,0]
= [g1,1 ◦ g1,0, h1,1 ◦ h1,0] ◦ [g2,1 ◦ g2,0, h2,1 ◦ h2,0]

Moreover, this homeomorphism coincides with f on a neighbourhood of the
boundary. Thus g−1 ◦ f admits a lift which is the identity near the boundary.
As the open annulus is a portable manifold (see [4] Theorem 1.18), the homeo-
morphism g−1 ◦ f can be written as a product of two commutators. This ends
the proof of Proposition 2.2 in the case r = 0.

3.3 Case r > 0

It follows directly from the result on homeomorphisms that:

∀f ∈ Diffr
0(A), clr(f) ≥ cl0(f) ≥ E(

α(f)

4
) + 1.

To get an upper bound (for r 6= 2, 3), the process is the following. We

first write a diffeomorphism f as a product of E(α(f)+3
4 ) + 5 commutators of

9



homeomorphisms and we approximate every homeomorphism appearing in this
product by a diffeomorphism. Hence, arbitrarily close to f in the C0 topology,

there is a product of E(α(f)4 )+5 commutators of diffeomorphisms. To conclude,
it suffices to notice that, for r 6= 2, 3, a diffeomorphism sufficiently close to the
identity can be written as a product of 4 commutators. Let us show this last
fact. We need the following lemma, which is a consequence of a fragmentation
lemma proved in the appendix:

Lemma 3.3 There exists a C0 neighbourhood Υ of the identity in Diffr
0(A) such

that:

∀f ∈ Υ, ∃f1, f2 ∈ Diffr
0(A),







f = f1 ◦ f2
supp(f1) ⊂ (− 3

8 ,
3
8 )× [0, 1]

supp(f2) ⊂ (18 ,
7
8 )× [0, 1]

.

Now, the manifolds (− 3
8 ,

3
8 )×[0, 1] and (18 ,

7
8 )×[0, 1] are portable, in the sense

of [4]. It follows from [4] Theorem 1.18 that, if r 6= 2, 3, the diffeomorphisms f1
and f2 may be each written as a product of two commutators.

This concludes the proof in the case r > 0.

4 Estimation of the fragmentation norm

The analog of Proposition 2.2 for the fragmentation norm is the following propo-
sition, which implies the second part of Theorem 1.1:

Proposition 4.1 Let f be a homeomorphism in Diffr
0(A) and F : R× [0, 1] →

R× [0, 1] be a lift of f . Suppose f 6= Id. Then, for any r in N ∪ {∞}:

E(α(f)) + 40 ≥ Fragr(f) ≥ E(α(f)) + 1.

If r = 0, then the 40 appearing in the upper bound may be improved to 36.

Actually, we can have far better upper bound in the preceding proposition
by using the following result which will be showed in a next paper:

Proposition 4.2 For any r ∈ N∪{∞}, the fragmentation norm on Diffr
0(int(A))

is bounded by 4.

If we admit this last proposition, we get more precise estimates on the frag-
mentation norm:

Proposition 4.3 Let f be a homeomorphism in Diffr
0(A) and F : R× [0, 1] →

R× [0, 1] be a lift of f . Suppose f 6= Id. Then, for any r in N ∪ {∞}:

E(α(f)) + 16 ≥ Fragr(f) ≥ E(α(f)) + 1.

If r = 0, then the 16 appearing in the upper bound may be improved to 12.

To make estimates on the fragmentation norm for the closed annulus, we
need an analog of the Eisenbud-Hirsch-Neumann theorem.
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4.1 Fragmentation norm on HomeoZ(R)

Let A be the subset of HomeoZ(R) given by elements which fix pointwise a
nonempty open interval. This subset generates HomeoZ(R) as a group. If F is
a homeomorphism in HomeoZ(R), we denote Frag(F ) the minimal number of
elements of A necessary to write F as a product of elements of A. The analog
of the Eisenbud-Hirsch-Neumann theorem for the fragmentation norm is the
following:

Proposition 4.4 Let F be a homeomorphism in HomeoZ(R). Then, for any
k ≥ 0:

Frag(F ) ≤ k + 2 ⇐⇒ min
x∈R

|F (x) − x| < k + 1.

Proof. Let us start with the direct implication. Write:

F = F1F2 . . . Fk+1Fk+2,

where each Fi belongs to A. Take a point x0 such that Fk+2(x0) = x0. We
have, for every integer i ∈ [1, k + 1]:

|FiFi+1 . . . Fk+1Fk+2(x0)− Fi+1 . . . Fk+1Fk+2(x0)| < 1

and by summing these inequalities:

|F (x0)− x0| < k + 1.

This proves the direct implication. Let us show the converse by induction on k.
For k = 0, up to conjugating by (x, r) → (x, 1− r), we may assume:

0 ≤ min
x∈R

|F (x)− x| = F (x0)− x0 < 1.

Choose a point x1 such that F (x0) < x1 < x0 + 1. Then F (x0) < F (x1) <
F (x0) + 1 and we can find a homeomorphism h in HomeoZ(R) which fixes a
neighbourhood of F (x0) and satisfies h ◦F = Id in a neighbourhood of x1. The
decomposition F = h−1 ◦ (h ◦ F ) shows that Frag(F ) ≤ 2.

Suppose the converse holds for an integer k. Let us prove it for the integer k+
1. Suppose minx∈R |F (x)−x| < k+2. We may also suppose that minx∈R |F (x)−
x| ≥ k+1 (otherwise, we can conclude directly from the induction hypothesis).
As usual, we may assume:

k + 1 ≤ min
x∈R

(F (x) − x) < k + 2.

Let x0 be a point which satisfies:

min
x∈R

(F (x)− x) = F (x0)− x0.

The same way as for the initialization, we can find a point x1 ∈ (x0, x0 + 1)
such that F (x0) < x1 + k + 1 < F (x0) + 1. Then F (x0) < F (x1) < F (x0) + 1.

11



Therefore, there exists a homeomorphism h which fixes a neighbourhood of
F (x0) and which satisfies:

h(F (x1)) < x1 + k + 1.

The induction hypothesis allows then us to finish the induction and the proof
of Proposition 4.4.

4.2 Proof of Proposition 4.1

The technique is exactly the same as in the proof of Proposition 2.2, using
Proposition 4.4 instead of the Eisenbud-Hirsch-Neumann theorem. Thus the
explanations will be briefer.

4.2.1 Lower bound for the fragmentation norm

Let f be an element in Homeo0(A) with Frag0(f) ≥ 1 and F be a lift of f . Fix
a decomposition of f as a product of Frag0(f) homeomorphisms supported in
discs. Let k0 (respectively k1) be the number of homeomorphisms appearing in
this decomposition whose support meets the lower boundary R/Z × {0} (resp.
the upper boundary R/Z× {1}) of A. Note that k0 + k1 ≤ Frag0(f) as a disc
doesn’t touch both components of the boundary, by definition. First, suppose
k0 ≥ 2 and k1 ≥ 2. By Proposition 4.4, there exist points x0 and x1 in R such
that:

|F0(x0)− x0| < k0 − 1

and:
|F1(x1)− x1| < k1 − 1.

From these inequalities, we get:

α(f) < k0 − 1 + 2 + k1 − 1 ≤ Frag0(f),

which gives the lower bound in Proposition 4.1. In the cases k0 = 1 and k1 ≥ 2
or k1 = 1 and k0 ≥ 2, one of the inequalities

|F0(x0)− x0| ≤ k0 − 1

and
|F1(x1)− x1| ≤ k1 − 1

is indeed strict, which allows us to conclude.
In the case k0 = 0 and k1 ≥ 2 (the case k1 = 0 and k0 ≥ 2 is symmetric),

we have, as F0 = Id:

α(f) < |F1(x1)− x1|+ 1 ≤ k1 ≤ Frag0(f).

In the case (k0, k1) = (1, 1), we have α(f) < 1 and Frag0(f) ≥ 2 so the
inequality α(f) < Frag0(f) holds.

In the cases (k0, k1) ∈ {(0, 0), (0, 1), (1, 0)}, we have α(f) = 0 so the inequal-
ity α(f) < Frag0(f) holds.
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4.2.2 Upper bound for the fragmentation norm

Let f be an element in Homeo0(A) with lift F . As usual, we may assume:
α(f) = p1 ◦ F (x0, 1)− p1 ◦ F (x0, 0). Consider a lift of f which satisfies:

−1 < F0(x0)− x0 ≤ 0.

Then F1(x0) = F0(x0) + α(f) < E(α(f)) + 1. Using Proposition 4.4, we can
see that, after composing by at most E(α(f)) + 2 homeomorphisms supported
in discs which touch the upper boundary, we get a homeomorphism with a
lift which fixes the upper boundary and, by composing by two more homeo-
morphisms supported in discs we get a homeomorphism with a lift which fixes
both boundary components. Then, by composing by four homeomorphisms sup-
ported in discs, we get a homeomorphism with a lift which fixes a neighbourhood
of the boundary. Finally, by the result by Burago, Ivanov and Polterovich (see
the proof of Theorem 1.17 in [4]), such a homeomorphism may be written as a
product of 28 homeomorphisms supported in discs. Using proposition 4.2, we
see that this might be improved to 4.

Then, an approximation argument combined with the fragmentation lemma
yields the case r > 0.

5 Generalization to other surfaces

A similar construction as the one made in section 2 can be carried out on every
compact surface M with boundary to obtain quasi-morphisms. However, in
those cases, we do not know the dimension of the space of quasi-morphism: we
just have a minoration of it.

5.1 Case of open surfaces

Suppose M is a non-compact surface with p boundary components which are
circles. Let us fix such a boundary component of M : C1. Take a path home-
omorphic to the half-line which begins on C1, goes to infinity, and touches
the boundary component C1 only at endpoint. Consider the cyclic covering
p : M̃ → M associated to this path. Now, a homeomorphism f in Homeo0(M)
admits a unique lift F : M̃ → M̃ which is compactly supported. The transla-
tion number of the restriction of F to p−1(C1) gives rise to a quasi-morphism.
With this method, p independant quasi-morphisms can be built. Moreover, if
the commutator length is bounded on the group Diffr

0(int(M)), where int(M)
denotes M − ∂M , then it can be shown with the same techniques as in the
case of the annulus that the vector space of homogeneous quasi-morphisms is
p-dimensional. In particular, the vector space of homogeneous quasi-morphism
is one-dimensional in the case of the half-open annulus R/Z× [0, 1). However,
it is not known whether the commutator length is bounded or not on the group
Diffr

0(int(M)) when int(M) is different from the open annulus or from R2.
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5.2 Case of other compact oriented surfaces with bound-

ary

When M is a compact oriented surface with boundary which is different from
the closed disc or the closed annulus, its universal covering M̃ may be seen
as a subspace of the Poincaré disc D. We endow M and D with riemmannian
metrics of constant curvature −1 such that M has a geodesic boundary and
the projection M̃ → M is a riemannian covering. Denote by d the associated
distance. Given two points x and y on D and an oriented geodesic g which
contains both x and y, we define a(x, y, g) = d(x, y) if the geodesic from x to y
has the same orientation as g and a(x, y, g) = −d(x, y) otherwise.

Let us take a homeomorphism f in Homeo0(M). The homeomorphism f
admits a canonical lift F : M̃ → M̃ which is the identity on the limit set of M̃
at infinity. Given a point x on the boundary component C of M̃ , which is a
geodesic, define:

q(x) = lim
n→+∞

(

a(x, Fn(x), C)

n

)

.

This number is the translation number of F restricted to C and does not depend
on the point x chosen on C. With this construction, we can build p independant
quasi-morphisms, where p is equal to the number of boundary component of M .
Here also, the vector space of quasi-morphisms on Diffr

0(M) is p-dimensional if
the commutator length on Diffr

0(int(M)) is bounded.
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A Appendix: A C0-fragmentation lemma for dif-

feomorphisms

In this section, we will prove lemma 3.3. This lemma follows directly from the
following proposition which is more general:

Proposition A.1 Let M be a compact surface, possibly with boundary and
(Ui)1≤i≤n be a finite open covering of M . Denote by d a distance on Homeo0(M)
compatible with the C0-topology. Then, for every ǫ > 0, there exists α > 0 such
that, given a diffeomorphism f in Diffr

0(M) satisfying d(f, IdM ) < α, there exist
diffeomorphisms f1, f2, . . . , fn such that:

• f = f1 ◦ f2 ◦ . . . ◦ fn.

• for every index i, supp(fi) ⊂ Ui.

• d(fi, IdM ) < ǫ.
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To prove this proposition, we will need the following extension lemma.
The half-closed disk is the subset of R2:

{

(x, y) ∈ R
2,

{

x ≥ 0
x2 + y2 ≤ 1

}

.

Lemma A.2 Let U be an open set, F be a closed set in M and N be an open
neighbourhood of F . Let K be a subset of U which is C∞-diffeomorphic to a
closed disc if K ∩ ∂M = ∅ or to a half-closed disk if K ∩ ∂M 6= ∅. Then, for
every ǫ > 0, there exists β > 0 such that, given a diffeomorphism f in Diffr

0(M)
satisfying d(f, IdM ) < β and f = IdM on N , there exists a diffeomorphism g
in Diffr

0(M) such that:

• supp(g) ⊂ U .

• f = g in a neighbourhood of K.

• g = IdM in a neighbourhood of F .

• d(g, IdM ) < ǫ.

Let us see first how this lemma implies Proposition A.1.
Proof of Proposition A.1. First, we claim that it suffices to prove the

proposition when each open set Ui is homeomorphic to an open disc. Indeed,
suppose the proposition holds for a covering by open disks. Take an arbitrary
finite covering (Ui)1≤i≤n. Then we can find a covering by open disks Di,j with
1 ≤ i ≤ n and 1 ≤ j ≤ ki such that Di,j is included in Ui. Then, if f is a dif-
feomorphism of M sufficiently close to the identity, there exist diffeomorphisms
fi,j close to the identity such that:

{

supp(fi,j) ⊂ Di,j

f = f1,1 ◦ f1,2 ◦ . . . ◦ f1,k1
◦ f2,1 ◦ . . . ◦ fn,kn

.

It suffices to take fi = fi,1 ◦ fi,2 ◦ . . .◦ fi,ki
to conclude the proof for an arbitrary

finite covering.
Suppose now that each open set Ui is homeomorphic to an open disc. For

each index i, take a subset Ki of Ui diffeomorphic to a closed disc in such a way
that:

⋃

1≤i≤n

Ki = M.

We show by induction on i the following statement (the case i = n proves Lemma
A.1): for every ǫ > 0, there exists α > 0 such that, given a diffeomorphism f in
Diffr

0(M) satisfying d(f, IdM ) < α, there exist diffeomorphisms f1, f2, . . . , fi in
Diffr

0(M) such that:

1. f = f1 ◦ f2 ◦ . . . ◦ fi in a neighbourhood of
⋃

j≤i Kj.

2. ∀j ≤ i, supp(fj) ⊂ Uj .

3. d(fj , IdM ) < ǫ.
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The above statement is true for i = 1 by lemma A.2. Suppose the above
statement holds for an integer i. Fix ǫ > 0. Let β be given by Lemma A.2 applied
with F =

⋃

j≤i Kj, K = Ki+1 and U = Ui+1. Using the induction hypothesis
for small enough ǫ′, there exists α > 0 such that if we take a diffeomorphism f
α-close to the identity, we can get a family of diffeomorphisms (fj)1≤j≤i which
satisfies 1., 2., and 3. and such that f−1

i ◦ f−1
i−1 ◦ . . . ◦ f

−1
1 ◦ f is β-close to the

identity. By Lemma A.2, we can find a diffeomorphism fi+1 in Diffr
0(M) such

that :

1. supp(fi+1) ⊂ Ui+1.

2. fi+1 = f−1
i ◦ f−1

i−1 ◦ . . . ◦ f
−1
1 ◦ f in a neighbourhood of Ki+1.

3. fi+1 = IdM in a neighbourhood of
⋃

j≤i Kj .

4. d(fi+1, IdM ) < ǫ.

The properties 2. and 3., together with the induction hypothesis implie then
that f = f1 ◦ f2 ◦ . . . ◦ fi+1 on a neighbourhood of

⋃

j≤i Kj. This concludes the
proof.

To prove Lemma A.2, we need some specific extension lemmas. The first
lemma is proved in the appendix of [8] by M. Khanevsky.

Lemma A.3 Let ǫ > 0, ǫ1 ∈ (0, 1), r ∈ N ∪ {∞}. Consider a finite union
of closed intervals I ⊂ S1. Then there exists α > 0 such that, for every Cr-
embedding f : S1 × (−ǫ1, ǫ1) → S1 × (−1, 1) which satisfies:

{

d(f, Id) < α
f|I×(−ǫ1,ǫ1) = Id

,

there exists a diffeomorphism g in Diffr
0(S

1 × (−1, 1)) such that:

1. d(g, Id) < ǫ

2. g|S1×0 = f|S1×0

3. g|I×(−1,1) = Id.

The following lemma deals with embeddings of the annulus which preserve
a circle.

Lemma A.4 Let ǫ1 ∈ [0, 1), r ∈ N∪{∞} and I denote a finite union of closed
intervals in S1. Denote by f a Cr-embedding of S1 × (−ǫ1, ǫ1) in S1 × (−1, 1)
which fixes pointwise S

1 × {0} and I × (−ǫ1, ǫ1). Then, for any ǫ > 0, there
exists a diffeomorphism g in Diffr

0(S
1 × (−1, 1)) fixing pointwise S1 ×{0} which

satisfies:

1. g = f in a neighbourhood of S1 × {0}.

2. d(g, Id) < ǫ
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3. g|I×(−1,1) = Id.

Proof. Consider ǫ′ > 0 such that the product of two diffeomorphisms in
Diffr

0(R× (−1, 1)) ǫ′-close to the identity is ǫ-close to the identity. We will first
find a diffeomorphism g1 ǫ′-close to the identity which preserves the foliation
with leaves S1 × {y} and for which, for ǫ2 > 0 small enough, g−1

1 ◦ f preserves
the germ at S1 × {0} of the foliation with leaves {x} × (−1, 1). Then, we will
find a diffeomorphism g2 ǫ′-close to the identity which equals to g−1

1 ◦ f on a
neighbourhood of S1 × {0} and take g = g1 ◦ g2.

Take δ1 < ǫ1 such that f−1 is well defined on S1 × (−δ1, δ1) and, if the
expression of f−1 in coordinates is given by:

f−1 : S1 × (−δ1, δ1) → S1 × (−1, 1)
(x, y) 7→ (u(x, y), v(x, y))

,

then:

∀(x, y) ∈ S
1 × (−δ1, δ1),

{

|u(x, y)− x| < ǫ′
∂u
∂x

(x, y) > 0
.

Denote by u−1
y the inverse of u(., y). Denote by λ : (−1, 1) → [0, 1] a C∞ map

which is supported in (−δ1, δ1) and is equal to one on a neighbourhood of 0.
Now, define:

g1 : S1 × (−1, 1) → S1 × (−1, 1)
(x, y) 7→ (λ(y)u−1

y (x) + (1− λ(y))x, y)
.

In other words, when y is close to 0, g1(x, y) is the point with ordinate y which
meets f({x} × (−δ1, δ1)). For ǫ2 > 0 small enough, the map g1 satisfies then
the following properties:

1. ∀x ∈ S
1, g−1

1 ◦ f({x} × (−ǫ2, ǫ2)) ⊂ {x} × (−1, 1).

2. d(g1, Id) < ǫ.

3. g1 |I×(−1,1) = Id.

Now the expression of the embedding f1 = g−1
1 ◦ f in coordinates is of the

form:
f1 : S1 × (−ǫ2, ǫ2) → S1 × (−1, 1)

(x, y) 7→ (x,w(x, y))
.

Consider the isotopy, defined for t in [0, 1]:

ft : S
1 × (−ǫ1, ǫ1) → S1 × (−1, 1)

(x, y) 7→ (x, (1 − t)y + tw(x, y))
.

The vector field associated to this isotopy is:

X(t, x, y) =
d

dt
(ft)(f

−1
t (x, y)).
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It is defined for all t in a time-independant neighbourhood of S1×{0} which we
denote by S1 × (−δ2, δ2). Observe that this vector fields vanishes on S1 × {0}
and on I × (−δ2, δ2). Take 0 < δ3 < δ2 such that:

sup
(t,x,y)∈[0,1]×S1×(−δ3,δ3)

‖X(t, x, y)‖ < ǫ′.

Now, let λ : R → [0, 1] be a C∞ function supported in (−δ3, δ3) which is equal
to 1 on a neighbourhood of 0. Define a vector field Y on S1 × (−1, 1) for t in
[0, 1] by:

• Y (t, x, y) = λ(y)X(t, x, y) if (x, y) ∈ S1 × (−δ3, δ3).

• Y (t, x, y) = 0 otherwise.

Then, if we denote by g2 the time 1 of the flow of Y , the diffeomorphism g2
satisfies the following properties:

1. g2 = f1 in a neighbourhood of S1 × {0}.

2. d(g2, Id) < ǫ′.

3. g2 |I×(−1,1) = Id.

Now, the diffeomorphism g = g1 ◦ g2 satisfies the required properties.
Now, we are ready to prove Lemma A.2 in the case where K ∩ ∂M = ∅.
Proof of Lemma A.2 in the case where K ∩ ∂M = ∅. Consider a

tubular neighbouhood of ∂K sufficiently small so that, after identification of this
neighbourhood with ∂K× (−1, 1) ⊂ U , there exists I, a finite union of intervals
of ∂K, such that F ⊂ I × (−1, 1) ⊂ N . Choose ǫ′ > 0 so that the product of
two diffeomorphisms in Diffr

0(M) ǫ′-close to the identity for the C0 distance d
is ǫ-close to the identity. By applying successively Lemmas A.3 and A.4 to a
diffeomorphism f sufficiently close to the identity, we find a diffeomorphism g1
with support included in U which satisfies:

{

d(g1, Id) < ǫ′

d(g−1
1 ◦ f, Id) < ǫ′

,

and which coincides with f in a neighbourhood of ∂K. Denote by g2 the dif-
feomorphism which is equal to g−1

1 ◦ f on K and to the identity elsewhere. The
diffeomorphism g = g1 ◦ g2 satisfies then the required properties.

To prove the case K ∩ ∂M 6= ∅ in Lemma A.2, we need a few extra lemmas.

Lemma A.5 Let J be an open interval in R, J ′ be a closed subinterval of J
and I be a finite union of closed intervals in R. For any ǫ > 0, there exists
α > 0 such that, given a Cr increasing embedding f : J → R× {0} ⊂ R× [0, 1)
with:

• d(f, Id) < α

• f|I∩J = Id,
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there exists a diffeomorphism g in Diffr
0(R× [0, 1)) which satisfies:

1. g|J′×{0} = f|J′×{0}.

2. d(g, Id) < ǫ.

3. g|I×[0,1) = Id.

Proof. Let us take α < min(ǫ, d(J ′, Jc)), where Jc is the complementary
of J in R. Take an embedding f as in the hypothesis of the lemma. Consider
the isotopy:

h : [0, 1]× J × [0, 1) → R× [0, 1)
(x, y) 7→ ((1 − t)x+ tf(x), y)

and denote by ht the embedding h(t, .). The vector field associated with this
isotopy is:

X(t, x, y) =
d(ht)

dt
(h−1

t (x, y)).

Notice that X(t, .) is defined on ht(J × [0, 1)) which contains a neighbourhood
of J ′ × [0, 1) by the choice of α. Then, by multiplying X by a C∞ function
supported in a neighbourhood of J ′ × [0, 1

2 ] and which is equal to one on a
smaller neighbourhood of J ′ × [0, 12 ], we obtain a compactly supported vector
field on R× [0, 1) whose time one flow satisfies the required properties.

The following lemma is analogous to Lemma A.4.

Lemma A.6 Let ǫ1 ∈ [0, 1), r ∈ N ∪ {∞}, J be an open interval in R, J ′ be a
closed interval included in J and I denote a finite union of closed intervals in
R. Denote by f a Cr-embedding of J × [0, ǫ1) in R× [0, 1) which fixes pointwise
J × {0} and I ∩ J × [0, ǫ1). Then, for any ǫ > 0, there exists a diffeomorphism
g in Diffr

0(R× [0, 1)) fixing pointwise R× {0} which satisfies:

1. g = f in a neighbourhood of J ′ × {0}.

2. d(g, Id) < ǫ.

3. g|I×[0,1) = Id.

Proof. This proof is almost the same as the proof of Lemma A.4. Consider
ǫ′ > 0 such that the product of two diffeomorphisms in Diffr

0(R× |0, 1)) ǫ′-close
to the identity is ǫ-close to the identity. We will first find a diffeomorphism g1
ǫ′-close to the identity which preserves the foliation with leaves R×{y} and for
which, for ǫ2 > 0 small enough and x in a neighbourhood of J ′, g−1

1 ◦ f({x} ×
[0, ǫ2)) ⊂ {x} × (−1, 1). Then we will find a diffeomorphism g2 ǫ′-close to the
identity which equals g−1

1 ◦f on a neighbourhood of J ′×{0} and take g = g1◦g2.
Suppose the expression of f−1 in coordinate is given by:

f−1 : J × [0, ǫ1) → R× (−1, 1)
(x, y) 7→ (u(x, y), v(x, y))

.
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Take δ < ǫ1 and an open interval J ′′ with J ′ ⊂ J ′′ ⊂ J ′′ ⊂ J such that:

∀(x, y) ∈ J ′′ × [0, δ),

{

|u(x, y)− x| < ǫ′
∂u
∂x

(x, y) > 0
.

Denote by uy the function u(., y). Let λ : R → [0, 1] be a C∞ function supported
in (−δ, δ) and which is equal to one in a neighbourhood of 0. Consider the
embedding:

h : J ′′ × [0, 1) → R× [0, 1)

(x, y) 7→

{

((1− λ(y))y + λ(y)u−1
y (x), y) if y ≤ δ

(x, y) otherwise
.

It coincides with f on a neighbourhood of J ′′ × {0}. We now have to extend
it in the horizontal direction in order to have a diffeomorphism. To do this, we
consider the isotopy (for t in [0,1]):

ht : J
′′ × [0, 1) → J ′′ × [0, 1)

(x, y) 7→ ((1 − t)x+ tu′(x, y), y)
,

where u′ is the first coordinate of h. It suffices then to cut the vector field
generating this isotopy by a C∞ function to obtain a compactly supported vector
field defined on R × [0, 1). Then the time one of the flow of this vector field
gives a diffeomorphism g1 of R× [0, 1) which satisfies the following properties:

1. for x in a neighbourhood of J ′, g−1
1 ◦ f({x} × [0, ǫ2)) ⊂ {x} × [0, 1).

2. d(g1, Id) < ǫ′.

3. g1 |I×[0,1) = Id.

The construction of g2 is done exactly the same way as in Lemma A.4 : consider
a well-chosen isotopy which joins the identity to f1 = g−1

1 ◦ f , the vector field
generating it and cut this vector field outside a neighbourhood of J ′ × {0} to
get a global compactly supported vector field. Take the time one of the flow of
this vector field. Then, it suffices to take g = g1 ◦ g2.

Now, we can finish the proof of Lemma A.2 by treating the case where
K ∩ ∂M 6= ∅.

Proof of Lemma A.2: case where K ∩ ∂M 6= ∅. We will just explain
what has to be taken care of in this proof which is analogous to the proof of
the case where ∂K ∩ M = ∅. Take the diffeomorphism f sufficiently close to
the identity. By using Lemma A.5, we may find a diffeomorphism g1 C0-close
to the identity which coincides with f on a neighbourhood in ∂M of ∂K ∩ ∂M .
Then, we use Lemma A.6 to get a diffeomorphism g2 C0-close to the identity
which coincides with g−1

1 ◦ f on a neighbourhood V in M of ∂K ∩ ∂M . Let W
be a neighbourhood of ∂K ∩ ∂M whose closure is included in V . Consider then
a simple closed path γ : S1 = [0, 1]/Z → M which satisfies:

{

γ([− 1
4 ,

1
4 ]) ⊃ ∂K −W

γ(S1) ⊂ (∂K ∪W )− ∂M
.
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By applying the first case of Lemma A.2 with K ′ the interior of the Jordan curve
γ and F ′ the union of F with the closure ofW , we may find a Cr-diffeomorphism
g3 C0-close to the identity which is equal to g−1

1 ◦ f in a neighbourhood of K.
Then we take g = g1 ◦ g2 ◦ g3 to end the proof.
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