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Abstract

In this paper we derive the high-electric-field limit of the three dimensional Vlasov-
Maxwell-Fokker-Planck system. We use the relative entropy method which requires
the smoothness of the solution of the limit problem. We obtain convergences of the
electro-magnetic field, charge and current densities.

Key words: High-field limit, Vlasov-Maxwell-Fokker-Planck system, Relative
entropy
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1 Introduction

We consider a plasma in which the dilute charged particles interact both
through collisions and through the action of their self-consistent electro-magnetic
field. Actually, we are concerned with the evolution of the negative particles
which are described in terms of a distribution function in phase space while
the charge and current of the positive particles are given functions. Up to a
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dimensional analysis (postponed to the Appendix) the evolution of the plasma
is governed by the following equations

g(atfa +v- Va:fa) - (EE + OéE(’U A BE)) : vvfa = din(”fa + vaa)a (1)

for (t,z,v) €]0, T[xR? x R? and

&fEa - CU.l"leg = _(J - ja)a (2)
aedy B, + curl, E. = 0, (3)
div,E. = D(t,x) — p.(t, x) and div,B: = 0, (4)

for (t,z) €]0, T[xR? and where we have set

pe(t,x) = /R3 fe(t, z,v) dv, Je(t,x) = /Rs vfe(t, z,v) dv.

The system (1)-(4) is refered to as the Vlasov-Maxwell-Fokker-Planck (VMFP)
system. Here f.(¢,z,v) > 0 is the distribution function of the negative parti-
cles, E., B. stand for the electric and magnetic fields respectively while D(¢, ),
J(t,z) are the (given) charge and current densities of positive particles. They
are supposed to satisfy the conservation law

O;D +div,J =0, (t,x) €]0, T[xR>. (5)
The system is completed by prescribing initial conditions for the distribution

function f. and the electro-magnetic field (E., B;)

f-(0,2,v) = f2(z,v), (z,v) € R® x R, (6)
E.(0,2) = E°(z), B.(0,z) = BY(x), z € R (7)

We suppose that initially the plasma is globally neutral i.e.,

/RS /]R (@ v) dvde = /R _D(0,z) da, (8)

and also that the initial conditions satisfy
div,E? = D(0,7) — /3 2(z,v) dv, div,B? =0, z¢€R> 9)
R

After integration of (1) with respect to v € R® we deduce that the charge
density p. and the current density j. of the negative particles verify the con-
servation law

Oip. + divyj. =0, (t,2) €]0, T[xR>. (10)
By using (5), (10) and by taking the divergence with respect to z of equations
(2), (3) we deduce that (4) are consequences of (9).



The problem is motivated from plasma physics, as for instance in the theory
of semiconductors, the evolution of laser-produced plasmas or the description
of tokamaks. The coupling between the kinetic equation (1) and the Maxwell
system (2)-(4) describes how the local concentration and movements of charges
create electric fields and currents which, in turn, influence the motion of the
electrons in the whole domain. The Fokker-Planck operator in the right hand
side of (1) accounts for the collisions of the electrons with the background.
These collisions produce both a friction and a diffusion effect ; we refer to
[18] for the introduction of such an operator based on the principles of Brow-
nian motion and to e.g. [6] for specific applications to plasma physics. The

dimensional analysis is detailed in the Appendix. Let us only say that the di-

2
mensionless parameter € = (k) is the square of the ratio between the mean

2
free path and the Debye length and a = (L is the square of the ratio

between the Debye length and the distance travelled by the light during the
relaxation time due to collisions. We are interested in the asymptotic regime

0<exl, a bounded.

(The parameter o might depend on ¢ in our analysis and tend either to 0 or

a positive constant.) It can be convenient to detail this regime by means of the
characteristic time scales of the evolution of the plasma: T, = 1/cyclotronic frequency,
T, = 1/plasma frequency (definitions are recalled in the Appendix) and 7 the
relaxation time associated to the collisions which have to be compared to the

time scale of light propagation T and the time scale of observation 7'. Then,

the asymptotic regime we are interested in means that

TLT, LT

while the other time scales are governed by the behavior of a« = T/T, =
%(Tg /T)?. This kind of asymptotic problem is crucial for applications such
as the modeling of Inertial Confinement Fusion devices or in some delimited
regions of tokamaks where there is a strong interplay between the collisional
effects and the electro-magnetic effects, see for instance [23,30].

The mathematical difficulty is related to the nonlinear term E. - V, f. which
appears in (1) with the same order of magnitude than the diffusion Fokker-
Planck term (it is due to the hypothesis that the mean free path [ is much
smaller than the Debye length A). We call this asymptotic regime for € X\, 0
the high-electric-field limit. Now, note that the Fokker-Planck operator can
be written as follows

Lep(f) = divo(vf + Vo f) = div, (e-'“fvv <fe)> , (11)



and therefore the kinetic equation (1) becomes

1 vt Ee (t,2)]? vt B (t,2)]2
&ﬁ+wvﬁfwwA&wm¢=5%wGJ”¥”v&ﬁewy)»'
(12)
From (12) we can expect that when ¢ \ 0, the distribution function f. con-
verges to
1 wem?

fe = p(t,2) Mgz (v), Mg(v)= (27?)36 , (13)

and therefore we can guess that
Jeltw) = [ ofe do —p(t,2)E(t, )
R

Using the charge conservation law (10) together with (2)-(4), we are thus
formally led to the following limit system

Oyp — div,(pE) = 0, (t,z) €]0, T[xR3,

div,E = D(t,z) — p(t, x), cur, £ =0, (t,x) €]0, T[xR3,

OHE — curl,B = —J(t,x) — p(t,z)E(t,z), div,B=0, (t,x)€]0,T[xR>.
(14)

We wish to justify rigorously this asymptotic behavior.

High-field asymptotics have been first analyzed in the kinetic theory of semi-
conductors in [37], see also [17]. Then, further extensions and mathematical
results for different physical models have been obtained in [1], with a discussion
based on numerical simulations, [5] for a derivation of so-called SHE models
for charge transport in semiconductors and [21] for a derivation of energy-
transport models, [34] for application to quantum hydrodynamics model... The
problem combines the difficulty of hydrodynamic regimes with the treatment
of the non linear acceleration term E. - V, f.. The problem slightly simplifies
in the electrostatic case where the electric field is simply defined through the
Poisson equation (complete (1) by E. = =V, ®., A, P. = p.— D and B. = 0).
This actually means that the electric field E. is defined by a convolution with
p. — D. The resulting Vlasov-Poisson-Fokker-Planck (VPFP) system can be
seen, at least formally, as an asymptotic limit of the VMFP model in a phys-
ical regime where the light speed is large compared to the thermal velocity,
the other physical parameters being fixed. The high-field limit of the VPFP
system can be addressed by appealing to usual compactness methods; how-
ever, constraints on the space dimension appear, due to the singularity of the
convolution kernel. It turns out that the strategy works in dimension 1 [35]
and dimension 2 [26]. Another approach uses relative entropy (or modulated
energy) methods, as introduced in [44]. With such an approach, we try to eval-
uate how far the solution is from the expected limit. This method has been
used to treat various asymptotic questions in colisionless plasma physics, in



particular the derivation of quasineutral regimes [13], [14], [25], [39], and for
hydrodynamic limits in gas dynamics [40], [7], or for fluid-particles interaction
models [28]... Further references and examples of applications of the method
can be found with many deep comments in the review [41]. Concerning the
VPFP system, it allows to justify the L? strong convergence for the electric
field and we can pass to the limit for any space dimension [26]. However, this
method requires some smoothness on the solutions of the limit system. Even-
tually, we point out that a low-field regime, where diffusion dominates the
transport terms, can also be considered: for the VPFP system, we refer to
[38], [27] and for an attempt with the VMFP system to [8].

The aim of this paper is therefore to analyze the high-electric-field limit of the
three dimensional VMFP system by using the relative entropy method. This
extension is interesting both from the viewpoint of physics: we are dealing
with a more realistic and complete model; and those of mathematics: replac-
ing the Poisson equation by the Maxwell system we cannot expect too much
regularizing effects from the coupling, and this also shows how robust the rel-
ative entropy method is. By the way, the mathematical theory of the solutions
of the VMFP is far from being completely known. By contrast, the theory
for VPFP is well established: existence of weak solutions can be found in [42]
with refinements in [15], while for existence and uniqueness results of strong
solutions we refer to [20], [36] and the complete results of [9], [10]. The cou-
pling with the Maxwell equations leads to a much more difficult analysis. The
collisionless case has been further investigated and global existence of classical
solutions relies on the behavior of the tip of the support of the solution, as
shown by different approaches in [24], [11], [31], while the local well-posedness
of smooth solutions is due to [43]. It is also worth mentioning the recent result
[16] concerning a reduced version of the Vlasov-Maxwell equation. For the
VMEFP model but neglecting the friction forces, the global existence of renor-
malized solutions has been obtained in [22]. Recently, the global existence and
uniqueness of smooth solutions have been obtained for the relativistic version
of the VMFP system, in the specific one and one half dimensional framework
[33]. Considering the full Vlasov-Maxwell-Boltzmann system with data close
to equilibrium stunning progress appear in [29], with an extension to the Lan-
dau operator in [45]. However, it is still an open question to investigate if
the Fokker-Planck operator introduces some regularizing effects which would
lead to the well-posedness of the full VMFP system in a general framework
or if we should definitely deal with renormalized solutions verifying the con-
servation laws up to defect measures. These questions are clearly beyond the
scope of this paper where we focus on the asymptotic questions, considering
essentially smooth solutions of the VMFP system. Our main result states as
follows. We establish this result for smooth solutions but we will see that the
same conclusions hold true in the framework of renormalized solutions (cf.
Appendix).



Theorem 1 Let p° > 0 and D > 0 such that p° € WH(R3)NW>°(R3), with
V.In(p%) € L®(R3) and D € L>(]0, T[; WH(R3)) N Wh(]0, T[xR3), with
8,D € L=(|0,T[; L'(R%)). Let J € L>(]0, T[; L2(R*))* N L=(]0, T[; LI(R?))?,
with furthermore 8;J € L>(]0,T[; H~1(R3))>*NL>(]0, T[; W ~14(R3))3 for some
q €]3, 00| and 8}J € L>(]0,T[; H 2(R?))3 such that 3;D + div,J = 0. Con-
sider (p, E, B) the unique solution of (14) with the initial condition p°. Let
f2 >0, E2, B? be a sequence of smooth distribution functions and electro-
magnetic fields verifying

// 2 dvdr = / D(0,z) dx, sup// 2| f0 dv dr < 400, (15)
R3J/R3 R3 R3JR3

e>0

: 1 0 fc‘? 1 0 012 0 012 _
i%%{gASAgfslanE dvdx+§/R3(\E€—E] +ac|BY — BY?) dx b =0
(16)

where E° is the solution of div, E® = D(0,z) —p°(x), curl,E° = 0, z € R?® and
e/a — 0. We assume that (f., Ee, B:)eso are strong solutions of the VMFP
system (1)-(7).Then (E., B:)eo converges to (E,B) in L>(]0,T[; L*(R?))¢,
whereas (pe, j)es0 converges to (p, —pE) in L>(]0, T[, L'(R3))*.

Let us make a couple of comments on the results and mention a few open
questions. First of all, the scaling assumption on « in Theorem 1 is maybe
not the most relevant on the physical viewpoint; but our analysis covers much
more general cases, as it will be detailed later on (see Theorem 15). Second,
as already said the existence theory of the full VMFP system is not complete;
nevertheless we assume we have at hand a sequence of solutions of the sys-
tem, smooth enough to justify the manipulations below. Dealing with a more
general class of solutions, involving defect measures in the macroscopic con-
servation laws is possible by adapting the reasoning in [39]. We will give some
hints in this directions in the Appendix. The assumption on the initial data
is necessary with the method we use, which also requires the smoothness of
the solution of the limit equations. In some sense this assumption means that
the initial state is already close to the shape of the limit, a shifted Maxwellian
function. Of course it would be very interesting to design a proof involving
only compactness arguments. We also completely neglect (like most of the
papers on the topics which usually restrict to the whole space problem or the
periodic framework) the difficulties coming from boundary conditions, that
induce delicate boundary layer analysis. Finally, a very important question
consists in dealing with the full system involving kinetic equations for both
positive and negative particles. This leads to a tough analysis and again most
of the results in the litterature are not able to deal with the two species model.

The paper is organized as follows. In Section 2 we establish some a priori
estimates satisfied by smooth solutions (f, E., B.) of the three dimensional
VMFP system. In the next section, we introduce the relative entropy and
calculate its time evolution. There, we also analyze the well-posedness of the



limit equation. In Section 4 we detail the passage to the limit. The dimensional
analysis of the equations, the physical meaning of the different parameters and
the extension to the renormalized solutions are detailed in the Appendix.

2 A priori estimates

In this section we establish a priori estimates for the smooth solutions (f., E., B:)
of VMFP, uniformly with respect to € > 0. These estimates are deduced from
the natural conservation properties of the system and from the dissipation
mechanism due to the collisions.

Proposition 2 Let (f., E., B.) be a smooth solution of the problem (1), (2),
(3), (4), (6), (7) where the initial conditions satisfy f° >0, and

£

MO::/J f2 dvdr < 400,
R

0 v 1 02 ae 02
W :e// IO dvd:v+f/|E5| dx+—/|B€| d < 400,
R3/R3 2 2 Jr3 2 Jr3
:// 2| 2 dv dv < +o0,
R3/R3

HO ;:5/3/3f§|1nf§ydvda;<+oo.
R3JR

We assume also that J € L'(]0,T[; L*>(R3))3. Then, we have for any 0 < t <
T < o0

/ fe(t,z,v) dvdx :/ / 12 dvdr < +oo,
R3JR3 Rr3JR3

1
sup { // —fe(t, x,v) dvdz+7/ |E.(t,2)|* do + %/ |B.(t,z)| dw}
0<t<T R3JR3 3 2 R3

2
//3/3'”' dvdudt
R3JR

1 2
S (<2WEO -+ 6TM£)§ + \/§||J||L1(]O,T[;L2(R3))) )
0<t<T/R3/ x| f(t, z,0) dvdx < OT(MO + WO + LO + HJHLl (0,T; L2(R3)))

T
2 0
sup 5/]1%3/]1@ felln fo|(t, x,v) dvdw—i—/o /]R3 - IVor/ fo]? dvdx dt < Cr(e + M

0<t<T
H W2 e L+ H2 A+ 17 gorpzeeey)-



Remark 2.1 As said above M? (and its evolution counterpart) stands for
the total negative charge, and the result only states that it is conserved: indeed
there is no production nor loss of electrons within the model. The quantity
W2 collects, taking into account the scaling, the kinetic energy of the particles
and the energy of the electro-magnetic fields. The quantity € [ [ f-In f. dv dx
represents the (scaled) entropy associated to the particles, and the collisions
induce a dissipation of this quantity. For technical purposes, we will be inter-
ested instead in the positive quantity H?. Finally LY can be thought of as a
measure of how particles spread in space.

Before starting our computations let us state the following lemma, based on
classical arguments due to Carleman.

Lemma 3 Assume that f = f(z,v) satisfies f > 0, (|Jz| + |[v]* + |In f]) f €
LY(RY x RN). Then for all k > 0 we have

Flinf| < fin f42k(|z|+|of?) f+2Ce 2 =) with ¢ = sup {—y/ylny},
<1

o<y

and

/RN /RN flin f] dvde/RN /RNflnf dvdaz+2k/RN /RN(lm\—Hv\z)f dv da+C,

with Cyy = 2C fan fuv € 205+ dy da:.

Proof. Since f|In f| = fIn f+2f(In f)_, it is sufficient to estimate f(In f)_.
Take k > 0 and let C' = supg,.;{—/yIny} < +oo. We have

fnf)-=—fInf- Lo paettialtivy — flnf- Lo ntettio < ey
< Ce 2P L k(|| + ) f, ¥ (z,0) € RN x RV,

Therefore

2 (e ol?)
/RN/RNf(lnf)_ dvdz < /f/RN/RN(|JI|+|U| \f dvdm—i—C’/RN/RNe dv dz.

and the conclusion follows easily. O

Proof of Proposition 2. Integrating (1) with respect to (z,v) € R? x R?
yields

d
%/RB/R3 fe(t,z,v) dvdx =0, t €]0,T],
which implies that

_/R'J/R:s fe(t,x,v) dvdr = /]R?)/R3 fao dvdx = ]\4607 t €]0,T1. (17)



Note that integrating (5) with respect to z implies 4 [p:D(t,z) dz = 0
and therefore we deduce that if initially the plasma is globally neutral, i.e.,
Jrafgs [2 dvdz = [gsD(0, z) dz, then it remains globally neutral for all ¢ €]0, T'[

/]1{3 R3 fs(t,LU”U) dvdr = /R3D(t7x> dx.

Multiplying (1) by % and integrating with respect to (z,v) implies

’U|2 // B // ) //
S pdvdnt [ [ Beofodvar=— [ [ WPf dvdrss | R&f;dv dz.

Multiplying (2), (3) by E., respectively B. and integrating with respect to x
yields

1d
= /(|E|2+as|B| /E (J — j.) da. (19)

By combining (18), (19) we obtain

// \v|2f5dvdx+< // —fadvdﬂc—l— /|E[2+a5]B]) )
R3J/R3 R3JR3
:—/EE-Jd:z:—Ir?)// 70 dvda,
R3 R3JR3

and therefore we have

t ) 1
2 ‘L 7/ E2 B2

/O/RSRM fgdvdxds%—e/RS/Rs -t dvdo+ 5 [ (B + ael BaJ?) do
[v]* o 1 - -

Se/R?)/RS—Q I dvdx+§/w(yEs| + ae|B°|?) dx

+ [ (fLmtenr dﬂf)é ([P dx)é ds
+3t/RS/RSf£ dv dzx.

By using Bellman’s lemma (see Appendix) we obtain for all 0 <¢ < T

(/ |E.(t,2)|? d:v) <// (elof? + 6T) dvdx+/ (|E° + ac| B°P) dm)l

+/ (/ 17 (s, 7) |2dx)2 ds

= (2w + 6TM°) + |1 2 qo.rp L2 2y -

Finally we get



T 2 1
/// 0[2f. dvdzdt + sup g// h}fsdvdm—k/t(|E6|2—|—oze|Bg|2) dz
0 JR3/R3 0<t<T R3/R3 2 2 Jr3
1 2
< (@W? +6TMD)% + V2||J|| 2 gorpraesy) - (20)

We multiply now (1) by |z| and we obtain after integration with respect to

(,0)

d (v-x) B
|x\f5dvdx—/Rg/RS | f- dvdx = 0.

dt JrsJws |z

We deduce that

T
sup/ |x|f6dvda7§// || f2 dvdx—i—/// |v|f- dvdxdt
o<t<T JR3/R3 R3/R3 0 JRr3JR3

T 1

g// 2] £ dvdx—i—/ // “(Jof2 + 1) f. dvda dt
R3/R3 0 Jr3/r3 2

< Cp(MP + W2 + L2+ 1122 go.rpr2msy)- (21)

We multiply now (1) by (14 1In f.) and after integration with respect to (x,v)
we get

: _ V..
5%/]1@ s feln f. dvdx__/R3/R3(Uf5+vvf€>j; dv dx

- — 2
=3 [ [ fedvdr—a [ [ 19./5 vz

Finally we deduce that

t
Inf. dvd 4// v, EQddd:// Oln 9 dvd
6/1[@3/1@3f n f. dvdr + 0R3R3| \/?] vdrds eRsRsfanfE vdx
0
+3t/RS/RS £ dvdz(22)

Combining (20), (21), (22) and Lemma 3 with k£ = 1 yields

T
2 0 0
sup g/RS/Rgfeunfe\ dvdx+/0 /R [ VoL dvda dt < Cr(e+ M+ W,

0<t<T

+el + HY + HJH%l(]o,T[;B(RZS)))-

10



3 The relative entropy method

In this section we introduce the relative entropy, according to the seminal
works [13], [44]: it will allows us to establish convergence results, uniformly on
any finite time interval [0,7]. The proof requires some regularity properties
of the limit solutions (p, £, B) of (14) as well as the convergence of the initial
data like in particular for the electro-magnetic field

: 0/ 2 0/ 2 _
l{%(/RJEa(:r) E(0,2)| dx+a5/RS|Ba(x) B(0,7)| d:c> 0.

We introduce the Maxwellian

p v+ E\2>
= — ( e ——
pMpg(v) (2%)% exp 5
parametrized by p, E' so that p = [ps pMpdv, and pE = — [gsv pMg dv.

Given two non negative functions f, g defined on R? x R3, we define the non
negative quantity

H(flg) :/R/R [gln (g) —;—Fl}g dv d

which is a way to evaluate how far f is from g. We are interested in the
evolution of

1
H(t) = eH(f.|pM) + 5 / (|E. — E]? + ae|B. — B?) dx

R3

where (f., E., B:)->¢ are smooth solutions of (1)-(7) and (p, E, B) is a smooth
solution of (14). This quantity splits into the standard (rescaled) L? norm
of the electro-magnetic field plus the relative entropy between the solution
f=(t,z,v) and the leading term p(t, ) Mgz (v).

3.1  Analysis of the limit system

We start with the analysis of the system (14). Note that this system can be
split into two problems. First solve for (p, E)

Oip — div,(pE) =0, (t,z) €]0, T[xR?,
div,E = D(t,z) — p(t,x), (t,z)€]0, T[xR?
curl, B =0, (t,z) €]0, T[xR?,

p(0,2) = po(x), € R’

11



and secondly find B solution of

{&E —curl,B = —J(t,x) — p(t,2)E(t,x), (t,x) €]0, T[xR? (24)

div,B =0, (t,z) €0, T[xR?,

where the charge and current densities D,J are given functions satisfying
0D + div,J = 0. We give here an existence result for (23) which is a direct
consequence of the existence result obtained in [35], see also [26].

Proposition 4 Let p° € WHHR3) N Whe(R3), D € L]0, T[; WH(R?)) N
Whee(]0, T[xR?), 8;D € L>*(]0,T[; L'(R?)). Then there is a unique solution
for (23) satisfying

p e Whe(]0,T[xR?), E e W">(J0, T[xR?)?.

Proof. We introduce the exterior electric field Fy given by div,Fy = D,
curl, Fy = 0, so that div,(E — Ey) = —p, curl,(E — Ey) = 0. The hypotheses
imply that Ey, € WH(]0, T[xR3)3. Following the arguments of Theorem 3
and Lemma 8 of [35] we deduce that there is a unique strong solution (p, E)

for (23) verifying p € L>®(]0,T[; WL>(R3)), D — p € L>(]0, T[; W1>(RR3)),

E € L*>(]0,T[; Wh>=(R3))3. By differentiating the first equation of (23) with
respect to & we check that V,p € L>(]0, T[; L*(R?))? and since 9;p = E-V,p+
p(D—p) € L>(]0,T[; L*(R?))NL>(]0, T[; L>*(R?)) and ,D € L>(]0, T[; L'(R3))N
L>(]0, T[xR3) we deduce that 9, E € L>(]0, T[; W1P(R3))®> c L>(]0, T[; L°°(R?))3
for all p > 3. Finally we obtain that p € W (]0, T[xR?) and E € W>(]0, T[xR?)3.
In fact, since D — p € L*(]0, T[; WHH(R3)) N L>=(]0, T[; W1 (R?)) we have

E € L>(]0, T[; W*P(R3))? for all 1 < p < +00. On the other hand since 9, D —

Op € L=(]0, T[; LY (R3))NL>(]0, T[xR?) we have O, € L>(]0, T[; W'*(R?))3

for all 1 < p < +o0. In particular we obtain that £, 0, E € L>(]0, T'[; L*(R?))3.

Having disposed of this existence result, we can also show by looking at the sys-
tem satisfied by the 9, In(p)’s that these quantities are bounded on (0,7") x R?
when V,p° belongs to L>(R?)3. O

Once we find (p, F) it is easy to solve (24).
Proposition 5 Under the hypotheses of Proposition 4 assume also that
J € L=(]0, T[; L*(R?))’ n L=(J0, T[; L(R%))?,

0.7 € L=(0, T, H™(R%)* 1 L=(0, T, W 1(R%))?,
0;J € L*(0, T[; H*(R?))?,
for some q €]3,4+00[ and 9;D + div,J = 0 in D'(]0, T[xR?). Then there is a
unique solution B for (24) verifying B € L>(]0, T[; H'(R?))*NL>(]0, T[; Wh(R?))3,
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0,8 € L=(0,T]; L2(BY)* 1 L= (0, T]; L{(RY))?, 928 € L=(0, T[: H-(RY))".
In particular B € L>=(]0, T[xR3)3.

Proof. Observe that we have div,(0,F + pE + J) = 0 and that O,F +
pE + J € L*>~(]0,T[; L*(R*) N L%(R?))%. Therefore there is a unique B €
L>(]0, T[; HY(R3?) nW14(R3))3 such that O,F + pE + J = curl, B, div, B = 0.
In order to estimate ;B in L*>(]0,T[; L*(R®) N L%(R?))? it is sufficient to
estimate O,(O,E + pE + J) in L>°(]0, T[; H~Y(R3) N W ~19(R3))3. We have

div,(0?E) = 02(D — p) = 0,(—div,J — div,(pE)),

and thus

107 Ell e o1 wsy) < C - 0] + pE)| Lo qo a1 (r)
<C {10 | e qorp—1@sy) + |pllze - 10 E|| Lo qo,rir2 @)
+ 10pll Lo - [ B Lo qo,rL2®3)) }-

By the previous proof we already know that £ € L>(]0, T[; W??(R3))3, 0,F €
L>(]0, T[; W1P(R3))? for all 1 < p < 400 and we obtain similarly

107 Ell 2o go.rpw—raea < ClOT + pE)l| e qorsw—ra()
< C{N10cT || e go.riw—ra@a)) + ol 0Bl Loe o, Loy
+ 10epll oo | Bl oo o, 720 (ro }-

It remains to estimate 9?B in L>=(]0,T[; H*(R3))3. As before we have

102 E|| oo o, -2 (w3y) < Cll0F(J + pE)|| Lo o, -2 (%))
< C{|07 || oo qor-2(x3)) + lpllwree |07 Bl oe o7 -1 (R2))
+|0upll o= |0 B oo o 2()) + 1070 Bl poe o, mr-2(m3)) }-

And we are done if we bound the norm of 8?p E in L>=(]0,T[; H *(R?))%. By
the continuity equation we have

02D + div,0,J = 0,
implying that 97D € L>(]0, T[; W~2%(R?3)). Therefore we deduce that
O}p = 0!D — div,0r FE € L>(]0, T[; W~29(R?)).

And finally taking po such that 1/¢’ = 1/po+1/2 with 1/¢'+1/q = 1 and by
observing that

||E(t)90||w2,q’(R3) < CHE(t)lepo(Rs) ||g0||H2(R3),

13



we obtain

107 Ell oo o=@y < ClO7pllregoriw—2a@) 1Bl Lo go,rpurmo ey < +oo.

|

For further computations it is worth introducing the vector potential U such
that

B = curl,U and div, U = 0.

Since curl, B = curl,curl,U = —A_U the vector potential U has the regularity

U e L>(]0,T[; H*(R?))?,
oU € L>(]0,T[; H'(R3) N Wh(R3))3,
02U € L>(]0, T[; L*(R?))3.

In particular, since ¢ > 3, we have 0,U € L>(]0, T[xR?)3.

3.2 FEvolution of the relative entropy

This section is devoted to the study of the evolution of the relative entropy,
deduced from

4
dt

M. :5/3/Rgﬁtfa(1+lnfe+ |”+2E|2

d
_iitd(g /]RB/R3 feIn(p) dv dx)

2 ([ B - EP + ae|B. — BJ? )
+2dt</R3|€ |* + ae|B. > dx ),

where we used the charge conservation (17).

)dvdx+g/Rg/R3featE-(u+E) dv dz

(25)

Proposition 6 Let [0 > 0 verify the assumptions of Proposition 2. Let D >
0, D € L>(]0, T[; LY(R?)) and J € L>(]0,T[; L*(R?))? verify 0;D+div,J = 0.
Let (f., E., B.) be a smooth solution of the VMFP system (1)-(4) with the ini-
tial conditions f2, E°, B satisfying (9). Assume that the solution (p, E, B) of
(14) verifies E € Wh=(]0, T[xR3)?, B,9,U € L>(]0,T[xR?)3, E, B,O,E,0,B €
L>(]0, T[; L*(R3))?, 92B € L>°(]0,T[; H ' (R?))3. Then the balance of the rel-
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ative entropy 1s given by

4 (Hg(t) + ae /Rg((Eg —E)AN(B. = B))- Edx+ oz /RsatU (B — B) dx)

dt
2
+/]R3/]R3 |q:|* dv dx

:/A(EE—E,EE—E)-Edm+a5/3A(Bg—B,B€—B)-Eda:
R

R3

+ae/3((E5 _E)A(B. - B))-8,E dx

R

+as/{a§U Y ENOB -V, (U -E)} - (E. — E) do
R3

V:Jcp} " Qe fa dx

—I—s/ / ¢ - (DLE)(v + E)y/ f- dvdzx,
R3JR3

(26)
where, for a givenu : R — R3, A(u,u) denotes the vector u div,u—uAcurl,u

and q. = /f-(v + E) + 2V /f-.

We wish to establish from identity (26) an estimate like
t
H(t) < H.(0) + w(e) + Cr /0 H.(s)ds

for any 0 <t < T < 400 where the constant C'r depends on T" and on various
bounds on the data and the solution of the limit problem while w(e), which
also depends on 0 < T' < o0, tends to 0 as € goes to 0. Having such an estimate
implies convergence properties by a simple application of the Gronwall lemma.

To start the proof of these statements, it is convenient to rewrite (1) as follows

8(atfs +v- V:che) —din(fE(U—i-E) _'_vvfs) - divv{<E€ - E+a5(UABE>>f€} =0.

(27)
Let (p, E, B) be a solution of (14), and let us multiply (1) by (1+In fﬁ—%)
so that we will recognize the first term in the right hand side of (25). It thus
makes the following quantities appear

v+ E|?

dv dzx,

Q) = [ [ @+ Vs (14101 +
v+ E|?

Qut) = = [ [ w4 )+ 9uf) (1414

dv dzx,

Qs(t) = — _/R3 ” div,((F: — E +ac(v A B.)) f.) (1 +1Inf. + v +2E|2> dv dx.

We split the evaluation of these quantities into three lemma.

Lemma 7 Assume that E € W*°(]0, T[xR*)?. Then we have

15



d v+ E|?
Ql(t)zedt/Rg/RngOnfg—F 5 )dd

e /R/]R f.(v+E) - (Q,E + (D, E)) dvdz,

where D, E stands for the jacobian matrixz of E.

Proof. We can write

v+ E|?

(Oufe+v-Vafe)- <1+lnf€+ ) =0(felnfo)+v-V.(fIn fo)

(ﬁW+EP> (ﬂW+EP>_ﬁ@+JD%@E+U%EW%

where D, FE = After integration with respect to (z,v) we get

<8xz)1§ujs3'

Q1(t) = c;if fz—: (ln fe+ [v +2E|2> dv dx

e /]R/]R f(v+ E) - (BE + (D, E)) dvdx.

a

Lemma 8 We have

:/RS/RJ\/E(U—FE)—I—ZVM/EF dvdx:/Rg/]R3 |g-|* dv du.

Proof. By using the formula

diva(f-0 + B) + Vo f2) = div, {550, (£ |,

we deduce that

B /Rg/RS div, { _ vrE]? +E\2 (f€ |v+E|2>}ln <f€€v+2E2

L )
:/Rs/RS |\/£ (v+ E) —|—2VU\/Z|2 dv dx.

) dv dx

dv dx
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Lemma 9 Let (p, E, B) be a solution of (14) satisfying E € W1°(]0, T[xR3)3,
B,0,U € L>(]0,T[xR®)3, E,B,0,E,0;B € L>(]0,T[; L*(R3))3. Then, we

have

_d (1 9 ae 9
Qg(t)—dt{Q/RJEg B dv+ 5 /Rg|Bg B dx}

_/<~A(Ee —E,E.— E)+acA(B. — B,B. — B))- E dx

R3

_‘3“‘5/IR{S/W(@U+E/\B)‘(erE)f€ dv dx

+a5/(Vx(8tU-E) —~EANOB)-(E. - E) diU-FOté‘/@tU-at(Es—E) de
RS s

+ae /RSat((EE _E)A(B. - B))-E da.

Proof. We can write

div, (fE(EE — E+ae(vA BE))> (1 FN N G E|2>

2
=div, (fg In fE(Eg — FE+ OéS(’U A Bs)))
v+ E|?

+div, (fE(EE ~E+tacwh BE))> =

After integration with respect to (z,v) we get

Qs(t)Z/RS/RSfE(EE—E+oz€(v/\BE))~(v—|—E) dv dx
:/RS(EE—E)'jadaH-/RBpE(EE—E)-Edm+a€/RS(j5/\BE)-de
:/RS(EE_E)'(js‘{’pE)dx_‘_/Rg(pa_p)(Ea_E)'de

+O‘5/Rg<<j€+pE)/\(B€_B))'de+a5/RS((ja+paE)/\B)-Edgg
=0+ 1+ I3+ 14

From (2), (3) and (14) we have
O(E. — F) — curl,(B. — B) = j. + pFE, (28)

acdy(B: — B) + curl,(E. — E) = —aed,B. (29)

By multiplying (28), (29) by E. — E, and B. — B respectively, we find after
integration with respect to x

17



1d
2 dt

(|E. — E]? + ae|B. — B]?) dx:/(jEerE) (B. — E) de

R3
—ae/ 0B B) dx
—Il—as/ 8,B - (B. — B) dz. (30)

By using (28) and the vector potential U the last term in the above right hand
side can be written

—ae/ OB - (B. — B) de= —046/ 0U - curl,(B. — B) dx (31)
R3 R3

:aa/ OU - {j. + pE — 8(E. — E)} dx
—oze/{@t (Je + peE) + (p— p:)0U - E} dx

— Qe /R?)atU -O(E. — F) dz.

From (4), (14) we have div,(E. — E) = —(p. — p) and thus

[2:

/Rg(ps —p)BE.—E) Ede=— /RSdivx(EE _E)(E. — E) - E dz. (32)

Now by using (2), (3) we deduce

Is=

ae /Rg((ja +pE)A(B. — B))- E dx (33)
— e /Rg((@t(Eg — E) — curtly(B. — B)) A (B. — B)) - E da

— e /Ra((Ba — B)Acurl,(B. — B)) - E dx

+as/Rgat((E€ “E)A(B.—B))-E da — as/RS((EE “E)AO(B. - B))-E do
:as/Rg((Ba — B) Acurly(B. — B)) - E dz + as /Rg((EE _E)AO,B)-Edx

+ ae /}Rﬁt((EE —EYAN(B: — B))-Edx+ /}Ri;((E6 — FE)ANcurl,(E. — F)) - E dx.

Equalities (32) and (33) imply

Ig+13:—/3.A(E€—E,E€—E)~de—a5/3A(B€—B,BE—B)~de
R R

+oz€/Rg(9t((EE—E)/\(B€—B))'de+ozé:/Rg((E€—E)A8tB)'de.

Finally we arrive at the formula for Q)5 stated in Lemma 9. O
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From (27) we know that Q1 (t) +Q2(t) +Q3(t) = 0 for all 0 < ¢ <T'. Therefore,
combining Lemmas 7, 8, 9 yields

d | 1d
4 (nf. + - E2> ~ 2 [(|E. = EI? + ae|B. — BJ?
e /R3R3f<nf—|—2|v+ | dvdx—|—2dt R§| |* + ag| ) dx
"’/ || dv dx (34)
R3JR3
:5/ / f.(v+ E) - (O,E + (D, E)) dvdz
R3JR3
+a5/3/3(8tU+E/\B)-(v+E)f5dvdx
R3JR
+/3A(EE—E,E€—E)~de+ae/3A(B€—B,BE—B)-Edm
R R
—ag/S(vx(atU.E) _EANOB)- (E. - E) dz
R

~ae /RS@((EE _E)A(B. - B)) - Edr — ac A3atU  Oy(B. - E) dx.
The two last terms can be recast as

—ael </R$((E ~E)A(B.~B)-E+0U - (E. - E)) dx>
+ae /R<(E ~E)A(B.~B)-0,E+3U-(E. - E)) du

For computing the time derivative of the relative entropy we also need the
expression of the third term in the right hand side of (25).

Lemma 10 We have

jt (¢ L, sty dvde) =< [ [ 5.0+ B)- Valnp) + div, ) dods.

Proof. Using the equations satisfied by f. and p, we obtain when integrating
by parts

d fe
pr </}R3 » feln(p) dv dx) = /R3 » fev-ViIn(p) dv dx—i—/]Rg/]R3 ;dlvgc(pE) dv dzx.

We conclude by expanding div,(pE) = div,E + E -V, In(p). O

Combining (34) and Lemma 10 characterizes the evolution of the relative
entropy and proves Proposition 6 with the following observations (based on
integration by parts with respect to v):
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- On the one hand for any (vector valued) function ¥ depending only on (¢, x),
we have

L f v wr By dvde = [ ] w(tx) g\ dvda

- On the other hand, we have

5/R3/RS(DQDE)(U+E) v+ E)f. dvdx—a/RB/RB fdiv, E dv dz

:aASAqu.(DmE)(U+E) f. dvdz,

where we recognize one of the integrals produced in Lemma 10.

We intend to show that the terms in the right hand side of (26) are dominated
by the relative entropy and the entropy production term [gsfps |g-|* dv dz up
to a reminder term of order £2. This will allow us to conclude by the Gronwall
lemma.

Corollary 3.1 Under the hypotheses of Proposition 6 we have for any ¢ €
0,1]

sup H.(t) < Cr (HE(O) +e3(1 + a2)),

te[0,T]

/T/ \g|? dvdz dt < C: (H (0)+52(1+a2))
o Jra/rs e =~ T € .

Proof. The estimates are standard, except that of the term

3

/ ¢ - (D E)(v+ E)y/ [ dvdx
R3JR3

|ge|? dvdx + 052/ / v+ E|?f. dvdz,
R3 R3JR3

< —
— 4 Jrs

which actually needs a sharp estimate of €2 [gsfgs |v + E|?f. dvdz. This can
be done by using the properties of the entropic convergence, introduced in
[4]. For the sake of the completeness we recall here the arguments. Let h :
] — 1, 400[— R be the strictly convex function

hMz)=(14+2z)In(1+2) -2, z>—1,

which enters into the definition of the relative entropy. Indeed, let us denote by
g the e-fluctuations of f. with respect to the equilibrium pMg (and normalized
by pMp)
Je
pMpg

=1+¢eg..
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Then, we get
H(f:|pMg) = / / pMpg h(eg.) dvdz.
3/ R3

We shall make use of the following properties of the function h:
e [ts Legendre transform is explicitly given by
h*(y>:ey_1_ya yER

e Reflection inequality
h(2l) < h(z), 2> -1,

e Super-quadratic homogeneity
h*(Ay) < NR*(y), ¥y>0,0< A< L

e Young inequality
yz < h(z) + " (y).

Indeed, apply the Young inequality with
y= (L4 +EP), 2=clgl.
da

Using the reflection inequality and the super-quadratic homogeneity yields for
O<e<a

e /1
(1+ |+ EP)elgl < hiege) + S (0 + o+ BP)).

£
4a

Multiplying by aepMp and integrating with respect to (z,v) € R® we deduce
that

g2 ) o
Z/RS/RS(l—HzH—E] ) fe — pMEg| dvd:cgaé/Rs/RSpME h(ege) dvd:c—l—CE

3
<aM.(t) + C%. (35)
Consequently, choosing a = 1, we obtain
1
2 2 9
< /]1%3/]1{3 §|U+E| f5 dvdeC(He(t>+5 ), 0<e<l1. (36)

(Another choice of a will be useful later on.)

It remains to estimate the other terms in the right hand side of (26). Using
the formula
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1
A(u,u) = div, (u ®u — 2|u|213> ,

we get easily after integration by parts that

’/ A(EE—E,Ea—E)-Eda:’ <C [ |B.— B de < C (1),
R3 R3

and similarly

(0%39)

/A(Ba—B,Ba—B)-Ed:p
R3

<C 045/ B. — B2 dx < CH. (%),
]RB

whre C' depends on || E|[y1.~. Next, we use the trivial inequalities

(0%9)

/RB((EE —EYA(B. — B)) - 0,E da

< CJa_a/RSQEE _ B+ ac|B. — BJ?) da
< Cvae H(1).

By virtue of our assumptions on the limit solution, 92U +FEA9,B—V ,(,U-F)
belongs to L>°(]0,T'[; L*(R?))? and therefore

1
e < Ca?e? + —/ |E. — E\Q dx
2 Jr3

<Ca’e? + H(1).

/RB{Q?U Y ENOB -V, (U -E)} - (E. — E) do

Similarly, by using the charge conservation we get

£

/RS/Rs{Od(atU—l—E/\B) + O F — (D,E)E — VoInp} - g/ f- dvdz| (37)

1
< 7/ |g|? dvdx + Ce*(1 + a?).
4 Jr3/rs

Plugging all these estimates in (26) we obtain

5 v ras [(B.~ B)A (B~ B) - Edotas [ 0U - (E. - E) do

e <0 ),

Eventually the conclusion follows by integrating with respect to the time and
by observing that
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ae /RS((E€ “E)A(B. - B))-Edz +ac /RS&U (E. - E) dz (38)
< C(1+ Vag)H.(t) + Ca*e®.

4 Asymptotics

In this section we analyze the asymptotic behavior of smooth solutions ( f., E., B:):>0
of the VMFP system (1)-(7) when the parameter ¢ \, 0 and we establish
rigorously the connection to the system (14). We start with the following
consequence of Corollary 3.1.

Proposition 11 Under the hypotheses of Proposition 6, we assume moreover
that

i) lim o H:(0) = 0. Then, we have
E. =~ E  strongly in L>(]0,T[; L*(R?))3,

T
/ / .2 dv dze dt —— 0,
0 JR3/R3 AN

fe — p-MEg - 0 strongly in L*(]0, T[xR3 x R3).
ii) lim o H:(0)/e = 0. Then, we have furthermore,

fe =~ pMg  strongly in L>(]0, T[; L' (R? x R3)),

e 5 P and je N —pE  strongly in L=(]0, T[; L' (R3)).

iii) lime o H:(0)/(ae) = 0, with lim. ge/a = 0. Then, we have furthermore,
B. ~ B strongly in L]0, T[; L*(R*)).
Proof. The two first statements in i) are obvious consequences of Corollary 3.1

since H(f.|pMpg) > 0. Next, we appeal to the logarithmic Sobolev inequality,
see e.g. [3], [2], which yields

Je ( Je ) Je } / ( Je >
< 1 — 1 M = 1
o= LA G T K ST VT A

A 2
<)/ ’Vm/fe/ME‘ My do =7 [ Jaf dv

for some A > 0. Hence [J H(f.|p-Mg)dt tends to 0 as € \, 0. Eventually,
we conclude by using the Csiszar-Kullback-Pinsker inequality, see [19], [32],
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which implies that

2 Je
</R3 s |fe — peMg| dv d:z:) < ,u/RBfaln <p£ME> dv dx,

with g > 0.

With the additional assumption in ii), we strengthen also the behavior of the
relative entropy: lim.\ osupg<;<7 He(t)/e = 0. Now, let us go back to (35).
Optimizing with respect to a, we arrive at

// (L4 v+ EP)|f: — pMg| dvdz < Cr H(t)
R3JR3 £

which tends to 0 uniformly with respect to 0 <t < T as € \, 0. Therefore we
readily check that

sup /RS/RS ]fs—pME\dvdxg\—0>O

te[0,7
su —pldr = su / — pMEg) dv| de — 0
te[og’] R3|p€ 4 te[og’] R3 Ri”(fe pMz) e\
swp [ g+ pBlde = sup [ | [ w(f. — pMg) do| dv — 0.
telo,T] /IR? tefo,1] /R3| JR3 e\.0

The control on the magnetic field under the strengthened assumption in iii)
follows from the simple remark || B. — B||(t) 2ms) < He(t)/(ac) < Cr (’HE(O) +

e(1+0%)/(02). B

Clearly, Proposition 11-iii) ends the proof of Theorem 1. However, we can
still investigate the asymptotic behavior of the solutions under the weaker
hypothesis of i). The difficulty comes from the fact that the relative entropy
does not provide useful information on H(f.|pMg) and ||B. — B||%2(R3) due to
the € and ae in front of these terms in the definition of the relative entropy.
Nevertheless, we will be able to establish convergences in a weaker sense. For
instance, since p. — p = div,(F — E.) we obtain that lim. o p. = p in D'(R?),
uniformly for ¢ € [0, T]. Actually we can prove that the previous convergence
holds in the space of bounded measures. Throughout the paper we denote by
M (R?) the set of bounded Radon measures on R?, while MY (R?) stands for
its positive cone. We recall some definitions and compactness properties in
measure spaces (see [12] for more details).

Definition 4.1 Let (p,)nen be a sequence in MY(R3). We say that
1) (pn)nen converges vaguely to p iff

lim [ pdo.= [ pdp, (39)
]R3 ]R3

n—-+4o0o
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for any continuous function with compact support o € C°(R3) (actually the
convergence holds for any continuous function ¢ wvanishing at infinity i.e.,

limg) 400 p(x) =0)
2) (pn)nen converges tightly to p iff (39) holds for any continuous and bounded
function ¢ € CO(R3) N L>=(RR?).

We have the following classical results.

Proposition 12 1) Let (pn)nen be a sequence in ML (R?) which converges
vaguely to p. Assume also that lim,,_, ,.pn(R3) = p(R3). Then (pn)nen con-
verges to p tightly.

2) Let (pn)nen be a sequence in M (R?) wverifying sup,, |pn|(R?) < 400 and
such that for any n > 0 there exists a compact set K, C R® satisfying
sup,, |pn|(R? — K)) < 0. Then (pn)nen is relatively compact for the tight topol-

0gy.
We recall also the following compactness result, cf. [26].

Proposition 13 Assume that (p:)eso, (Je)eso satisfy pe > 0, Oppe+div,j. = 0
in D'(]0, T[xR3), Ve > 0 and

sup sup | p-(t,z)(1+ |z]) do < +oo,
e>0 te0,1] /R?

T 2
sup (/ |7:(t, )| d:z:) dt < +00,
0 \JR3

e>0

T
sup/o /Rg(l + \/M)Ue(t,xﬂ dxdt < +o00.

e>0

Then (pe)eso is relatively compact in C°([0,T]; ML(R?) — tight) and (je)eso
is relatively compact in M*([0,T] x R?)3- tight.

Our goal is to complete Proposition 11 as follows.

Lemma 14 Let the assumptions of Proposition 11-i) be fulfilled. Then, we
also have the following convergence properties:

a) pe converges to p in C°([0,T]; ML (R?) — tight),
b) j. converges to —pE in M([0,T] x R?)) tightly,
¢) B- converges to B in D'(]0, T[xR?).

Proof. We observe that
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T T
2 < 2 9
/O/RS s v+ E| fgdvdxdt_/o /RB/R3(|U+E‘ fa+4!VU\/£| ) dv de dt
T
— 2_ )
_/0 /R?)/Rg(|q5| 2+ E)-V,f.) dvdxdt
T
:/// (Ig=* + 61.) dv dz dt.
0 JR3J/R3

Hence, the charge conservation together with Corollary 3.1 imply that

T
sup / / [v2f. dvdx dt < +oo.
0 JRr3JR3

0<e<1

Next, reasoning as in the proof of Proposition 2 (see (21)) we have

T
//(1+|:E|)fedvdx§//(1+|m|)f£dvdm+/// v|f. dvdz dt
VR R3/RS 0 Jrs/Rs
1 T
0 2
< [ [a+lahfawde+s [ [+ v,

by using (15) and therefore

sup sup | (1+|z|)p:(t,z) de < +o0.
0<e<1 tefo, 7] /R3

Moreover we have the inequalities

[ 1y do< [ ([ [ 1ol dvda)
S/OT(/Rg | |v|2f5dvdx> . (/R?)/R?)fsdvdx) dt
</OT/R3 -, lv]? f- dvda:dt) : (/RS/RS 1o dvdx)

C, 0<e<l,

IN

IN

and

/OT/W(l Dt )] dxdtg/oT/Rg/RB(l Dol dodz dt

1 /T
< - 2 9
= 2/0 /R?,/Rg{(l + [v|*) + (lz] + [v]*) } fe dv dxdt
<C 0<e<l.

Therefore, by using Proposition 13 we deduce that (p. ).~ is relatively compact
in C°([0, T7; ML (R?) — tight) and (j.).>¢ is relatively compact in M*([0, T x
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R3)3-tight. Since div,(E. — E) = —(p. — p) we obtain that p. converges to p
in C°([0, T]; M! (R®) — tight). Next, we remark that

// ‘Ja+,05E\dxdt<//RS/RS\/E|q£’dUd$dt
S(/O/RBRngdvdxdt> </// |qg|2dvd$dt> |
(4

0)

and thus we have for all continuous bounded function 6

/ (o + pE dedt‘

/ (Je + peE dedt‘

/,0 pe) E@dwdt’

/0/ Eedmm‘)

Since Ef is bounded and continuous we have limes o fif fzs(pe —p) EO dxdt = 0
and thus Proposition 11 implies that j. converges to —pE in M ([0, T] x R3)3-
tight.

< lolle= [ J Je+ peE| du dt +

It remains to deal with the magnetic field: we aim at showing that

T
ll{r(l)/o/Rs(Bg—B)-gadxdtzo,

for all function ¢ € C2(]0, T[xR3)3. Pick ¢ such a function and observe that in
particular we have ¢, d;p € L*(|0, T[; H'(R?))?. By using the decomposition

w = V1 + curl,p,,

with 1,01 € L*(]0, T[; H*(R3)) and 9, Orpo € L*(]0, T[; H*(R?))3, it is
sufficient to prove that

T
1'/ B. — B) - Vypy dodt =0, 42
tw [ [ (B~ B) Vg dr (42
and .
1'/ B. — B) - curl,py dzdi = 0. 43
i [ [ (B - B) - cwles da (43

The convergence (42) is trivial since div,B. = div,B = 0. To justify (43) we
use the equations

oE,. —curl,B, = j. — J, OFE —curl,B=—pE — J.

After multiplication by the test function o we find

T T T
—/ (E.—E)-Oppy dx dt—/ / (B.—B)-curl,py dz dt = / / (Jet+pE)-po dx dt.
0 JR3 0 JR3 0 JR3
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Since Oypo € L]0, T[; L*(R?))? and lim~o E. = E in L*>(]0,T[; L*(R?))?
the first integral in the left hand side vanishes as € \, 0. To deal with
the right hand side, observe that ¢s is a continuous bounded function since
a2, 0o € L*(10,T[; H*(R?))? imply @, € C°([0,T]; H*(R*))* < C°([0,T] x
R3)3NL>(]0, T[xR?)3. By using the convergence lim. o je = —pE in M*([0, T]x
R3)3-tight we deduce

T
I // .+ pE) - 0y dz dt = 0,
lim | | (et pE) - @2 do

and therefore (43) holds.

Let us end with the following remark, which makes the formal result (13)
clear:

T
lim / /
eNo0.Jo JRr3

holds for any test function ¢ € C°(R?) N L>°(R?). At first, we expand

dv dt = 0,

L, (fete2.0) = plt.2)Mp(t,2.0) olx) d

fa - pME = (fa - paME) + (pa - p)ME-

Consider ¢ € C°(R3) N L*>°(R3). Since E € W1(]0, T[xR3)3, for all (t,v) €
[0, 7] x R? the function z — Mg(t,z,v)¢(z) is continuous and bounded. We
have already shown that p. — p tends to 0 in C°([0, T]; M*(R?) — tight) and
thus we have

li{% Rg(pa(t,x) —p(t,z))Mg(t,z,v)o(z) do =0, Y(t,v) € [0,T] x R>.

Moreover we have the inequality [v + E(t,z)|* > o> — |E(t,2)|* > 1[v]* —
|E||2~ and thus Mg(t, z,v) < C(||E||1)e P4, ¥ (¢, 2,v) € [0, T] x R? x R3.
We deduce that

[ (oett) = plt, ) M(t, 2, 0)(w) | < 2C(IE )l [ DO,) dw e

RS

and by using the dominated convergence theorem we obtain

T
lim / /
e\0Jo JR3

The behavior of f. — p. Mg has been already discussed in Proposition 11. O

/Rs(pg(t, x) — p(t,x))Mg(t, z,v)p(x) dx’ dv dt = 0.

To conclude, we are led to the following statement.

Theorem 15 We assume that the assumptions of Theorem 1 are fulfilled, but
we replace hypothesis (16) on the initial relative entropy by lim. o H.(0) = 0.
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Then (E.).so converges to E in L>(]0,T[; L?(R?))3, (1/2B:)eso converges to
0 in L>=(]0,T[; L*(R?))3, (B.).so converges to B in D'(]0, T[xR3)?, (p.)es0
converges to p in C°([0, T]; ML (R?) — tight) and (j.)->0 converges to —pE in
ML([0,T] x R?)3- tight.

A Dimensional analysis

We detail here the dimensional analysis of the equations and the physical
meaning of the different parameters introduced previously. Let us write the
equations in physical variables. We distinguish the following physical constants
- ¢ the vacuum permittivity ;

- 1o the vacuum permeability ;

- ¢o the vacuum light speed given by eopoct =1 ;

- q the charge of (negative) particles ;

- m the mass of particles ;

- 7 the relaxation time which characterizes the interactions of the particles
with the thermal bath ;

- K the Boltzmann constant ;

- T}, the temperature of the thermal bath.

Let f(t,z,v) denote the particle distribution function, which depends on the
time ¢ > 0, space coordinates x € R?® and velocity coordinates v € R3. The
evolution of f is described by the Fokker-Planck equation

F
atf T fo + E ' vvf = LFP(f)> (t,.T,’U) €]O7+OO[XR3 X Rga

where the Fokker-Planck collision operator is given by

KgT,
m

Lep(f) = idivv (v £+ v, f) ,

and F(t,x,v) = q(E(t,z) + v A B(t,x)) represents the Lorentz force. The
evolution of the electro-magnetic field (E, B) is given by the Maxwell equations

(¢
OE — & curl,B = —M, OB +curl,E =0, (t,)€]0,4+o00[xR?,
€o
t
div, E = pl ,a:)’ div,B =0, (t,7) €0, +oo[xR?,
€0

where p = ¢ Jgs f dv and j = ¢ Jgsvf dv are respectively the charge and
current densities. The plasma is characterized by the mean free path [ =

\/% -7, which is the average distance travelled by a particle between two

successive collisions, and the Debye length A = ,/=EBLRL® which is the typ-

ical length of perturbations of a quasi-neutral plasma. Here A stands for a
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typical value for the number of particles in the plasma. In this paper we focus
our attention on asymptotic regimes where the mean free path is much smaller
than the Debye length i.e., | < A. We set

which is a small parameter. We introduce time, length and velocity units

T=- L==- V= .

T [ KT,
€ € m

Observe also that we have L = TV and A = \/eL. We define dimensionless
variables and unknowns by the relations

t=Tt, v=1L1', v=Vv,

N t x v Usn t x VU,
t = "(=,~, =), Elt,x)=—F'(=,~), B(t,z)= !
[te) = sl (G py) Blbo) = 2B (), Blte) = Gro B
gN'- , t = . qVN , t =z
t = — _— — t = _— —
where Uy, = LB{JTM is the thermal potential. After changing variables and

unknowns, we obtain dropping the primes

2

5(atf +v- fo) - (E(t7$) + ‘;U A B(t’ ZL‘)) : va = din(Uf + vvf)a
0

2
O E — curl,B = —j(t,x), V—zﬁtB + curl, £ =0,
Co

div, £ = p(t,x), div,B =0,
where p(t,z) = [gs f(t,z,v) dv, j(t,x) = [gsvf(t,x,v) dv. Notice that we

have )
V2 IN"1 A%
2=\ D] 27 22T %

(&) T (&) T2Cy

2
where o = (%) , so that we are interested in a regime where the light speed

remains large compared to the velocity unit of observation.

Let us define

1 1
the collision f - =
e collision frequency NI
1 Nq?
the plasma frequency ?p =\ LC31€07
the scale of light propagation To = L/co,
I Kglhiy 1

the cyclotronic frequency = -
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(the last definition takes into account the scaling of the magnetic field) while
1/7 is the collision frequency. With the previous scaling assumptions, we arrive
at T,/T = e, Ty)/T = Jae, T./T = 1/a. The assumption ¢/a — 0 is
physically questionable since it means that 7y which is the time necessary for
light to travel the distance L is large compared to the time 7 between two
collisions events. This remark justifies the analysis of the general situation.

B Bellman’s lemma

In the proof of Proposition 2 we have used Bellman’s lemma. We recall here
the statement

Lemma 16 Assume that = : [0,7] — R and a : [0,T7] — R4 are given
functions satisfying

1 1 t
SeOF < Sleof + [ als)a(s) ds, te (0,7
0
Then we have the inequality

(1)) < |0l +/0ta(s) ds, t €0, 7).

C Renormalized solutions

We have investigated the high-electric-field limit of the VMFEP system provided
that the solutions (f., E., B:)s>¢ are smooth. The global existence of smooth
solution for the VMFP system is a largely open problem in general situations.
Therefore, following the ideas in [39] we intend to establish similar results
in the framework of weaker solutions for the VMFP equations. In order to
simplify our computations we work in the space periodic setting: we consider
the space domain T3 = (R/Z)3. A weak solution is a triplet

(fe) Ee, B:) € L(J0, T[; L*(T? x R?)) x L>(]0, T[; L*(T?))°
NCO([0,T); w — L*(T? x R)) x C([0, T); w — L*(T?))S,

which satisfies (1), (2), (3), (4), (6), (7) in the sense of distributions and verifies
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1 |
6// (1nf€—|—|v|2) 1. dvdm—l—f/(|E6|2+oz5|B6|2) dz
T3/R3 2 2 T3
t
oV LR dvdad
LoV 29 R dvdeas

t
+// J - E. duds
0JT3

1 1
<e [ [ (24 SloP) £ duda+ 5 [ (B9 +aelBYP) da, te 0,7,
T3/R3 2 2 Jrs

It is well known that such a solution satisfies the local conservation law of the
charge

Oy /Rst dv + div, /R?)vf6 dv =0, (C.1)

but wether the local conservation law of the momentum holds in the sense
of distributions is still an open problem. We consider a particular type of
weak solutions, i.e., the renormalized solutions for the VMFP equations, as
introduced by DiPerna and Lions [22]. Their construction yields a solution
which satisfies in addition a conservation law of momentum and a global energy
equality with defect measures. The idea is to consider approximate solutions
(fr, E*, BY), (here ¢ is kept fixed) and to extract subsequences (still indexed
by n) such that

f = feo wx=L%(]0,T[; L*(T* x R%)),

(EZ,B) = (E., B:), wx—L*(|0,T[; L*(T%))°.
Therefore (after extraction eventually) there are symmetric non negative matrix-
valued defect measures u5;, u5 € L=(]0, T[; MY(T?))®, upp € L]0, T[; M*(T?))?
such that for any ¢ € C°([0,T] x T?)

T T T
Tim / / (E"©EMo(t, x) du dt = / / (E.9E.)p(t, ) dz dt+ / / o, ) duis,
0 JT3 0 JT3 0 JT3

n—-+o0o

T T T
lim / / (Br®@B)p(t,x) dx dt = / / (B:®B:)p(t,z) dx dt—l—/ / o(t, x) dusp,
0 Jrs 0 Jr3 0 Jr3

n—-+o0o

T T T
lim / / (E"ABM)o(t, 7) du dt = / / (E.AB.)g(t, x) de di+ / / o(t,7) diiSop.
0 JT3 0 JT3 0 JT3

n—-+4oo

Observe also that the sequence (fg° r* fI(t, z,or) dr),, is bounded in L>(]0, T'[; M (T?x
S?)) and therefore (after extraction eventually) there is a non negative mea-

sure m. € L>(]0, T[; ML(T? x S?)) such that for any ¢ € C°([0,7] x T* x S?)

we have

T T
lim // o] f) zf,ac,i dvdxdt:// [v]? forp t,x,i dv dzx dt
n—-+oo Jo J13/R3 || 0 Jrs/Rs |v]

+/0T/Tg/82 Y(t,z,0) dm.. (C.2)
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Taking ¢ (t,z,0) = 0(t,z)(0c ® o) we deduce that

lim (U@U)f:dv:/(v(@v)fedv—l—/(U®a)dm5,
RS R3 52

n—+00o
in D'(]0, T[xT?). Using the formula
PE" b AB" = DE"+asJAB—A(E", E")—as A(B", B")+aed,(E*ABY),

we deduce that the limit solution (f., F., B.) satisfies the local conservation
law of momentum in the sense of distributions on [0, T[xT?

56,5/31;]‘5 dv + ediv, </3(v<§§v)jﬁE dv—l—/S (0 ® o) dmg> + DE. + acJ A B.
R R 2

—A(E., E.) — acA(B:, B:) + acdy(E- N B:)
1 1
—div, (,u% - 2tr(/fE)Ig) — aediv, (,u% - 2tr(/fB)[3) + acdipp

= —/]Rsvf6 dv. (C.3)

In the above formula the terms A(E., E.), A(B., B:) must be understood in
the sense of distributions accordingly to the formula

1 1
A(E., E.) = div, (E ® E. — 21E€‘213> , A(B.,B.) = div, (BE ® B. — 2\35,213) .

For further computations it is convenient to transform (C.3) using the identi-
ties in D'([0, T[xT?)

acO(E: N\ B:) =ac0,((E: — E) N (B: — B)) + acdy(E N B)
+ ae(je + pE 4 curl,(B. — B)) A B+ as(E. — E) A O,B
+acdE N (B: — B) + EN (—aedB — curl,(E. — E)|C.4)

A(E.,E.)=A(E. — E,E. — E) + A(E, E)
+(E. — E)div,F + Ediv,(E. — E) — E Acurl,(E. — E),(C.5)

acA(B;, B:) =acA(B. — B, B. — B) + ac A(B, B)
—ae(B: — B) ANcurl, B — aeB A curl,(B: — B), (C.6)

acOy(ENB)—A(E,E)—acA(B,B)=E(p— D) —ae(J + pE) N B+ acE N 0,B.
(C.7)
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Combining (C.4)-(C.7), (28), (29) we obtain

aed(E: N B.) — A(E, E.) — ac A(B;, B:) = ac,((E. — E) A (B: — B))
—A(E. — E,E. — F)— acA(B. — B,B. — B)
— (D = p)E. —ae(J + pE) AN B. + ae(E. — E) N\ O,B
— Ediv,(E. — E) + ac(j. + pE) N\ B.

Therefore the conservation law of momentum (C.3) can be written

£ 8t/RSvf€ dv + ediv, (/Rg(v@w)j’E dv+/§2(0®0) dm€>

+acd,((E. — E)A(B. — B)) — A(E. — E,E. — E) — acA(B. — B, B. — B)
+pE. —aepE N B. + as(E. — E)NO,B — E(p — p:) + ac(j- + pE) A B

. I3 1 I3 : 3 1 3
—div, (uE - 2tr(pE)Ig> — aediv, <NB — 2tr(uB)Ig> + aedilipn

__ /R3vf€ dv. (C.8)

Similarly the limit solution (f., E., B.) satisfies the free-energy decay

1, 1 ) )
[/ (lnf€+|v\ )fs dvdz+ 3 [ (|BP +acl B.P) do (C.9)
2
//TS !U\/]Tg—l—ZV fel? dvdx ds
+2 T3/s2 dme + 2/ (tr(pp) + actr(up)) +// J - E.dvds

2
S“5// <1nfso+|v| )fEO dvdx+f/(|E£|2+oz€]Bg| ) dx, te€0,T].
T3/R3 2 2 Jr3

We call renormalized solution of the VMFP system a weak solution satisfying
(C.3) and (C.9). The above arguments allow to construct a renormalized solu-
tion (f., E-, B-) on any time interval [0, 7' and for any € > 0. In order to study
the asymptotic behavior of these solutions as € goes to zero, we introduce the
relative entropy with defect measures.

Ht)=e [ [ f. i

T3/R3

1
— dvdr 5/ |E. — E? + ae|B. — B?) dx

€ g
+5 oo dm. + 2/ (tr(p%) + astr(py))
+3 /]1‘3/82 dm. + 3 /TS d(tr(pg) + astr(py)).

We have
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fe
pM

fotnte g (W fot o) + £ (v B+ 5[BF) - o s

and thus in order to evaluate H. we need to compute [psfgs |E|*f. dvdaz,
Jrafgs E - vfe dvdz, [sfgs f-Inp dvdz and to combine with (C.9). This will
be done by using the conservation laws of charge (C.1) and momentum (C.8).
We obtain the following equalities in D'([0, T])

d 1,
e [ [ SIBR s dvde —< [ [ B (@8 + (D.B)0)f. dvdr =0,C.10)

d
ag/TS/RSv-Efgdvdx—e// (O F + (D E)v) -vf. dvdx (C.11)
—s/TS/SQ DEade—l—ae—/E E)A(B. - B)) - E dz
—as/((E—E)/\(B—B))-@tde
—/ (B. — E,E. — E) + acA(B. — B,B. — B)) - E dz

1 1
/DE ( 2tr(uE)Ig> dx+a€/DE (,uB 2tlr(,uB)]g) dx
+/Tng€~Eda:+a5/Tg((E5—E)/\8t )~de—/TB|E| (p— p.) do

d
+oz5/(jg/\B)-Eda:+a€—/ E-du%B—ag/ 8tE‘dMEEB:—/jE'Ed£E-
TS dt Jts T3 T3

By standard computations using the Maxwell equations we obtain in D’(]0, 1)

d /1
7/ (2]E]2—E€-E+O;8]B\2—aeBE-B) dl“:/s((j_js)'E_Oé5atB'(Bs_B)) dz
T

dt J1s
—/(j—J)-EE dz. (C.12)
T3

Summing up (C.9)-(C.11), (C.12) (the last three equalities being integrated
over [0,¢]) yields after elementary manipulations
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1 1
5// (1nf€—|—|v—|—E|2> fe dvd:p—i—7/(|E6—E|2+0z5|Ba—B|2) dx
T3/R3 2 2 Jr3
t
+// q-|* dv dzx ds
0JT3/R3
€ 1 . .
w2 [ dme+ 5 [ dte(s) + ast(us)
+Oé€/3((Es—E)/\(BE—B))-de+oze/3E-du“iEB dx
T T
1 1
<e [ [ (w24 Slo+ BE) £ duoda + 5 [ (1B~ B+ ael B = B'P) da
T3/R3 2 2 J3
t
+oz€/3((E£—E0) A (B — B%) - E° dx+€//3/3(8tE+(DzE)U) (v+ E)f. dvdzds
T 0JT3/R
t 1
—//3 ((EE—E>®(E6—E) —2|E8—E|213> . D,E dxds
0JT
t 1
—a8//3 <(Be—B)®(Bg—B) — 2|B€—B|213> : D, FE dxds
0JT
¢ t
+a€// (E. — E) A (B. —B))-atdeds+oza// O, - disyp, da ds

—ozg/ 0B - (B: — B)dxds—ae// (E.— E)ANO:B) - E dxds

_as// (je NB) - E'clxc1l8—|—»s//1r3/§2 (D, FE)o dm,
[ [oam (-5 (ME)L;)—ae// DB (s - ;tr(u%)ly)). (C.13)

It is easily seen, by introducing the vector potential U that

—/at (B. — de—// (B. — E)/\c‘)t)Edmds—AtAg(jaAB)-deds
:// OU +EAB)-(v+ E)f. dvdz
—/ (8U-E)— EN&B) - (E. — E) du
dt/at (B. — Edw+/62 (B. — E)de.  (C.14)

Combining (C.13), (C.14) yields the analogous version of (34) (integrated
over [0,t]) with defect measure terms. It remains to add the contribution of
Jrafgs f-In((27)%/2p) dv dx which is obtained by using one more time the
charge conservation law

/1T3R5f5 2 )3/2 dvdx—//Rngln )3/2 dvdm—f—/// fe(0+v-V) Inp dvdx ds.

Performing now the same computations as in the proof of Proposition 6 leads
to a relative entropy balance similar to (26) with the following additional
defect terms in the left hand side
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3

1 3
3 Jolss dm,. + 5/@ d(tr(pg) + astr(uy)) +as/ E(t,x) - dugg, (C.15)

and the additional defect terms in the right hand side

048// O E - dMEB+€//11‘3/§2 (D.E)o dm. (C.16)

1 1
—/ D,E: (,uaE - tr(u%)];;) - as/ / D.E: (,uaB - tr(uaB)I;g) .
0 Jr3 2 0 Jr3 2

From now on we can use the same arguments as in the case of smooth solutions.
The only new thing to do is to observe that the above defect terms appearing
under the time integration sign in (C.16) are dominated by the defect terms
in H. (see (C.15)). Taking into account that for any matrix A € C°(T%)? we
have the inequalities

fottey: | < [l st | e

we deduce that

5 < [ 1A@) dix().

( - ;tr(ﬂE>13) +a€/ D.E: (M - ;tr(ﬂB)[?,)
<C ( /T d(tr(u) + aatr(u%))) < CH(t).

Observe now that for any vector a € C°(T?)? we have

1 £
[ ate) - dug| < 5 [ et i) + 5 [ la@)] as dunoi),

implying that

Vae

ag

/TS OE - dugp| < Cyae /TS d(tr(pg) + ae tr(pg)).

Eventually observe that

// (D, E)o dm.
T3JS2

Finally one gets the inequality

< C/ dm..
SQ

~ 1 t 9 _ ) t
Hg(t)+§/0/w [ o dvdads < C(H.(0) + ¢ )+c/0 Ho(s) ds

and we conclude by the Gronwall lemma.
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