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Logistic regression is the closest model, given its sufficient statistics, to the model of constant success probability in terms of Kullback-Leibler information. A generalized binary model has this property for the more general φ-divergence. These results generalize to multinomial and other discrete data.

Introduction

Consider regression modeling of the effects of k explanatory variables, x 1 , . . . , x k , on a binary response Y (success-failure). For observation i in a sample of size n, let Y i be the response, let x i = (x i1 , . . . x ik ) be the values of the explanatory variables, and let p i = P r(Y i = 1). We assume that Y 1 , Y 2 , . . . , Y n are independent.

In this framework, one's interest normally is in modeling p i in terms of the explanatory variables. The best known binary regression model is the logistic regression model. In this article, we show a property that this model satisfies: It is the closest model, given its sufficient statistics, to the model of constant success probability. The distance employed in this result is Kullback-Leibler information (entropy).

We show alternative results for other models with other distance measures. These results can be put in the context of the many attempts that have been made to generalize binary regression models to provide families that include standard models such as logistic regression and probit regression models. Since the introduction of the generalized linear model (GLM), most such attempts have been motivated by the idea of the link function and the replacement of the logit or probit link by more general families of link functions, such as in [START_REF] Aranda-Ordaz | On two families of transformations to additivity for binary response data[END_REF] and Stukel (1988). In this article, we approach the development of a class of models based on a generalized family of link functions from a different point of view, clarifying issues regarding the role of the link function. The familiar formula P r(Y i = 1|x) = F -1 (β 0 + β 1 x i1 + . . . β k x ik ), for some link function F , is not our starting point (as is usually the case) but rather our ending point.

As mentioned above, we view binary regression models in terms of their departure from the simple model of constant success probability, P r(Y i = 1|x) = F -1 (β 0 ). Section 2 states the result about ordinary logistic regression model being the closest model to the model of constant success probability in terms of the Kullback-Leibler information, under conditions that correspond to the likelihood equations for the logistic model. Section 3 introduces a generalized class of binary regression models based on measuring the distance between two models using the φ-divergence [START_REF] Csiszàr | Eine informationstheoretische Ungleichung und ihre Anwendungen auf den Beweis der Ergozitat von Markoffschen Ketten. A Mayar Tudomanyos Academia Mathematikai Kutato Intezelent Kozlemezyri[END_REF], which includes the Kullback-Leibler information as a special case. Section 4 discusses interpretational aspects of these models and introduces some characteristic special cases. Section 5 presents an example fitted by various members of this family of models. Section 6 presents generalizations for multinomial models, nested models for categorical data, and other generalized linear models.

A Property of the Logistic Regression Model

Since our approach is based on distances between probability distributions, it is more convenient to express the logistic regression model in terms of p i ,

p i = P r(Y i = 1) = exp(β 0 + k j=1 β j x ij ) 1 + exp(β 0 + k j=1 β j x ij ) , i = 1, . . . , n. (2.1)
The corresponding model of constant success probability, by which none of the explanatory variables have an effect is

p (0) i = P r(Y i = 1) = exp(β 0 ) 1 + exp(β 0 ) , i = 1, . . . , n, (2.2) that is, model (2.1) under H 0 : β 1 = β 2 = . . . = β k = 0.
Denote the common value of p (0) i under the common success probability model by q. For observation i, in terms of the Kullback-Leibler information, the distance of the probability distribution p i = (p i , 1p i ) from the probability distribution

p 0 = (q, 1 -q) is KL(p i : p 0 ) = p i log( p i q ) + (1 -p i ) log( 1 -p i 1 -q ), i = 1, . . . , n.
For a complete sample of n independent observations, the Kullback-Leibler information is defined as

KL(p : q) = n i=1 KL(p i : q), (2.3) 
where p = (p 1 , . . . , p n ) and q = (p 0 , . . . , p 0 ). In terms of this measure, the logistic regression model satisfies the following property:

Theorem 2.1. Consider a binary response variable Y and a set of explanatory variables x 1 , . . . , x k , measured as (y i , x i1 , . . . , x ik ) for i = 1, . . . , n independent observations, with p i = P (Y i = 1). In the class of models with those explanatory variables that have fixed value s j = n i=1 y i x ij for n i=1 p i x ij , j = 1, . . . , k, the logistic regression model (2.1) is the closest to the model of constant success probability (2.2) in terms of the Kullback-Leibler information.

The proof is omitted, because it is a special case of the more general result in Theorem 3.1, provided in Section 3. The given sums s j in Theorem 2.1 are the sufficient statistics for the {β j } parameters of model (2.1), the likelihood equations for which are

s j = n i=1 p i x ij , j = 1, . . . , k.
Other binary regression models do not have such reduced sufficient statistics, but it seems sensible to fix these statistics in finding such a result as a way of keeping constant, in some sense, the information about effects of explanatory variables.

A Binary Response Model Based on φ-Divergence

Using Theorem 2.1 as a starting point and replacing the Kullback-Leibler information by a more general class of divergences that includes KL as a special case, we obtain a generalized class of regression models for a binary response that includes logistic regression as a special case. The family of divergences we use for this purpose is the φ-divergence.

The φ divergence is a general family of divergence measures, introduced by Csiszàr (1963), and is based on φ, a real-valued convex function on [0, +∞), with φ(1) [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF]. In our context, the φ-divergence of n binomial distributions from the baseline distribution of a constant probability, based on n independent observations, is defined by

= φ ′ (1) = 0, 0φ(0/0) = 0 and 0φ(x/0) = xφ ∞ with φ ∞ = lim x→∞ [φ(x)/x] (see
D φ (p : q) = n i=1 D φ (p i : p 0 ) = n i=1 qφ p i q + (1 -q)φ 1 -p i 1 -q . (3.1) F (x) = φ ′ (x)
, for all x. Consider a binary response variable Y and a set of explanatory variables x 1 , . . . , x k , measured as (y i , x i1 , . . . , x ik ) for i = 1, . . . , n independent observations, with p i = P (Y i = 1). Then, in the class of models with those explanatory variables that have fixed value s j = n i=1 y i x ij for n i=1 p i x ij , j = 1, . . . , k, the model

F p i q -F 1 -p i 1 -q = k j=1 β j x ij , (3.2)
under the constraint that 0 < p i < 1, is the closest to the model of constant success probability, p

i = q for all i, in terms of the φ-divergence.

Proof. This is a constraint minimization problem, solved by the method of Lagrange multipliers. The function to be minimized is D φ (p : q) subject to the restrictions

n i=1 p i x ij = n i=1 y i x ij (j = 1, . . . , k).
Let pi = 1-p i , and we also add the constraint p i + pi = 1. Thus, the Lagrange function is

L(p) = D φ (p : q) + n i=1 c i (p i + pi -1) + k j=1 b j n i=1 y i x ij - n i=1 p i x ij ,
where {c i } and {b j } are the Lagrange multipliers. Setting ∂L(p)/∂p i = 0 we obtain

φ ′ p i q + c i - k j=1 b j x ij = 0, i = 1, . . . , n.
For α i = -c i and β j = b j , and since F = φ ′ , we conclude that

F p i q = α i + k j=1 β j x ij , i = 1, . . . , n. (3.3)
To solve (3.3) with respect to p i , we require the existence of F -1 . This is ensured by the strict monotonicity of F , due to F ′ (x) = φ ′′ (x) > 0 for all x because φ is strictly convex. Thus (3.3) leads to expression

p i = q • F -1 α i + k j=1 β j x ij , i = 1, . . . , n. (3.4)
Analogously, by ∂L(p)/∂ pi = 0 we obtain

1 -p i = pi = (1 -q)F -1 (α i ), i = 1, . . . , n, (3.5)
and the fact that (3.4) and (3.5) must add to 1 for all i yields the constraints

qF -1 α i + k j=1 β j x ij + (1 -q)F -1 (α i ) = 1, i = 1, . . . , n, (3.6)
that the parameters of our model must satisfy. Also, L has a minimum at p i , since the Hessian matrix is positive definite (φ ′′ > 0). Now, from (3.3) and (3.5), we have the result (3.2) that

F p i q -F 1 -p i 1 -q = k j=1 β j x ij .

Parameter Interpretation and Characteristic Special Cases

The parameter β j in model (3.2) reflects departures from the model of constant success probability due to the j-th explanatory variable. The case β 1 = . . . = β k = 0 is equivalent to the model of constant success probability (2.2). As in ordinary logistic regression, interchanging the binary response categories results in the coefficient of

x ij changing from β j to βj = -β j .
To interpret an individual β j , we shall focus on two observations that differ only for explanatory variable x j . Now, from (3.2), for two observations i and i ′ differing only in x j , we have

F p i q -F 1 -p i 1 -q -F p i ′ q + F 1 -p i ′ 1 -q = β j (x ij -x i ′ j ). (4.1)
In the case of the Kullback-Leibler divergence, F ( p i q ) and F ( 1-p i 1-q ) reduce to the log odds log p i q and log 1-p i 1-q , respectively, as seen below. Furthermore, for x ijx i ′ j = 1, relation (4.1) reduces to the well known result for logistic regression that β j equals the log odds ratio. Thus, the difference on the left hand-side of equation (4.1) can be regarded as a generalized log odds comparison, scaled through F .

We next highlight some members of the general class (3.2):

1. For φ(x) = x log(x)-x+1, x > 0, F -1 (y) = e y and the φ-divergence simplifies to the Kullback-Leibler divergence. In this case restriction (3.6) leads to exp(α i ) = 1q + q exp( k j=1 β j x ij )

-1 , and model (3.2) becomes

p i = q exp( k j=1 β j x ij ) 1 -q + q exp( k j=1 β j x ij ) , i = 1, . . . , n, (4.2)
which is simply the standard logistic regression model (2.1) with β 0 = log[q/(1q)]. In terms of odds, model (4.2) becomes

p i 1 -p i = q 1 -q exp( k j=1 β j x ij ), i = 1, . . . , n. (4.3)
Expression (4.3) reveals the "departure from constant success probability" nature of the logistic regression model.

2. For φ(x) = 1 2 (x -1) 2 , the φ-divergence is the Pearsonian distance X 2 (p : q) = n i=1 X 2 (p i : p 0 ) = n i=1 (p i -q) 2
q(1-q) and constraints (3.6) give α i = -q k j=1 β j x ij . Thus, model (3.2) simplifies to a linear probability model,

p i = q 1 + (1 -q) k j=1 β j x ij , i = 1, . . . , n. (4.4)
This model is also the linear transformation model of [START_REF] Aranda-Ordaz | On two families of transformations to additivity for binary response data[END_REF].

In this case, the positivity of {p i } requires k j=1 β j x ij > -1 1-q , while p i < 1 implies the restriction k j=1 β j x ij < 1 q , for all i. 3. When D φ is the power divergence measure (Read and Cressie, 1988), based on

D φ (p i : p 0 ) = [λ(λ + 1)] -1 p i p i q λ + (1 -p i ) 1 -p i 1 -q λ -1 ,
then φ depends on a real-valued parameter λ and equals φ λ (x) = 1 λ(λ+1) [x λ+1xλ(x -1)], x > 0 [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF]. Model (3.2) then becomes

p i q λ - 1 -p i 1 -q λ = λ k j=1 β j x ij , i = 1, . . . , n, (4.5) 
while constraints (3.6) take the form

q 1 + λ(α i + k j=1 β j x ij ) 1/λ + (1 -q) 1 + λα i ) 1/λ = 1, i = 1, . . . , n.
Incorporating these constraints, (4.5) leads to

p i = q 1 + λ(α i + k j=1 β j x ij ) 1/λ , i = 1, . . . , n, (4.6) 
In terms of odds, the expression for model (4.6) is

p i 1 -p i = q 1 -q 1 + λ k j=1 β j x ij 1 + λα i 1/λ , i = 1, . . . , n.
In order to ensure that p i < 1 we need α i < q -λ -1 λ -k j=1 β j x ij . In case λ is even, we additionally need α i > -1 λ -k j=1 β j x ij . These constraints complicate the fitting of model (4.6) and suggest that usefulness of the model for general λ is quite limited. Unless λ = 1/2, there is not a closed-form expression for {α i }. When λ = 0 or λ = -1, φ 0 (x) = lim λ→0 [φ λ (x)] and φ -1 (x) = lim λ→-1 [φ λ (x)]. Model (4.6) reduces to model (4.4) when λ = 1 and to (4.2) when λ → 0.

Model Fitting and Example

In some cases, maximum likelihood estimates can be obtained with ordinary software for maximizing functions by supplying the likelihood function to be maximized. For the models introduced in this article, the complicating factor is the constraints to keep probabilities in the (0, 1) interval. When the model fits the data well, we can ignore the constraints in the model-fitting process.

For example, consider the power divergence class of models, when at setting i of the explanatory variables we observe binomial variate y i based on n i trials. Then, one can express the model in the form

p i = β * 0 + k j=1 β * j x ij 1/λ , (5.1)
where β * 0 = q λ and β * j = λq λ β j . We then maximize the usual binomial likelihood function, Π i [p y i i (1p i ) n i -y i ], treating λ as fixed or as a parameter to estimate. For the example below, we did this using PROC NLMIXED in SAS. This requires reasonable initial estimates. With a single explanatory variable, one simple way to get these is to find sample proportions pi and plot pλ i against x i for various λ to suggest a version that linearizes the relationship, and then regress pλ i against x i for that power to find initial estimates of β * 0 and β * 1 . Such a procedure will not be adequate when the model fit violates constraints for probabilities, but the model is not sensible in any case for such situations.

We illustrate using Table 1, from [START_REF] Cochran | Some methods of strengthening the common χ 2 tests[END_REF], used there to illustrate a trend test for a binary response with quantitative predictor. The table refers to an experiment on the use of sulfones and streptomycin drugs in the treatment of leprosy. The degree of infiltration at the start of the experiment measures a type of skin damage. The response is the change in the overall clinical condition of the patient after 48 weeks of treatment. We use response scores (0, 1, 2, 3, 4). The question of interest is a comparison of the mean change for the two infiltration levels. Cochran noted that such an analysis is equivalent to a trend test treating the binary variable as the re-
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sponse. That test is sensitive to linearity between clinical change and the proportion of cases with high infiltration.

The logistic model with a linear trend using equally-spaced clinical change scores fits well, having deviance 0.63 with df = 3. The linear probability model, which is the power divergence model with λ = 1, also fits well, with deviance 0.26 with df = 3. Fitting the power divergence model with λ as a parameter, we get β * 0 = 0.0154, β * 1 = 0.0512, and λ = 1.673, with deviance 0.05, while df reduce to 2. Table 1 also shows the sample proportions and the fitted proportions for the three models. The more complex model has the advantage of a precise fit, but at the cost that interpretation of parameter estimates is not as simple. Although we show this example to illustrate a model from the generalized class presented in this article, we do not feel that such models have broad scope for applications, because of the constraint issues and the lack of simple interpretation of parameters compared to standard models. We feel that the results in this article are mainly of some theoretical interest for providing a property for logistic regression and related models. However in concrete situations where the standard models fail, they may be helpful for identifying a more appropriate scale.

Generalizations

In this section, we consider some generalizations of the results in previous sections.

For a given set of explanatory variables, Theorem 2.1 found that the logistic regression model with those predictors was closest (in terms of the Kullback-Leibler information) to the null model of constant success probability, subject to the constraint that sufficient statistics for the logistic model equal their expected values. What if instead we constrain only a subset of the sufficient statistics to equal their expected values, corresponding to a subset of the explanatory variables? Then, at least for the Kullback-Leibler case, the binary response model with the full set of predictors that is closest to the null logistic regression model having the remaining explanatory variables as predictors is the logistic regression model. This result, stated as the following theorem, has proof following the same lines as the proof of Theorem 3.1. Theorem 6.1. Consider the logistic regression model, denoted by M 0 , containing the first k 0 explanatory variables of the set x 1 , . . . , x k . Then, in the class of binary regression models with fixed value s j = n i=1 y i x ij for n i=1 p i x ij , j = k 0 + 1, . . . , k, the logistic regression model (2.1) is the closest to the model M 0 in terms of the Kullback-Leibler information.

for given scaled correlations n i=1 c-1 h=1 p ih φ h x ij between the category scores and each explanatory variable, j = 1, . . . , k, the stereotype model is the closest to the model of constant probabilities in terms of the Kullback-Leibler information. In terms of φ-divergence, the closest model has the generalized stereotype form

F ( p ih q h ) -F ( p ic q c ) = φ h j β j x ij h = 1, . . . , c -1.
In fact, the results for binary regression generalize to discrete generalized linear models. For the Kullback-Leibler divergence, under the constraint that i (y i x ijµ i x ij ) = 0 for all j, when there are no additional constraints the loglinear model is the closest model to the null model of a constant mean, µ i = µ 0 . This follows because the Lagrangian function with Lagrangian multipliers {b j } is

L = i µ i log(µ i /µ 0 ) + k j=1 b j [ n i=1 (y i x ij -µ i x ij )] which results in equations ∂L/∂µ i = log(µ i /µ 0 ) + 1 - k j=1 b j x ij = 0
and the model µ i = µ 0 exp( j b j x ij -1). In particular, the constraint equations i y i x ij = i µ i x ij for all j are the likelihood equations for the generalized linear model using the canonical link function. As an important special case, the Poisson loglinear model is the closest model to the the model of a constant mean in the class of models with these constraint equations. For the more general φ-divergence with F = φ ′ , under the same constraints, the closest model has the form

µ i = µ 0 F -1 ( j b j x ij ). (6.1)
Analogous results occur in the literature for association models and correlation models for two-way contingency tables [START_REF] Goodman | The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models and asymmetry models for contingency tables with or without missing entries[END_REF], in terms of distance from the independence model. [START_REF] Gilula | Ordinal association in contingency tables: some interpretive aspects[END_REF] showed that association models are closest to independence in terms of the Kullback-Leibler measure, while correlation models (which, like model (4.4), are linear in the probability) are closest in terms of Pearsonian distance. A general class of association models based on the φ-divergence has been introduced by [START_REF] Kateri | f -divergence Association Models[END_REF]. In comparing association and correlation models, Goodman (1985, p. 32) pointed out that the parametric scores in correlation models must satisfy certain constraints to ensure that cell probabilities lie in the (0, 1) interval, but such constraints were not needed for the corresponding scores in association models. This is the situation also in our context, since (4.4) as well as (4.6) require constraints whereas (4.2) does not.

In the case of square contingency tables similar results have been proved for the quasi symmetry model [START_REF] Kateri | Asymmetry models for contingency tables[END_REF] and the ordinal quasi symmetry model [START_REF] Kateri | A class of ordinal quasi symmetry models for square contingency tables[END_REF].
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Figure 1 :

 1 Figure1: Sample proportions (dots) and estimated probabilities using logistic regression (dashed curve), linear probability model (fine dashed line), and power divergence model with λ = 1.673 (solid curve).

Table 1 :

 1 Change in Clinical Condition by Degree of Infiltration

		Degree of Infiltration Proportion		Model Fit	
	Clinical Change	High	Low	High	Power Div. Logistic Linear
					(λ = 1.673) (λ = 0) (λ = 1)
	Worse	1	11	0.083	0.083	0.140	0.112
	Stationary	13	53	0.197	0.198	0.194	0.190
	Slight improvement	16	42	0.276	0.278	0.262	0.270
	Moderate improvement	15	27	0.357	0.345	0.344	0.348
	Marked improvement	7	11	0.389	0.405	0.436	0.428
	Source: Cochran (1954)						

Stukel, T. (1988). Generalised logistic models. Journal of the American Statistical Association, 83, 426-431.
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The analogous result does not hold for the general model (3.2) in terms of an arbitrary φ-divergence measure. The form of the closest model then is

and cannot be further simplified. Note that if we allow in this last model different φfunctions for different blocks of explanatory variables then we are lead to a generalized model in which blocks of explanatory variables enter with different scalings.

Just as we generalized binary logistic regression to a family of binary regression models, in a similar manner multinomial logistic regression models generalize. For the baseline-category logit model for a categorical response with c categories, let

Let y ih denote an indicator variable that equals 1 if Y i = h. Then, in terms of KL information, under the constraint that the sufficient statistics i x ij y ih = i x ij p ih , for j = 1, . . . , k and for h = 1, . . . , c -1, this model is the closest to the model of constant probabilities, by which p ih = q h for all i and h. More generally, in terms of the φ-divergence, the closest model to that of constant probabilities is

where F (x) = φ ′ (x). Incorporating the probability constraints, the model for a particular outcome probability is alternatively expressed as

where the parameters a i (i = 1, . . . , n) are determined by

The proof is also a straightforward generalization of the proof for Theorem 3.1, using Lagrange multipliers.

The result also applies to useful special cases of this multinomial model. For example, the stereotype model [START_REF] Anderson | Regression and ordered categorical variables[END_REF] replaces the linear predictor k j=1 β hj x ij by the multiplicative form φ h k j=1 β j x ij , for category scores {φ h } that are themselves parameters and have a constraint such as φ c = 0. For given category scores {φ h } and