REGULARITY ACTION OF ABELIAN LINEAR GROUPS
ON C"

ADLENE AYADI AND EZZEDDINE SALHI

ABSTRACT. In this paper, we give a characterization of the action of any
abelian subgroup G of GL(n,C) on C". We prove that any orbit of G is
regular with order m < 2n. Moreover, we give a method to determine
this order. In the other hand, we specify the region of all orbits which are
isomorphic. If G is finitely generated, this characterization is explicit.

1. Introduction

Let GL(n,C) be the group of all reversible square matrix over C with order
n. There is a natural linear action GL(n,C) xC" : — C". (4,v) —— Av.
For a vector v € C", denote by G(v) = {Av, A € G} C C" the orbit of
G through v. A subset £ C C" is called G-invariant if A(E) C E for any

[¢]
A € G; that is E is a union of orbits. Denote by E (resp. E ) the closure
(resp. interior) of E.

An orbit v is called regular with order m if for every v € ~ there exists
an open set O containing v such that 7% N O is a manifold with dimension
m over R. In particular, v is locally dense in C" if and only if m = 2n,
and ~ is discrete if and only if m = 0. Notice that, the closure of a regular
orbit is not necessary a manifold (see example 8.4). Here, the question to
investigate is the following;:

(1) The orbits of G are they regular?
(2) If G has a regular orbit, how can we determine its order?

The notion of regular orbit is a generalization of non exceptional orbit
defined for the action of any group of homeomorphism on a topological
space X. A nonempty compact subset Y C X is a minimal set if for every
y € Y the orbit of y is dense in Y. In [[[(], Gottschalk discussed the question
of what sets can be minimal sets. A minimal set which is a Cantor set is
called an exceptional set. Their dynamics were recently initiated for some
classes in different point of view, (see for instance, [B,[H].[H],H.[[l,H)-

For a subset £ C C", denote by wvect(F) the vector subspace of C™ gen-
erated by all elements of E. For every u € C" denote by;
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- E(u) = vect(G(u))
- r(u) = dim(E(u)) over C.
- rank(G(u)) = dim(E(u)).

S.Chihi proved in [@] that for an abelian linear action, every orbit + is
contained in a locally closed sub-manifold V() such that v C V(vy) C 7.
Moreover, he shows that if 37 = 73 then +; and 7s are isomorphic and
rank(y1) = rank(yz2).

The purpose of this paper is to give a complete answer to the above
question for any abelian subgroup of GL(n,C). In [fl], the authors present a
global dynamic of every abelian subgroup of GL(n,C) and in [J], they gave
a characterization of existence of dense orbit for any abelian subgroup of
GL(n,C). Our main result is viewed as continuation of work in [[I] and [J].
We found similar result given in [I9] as a consequence of Theorem [L.H, and
we prove that every orbit is regular and we characterize its order m. If G is
finitely generated, this characterization is explicit.

Denote by:
- C* =C\{0}, R* = R\{0} and N* = N\{0}.
-elh) = [e&k), .., e¥NT ¢ L where

k) | 0€C¥ if j#k
G T\ e it j=k

- M, (C) the set of all square matrix of order n > 1 with coefficients in C.
- M, 4(C) the set of all matrix having p lines and ¢ colons with coefficients
inC

- T,,(C) the set of matrices over C of the form

or every 1 <4, k<r.
f Yy Js

I 0
a1 M

. (1)
ama1 - Amm-1 M

- T%,(C) the group of matrices of the form (1) with p # 0.
T
Let r € N* and n = (n1,...,n,) € (N*)" such that > n; = n. Denote by:

i=1
- Kypr(C) =Ty (C) @ - - @ T, (C).
- K5, (C) = K- (C) NGL(n,C).
-Cp = (e1,...,e,) the canonical basis of C".

The author have proved in [B], that for every abelian subgroup of GL(n, C)
there exists P € GL(n,C) such that P"'GP is a subgroup of K (C) for
some r € N* and n = (ny,...,n,) € (N*)" (see Proposition P.§). We say
that G = P~1GP is a normal form of G. We let
-g=exp YG)N [P (K, (C)) P
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- gy ={Bu, Beg}, ueC
One has exp(g) = G (see Lemma P.7).

For any closed additive subgroup F of C", we say that dim(F) = s,
if s is the bigger dimension of all vector spaces over R contained in F.
Moreover, if F is considered as a manifold over R, then dim(F) = s. (See
Proposition R.4).

Finally, consider the following rank condition on a collection of vectors
ul,...,up € R", p>n. Suppose that (uj,...,u,) is a basis of R” and there

m
exists 0 < m < n such that u, = Zamun_mﬂ, forevery n+1 < k < p,
j=1
Qg € R*.

e We say that uq,...,u, € R" satisfy property D(m) if and only if for
every (t1,...,tms S1, ey Sp—n) € ZP7"T™M — {0} :

M1 0 0 Qp41,1 Qp1 T
0 .
rank o ) : : : : = m+ 1
0O ... O 1 apngim o o0 pm
L &1 tm s1 cee oot Spen |

and this is equivalent by Lemma [.J to say that Zu,_ i1 + - + Ly, is
dense in Ruy—pmi1 @ - - & Ruy,.

e For every permutation o € S, we say that uq(1),...,usp) € R" satisfy
property D(m) if uy, ..., u, € R" satisfy property D(m).

For a vector v € C", we write v = Re(v) +iIm(v) where Re(v), Im(v) € R™.

Let 0 : C* — R?" be the isomorphism, defined by
9(215 s Zn) = (RB(Zl), s ,RB(Zn); I’I’I’L(Zl), s ,I’I’I’L(Zn))

e We say that vy, ...,v, € C"satisfy property D(m), if 0(v1),...,0(v,) € R*"
satisfy property D(m).

Our principal results can be stated as follows:

Theorem 1.1. Let G be an abelian subgroup of GL(n,C). Then for every
u € C", there exists a G-invariant dense open subset U, of E(u), containing
u, such that:

(i) For every v € Uy, we have E(v) = E(u).
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(i1) All orbit in U, are isomorphic.
(i) E(u)\U, is a union of at most r(u) G-invariant vector subspaces of
E(u) with dimension r(u) — 1 over C.

By the following Theorem, the order of any orbit is equal to dimension of
a closed additive subgroup of C", over R.

Theorem 1.2. Let G be an abelian subgroup of GL(n, C) and uw € C". The
following are equivalent:
(i) G(u) is reqular with order m.
(ii) For every v € Uy, G(v) is reqular with order m.
(i) dim(gy,) = m over R.

As a consequence, from Theorem [[.3, we obtain the following corollary.

Corollary 1.3. Let G be an abelian subgroup of GL(n,C)(resp. GL(n,R)).
Then every orbit of G is reqular with order 0 < m < 2n (resp. 0 < m < n).

Where GL(n,R) denotes the group of all reversible square matrix over R
with order n.

Corollary 1.4. Let G be an abelian subgroup of GL(n,K) (K =R or C).

(i) If K =R then an orbit G(u) is regular with order m =n if and only
if it is locally dense.

(ii) If K = C then an orbit G(u) is reqular with order m = 2n if and
only if it is dense in C".

Theorem 1.5. Let G be an abelian subgroup of GL(n,C) and u € C". Then

the closure G(u) is a vector subspace of C™ if and only if G(u) is regular
with order 2r(u).

For a finitely generated subgroup G C GL(n,C), such that its normal
form G = P7'GP is a subgroup of K;.-(C). We give an explicit condition
to determine the order of any orbit.

Theorem 1.6. If G is an abelian subgroup of GL(n,C) generated by A1, ..., A,
and let By,...,B, € g such that Ay = eP,... A, = ePr. Then for every
u € C"\{0}. The following are equivalent:

(1) G(u) is reqular with order m.
(ii) Biu,...,Byu, 2irP(eM), ... 2inP (") satisfy property D(m).

p T
(iit) g, = S Z(Bru) + Y. 2inZP (™)) and dim(gy) = m.
k=1 k=1
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This paper is organized as follows: In Section 2, we give preliminary
results. In Section 3, we prove the Theorem [[.]. A parametrization of
an abelian subgroup of K (C) is given in section 4. The proof of The-

orems [[.9, [.§ and [L.§] and Corollaries .3 and [4 are done in Section 5.
Section 6 is devoted to give some examples.

2. Preliminary results

We present some results for abelian subgroup of GL(n,C).

Proposition 2.1. ([f], Proposition 7°) Let A € M,(C). Then if no two
eigenvalues of A have a difference of the form 2ikm , k € Z\{0}, then
exp: My(C) — GL(n,C) is a local diffeomorphism at A.

Corollary 2.2. The restriction exp/x, . (c): Kyr(C) — K .(C) is a local
diffeomorphism.

Proof. The proof results from Proposition .1 and the fact that exp /K (C) =
TP/ Ty (€) P+ O ETP/T,,, (C)-

Proposition 2.3. ([L1], Theorem 2.1) Let H be a discrete additive subgroup
of C™. Then there exist a basis (u1,...,u,) of C" and 1 <r < n such that

T
H = > Zuy.
k=1

Proposition 2.4. (], Theorem 3.1) Let F be a closed additive subgroup
of C™. Then there exist a vector subspace V of C™, over R contained in F
and a vector subspace W of C™, over R, such that:

(i) WeV=C"

(il) FNW is a discrete subgroup of C" and F = (FNW)a V.

For any closed additive subgroup F' of C", we have dim(F') = dim(V').

Corollary 2.5. (Under above notations) For everyy € FNW, there exist an
open subset Oy of C" such that OyNF = {y}+V . In particular OgNF =V .

Proof. We have F'= (FNW) @V, where F N W is a discrete subgroup of
W. By Proposition R.3 there exists a basis (u1,. .. yup) of Wand 1 <s<p
such that FNW =Zu1 ® - @ Zus. Let y = mqui + ... + mgus € FNW,
take

Oy = |m1 — 2’ B 3" 5
It follows that O, is an open subset of C" such that O, N F' =V +{y}. The
proof is complete. O

1 1 1
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Proposition 2.6. For every u € C™, there exist two vector subspaces V
and W of C"™ over R, such that V is contained in g, and W &V = C",
satisfying:
) Bu=@.NW)aV, with g,NW is discrete.
ii) For every A € R, we have gxy, = (S NW) @V, with gy N W s
discrete subgroup of W.

The proof uses the following lemma.

Lemma 2.7. ([B], Lemmas 4.1 and 4.2)
(i) If G is an abelian subgroup of GL(n,C) then for every u € C", g,
is an additive subgroup of C™.

(ii) exp(g) = G.

Proof of Proposition 2.4. The proof of (i) results from Lemma P.7.(i) and
Proposition R.4.

The proof of (ii) follows from the fact that gy, = Agy, \W = W and A\V =V,
for every A € R. O

Let the fundamental result proved in [J:

Proposition 2.8. ([|], Proposition 2.3) Let G be an abelian subgroup of
GL(n,C). Then there exists P € GL(n,C) such that P"1GP is an abelian
subgroup of K} .(C), for somer € {1,...,n} and n € (N*)".

3. Proof of Theorem [L.1|

Throughout this section, suppose that G is an abelian subgroup of K7, . (©)
fore some r € N* and n = (nq1,...,n,) € (N*)".
Every A € G has the form A = diag(A,,...,A4,) with A, € T, (C) k =
1,...,7. Denote by:
-G ={Ar, AcG} k=1,...,r.
- E(uy,) = vect(G(ug)), for every u = [uy,...,u,|T € C™
- G = vect(G), the vector subspace of IC;,.(C) generated by all elements of
G

~U=[]C* x C»L,
k=1

Lemma 3.1. Let G be an abelian subgroup of Kj .(C). Then for every
u € C", E(u) is G-invariant.

Proof. Suppose that E(u) is generated by Aju, ..., Ayu, with A, € G, 1 <
P P

E<p. Let w= > arAru € E(u) and B € G, then Bw = ) apBAju.
k=1 k=1
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p
Since BAyu € G(u) C E(u) then it has the form BAyu = > 6k ;A u,
j=1

Brj €C,s0 Bu= > bk jAjuc E(u). O
1<k,j<p

Lemma 3.2. ([[ld], Proposition 3.1) Let G be an abelian subgroup of GL(n,C),
u € C" andv € E(u).

(i) Then there exist B € G such that Bu = v.
(ii) If E(u) = E(v), then G(u) and G(v) are isomorphic.

Proposition 3.3. Let G be an abelian subgroup of IC;T(C) and uw € U such
that E(u) = C". Then for every v € U there exists B € GN GL(n,C) such
that Bu = v. In particular, E(v) = C".

Lemma 3.4. Let G be an abelian subgroup of T (C) and u € C* x C* L.
Then for every v € C*xC"~! there exist B € GNGL(n,C) such that Bu = v.

Proof. Let v € C* x C"~! since E(u) = C", by lemma B.3, there exist B € G
such that Bu = v. Since T, (C) is a vector space so G C T,(C). Write

w=lx1,...,205)7, v=1[y1,..., 9.7 and
1B 0
p_ | @ ' ’
an1 .- QGpn-1 HUB
then pp = £ # 0, hence B € GL(n,C). As G C C(G), B(E(u)) =
E(v). O

Proof of Proposition [3.3. Write u = [uy,...,u,]T and let v = [vq,...,v.]T €
U, with ug,vr, € C". Since E(u) = C", then E(ug) = C™ for every
k=1,...,7. AsG = G1® --®G, and v, € C*xC™~! where G, = Vect(Gy).
Hence the proof results from Lemma B.4. In particular, E(v) = B(E(u)) =
Ccn. O
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3.1. Proof of Theorem [[.1. Let u € C". By Proposition R.§, we can
assume that G C K}, (C) and E(u) = C", otherwise, by Lemma B.1 we
replace GG by the restriction G/p(,). By construction, C"\U is union of r
G-invariant vector subspaces of C" with dimension n — 1, then we proves
(iii) and we deduce that v € U. Now, for every v € U, there exists by
Proposition B.3, B € G N GL(n,C) such that Bu = v. Hence E(v) =
B(E(u)) = C"™ and G(v) = B(G(u)), this proves (i) and (ii). O

4. Parametrization

Let G be an abelian subgroup of K ,(C) and u € C", by Lemma B.1,
E(u) is G-invariant, so consider the linear map
P, : vect (G/pw)) — E(u)
A— Au

Proposition 4.1. For every u € C"\{0}, ®,, is a linear isomorphism.

Proof. By construction, ®,, is surjective, since &, (Vect (G / E(u))) E(u).
- &, is injective: let A € Ker(®,), so Au = 0. Let x € E(u), then by
above there exists B € Vect (G/pg(y)) such that © = Bu. As A € Ker(®, ) C
vect (Gp(y)) then AB = BA. Therefore Az = ABu = BAu = B(0) =
It follows that A = 0 and hence Ker(®,) = {0}.

[:,O

Corollary 4.2. We have @, (G(u)) = G g and ®,(8u) = 8/B(w)-

Under the above notation, we have:
Proposition 4.3. Let G be an abelian subgroup of K ,.(C). Then
eap(®, (B(w) € @, (Ua)-

To prove Proposition [L.3, we need the following Lemma:
Lemma 4.4. Let G be an abelian subgroup of T} (C). If E(u) = C", then
ezp(®,1(C™) € &, 1(C* x C"7Y).

Proof. Here G /g,y = G and U, = U = C* x C"~!. First, one has exp(G) C
G: indeed; for every A € G we have Ak € G, for every k € N and so

et = Ak—:c € G. Moreover, we can check that G is the subalgebra of M,,(C)
keN
generated by G.
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Second, by corollary [£.3, ®,'(G(u)) = G. Since E(u) = C" and by Propo-
sition fi.1, ®,, is an isomorphism, then
exp(®, (C")) = exp(®, " (E(u)))
= exp(G)
cg=2,'(C"

Therefore
exp(®, ' (C") c ,1(C") (1)

On the other hand, by constraction of ®, and U, we have u € U and so
P, HC)NTE(C) = &,1(C* x C* ). As exp(®,1(C")) C T(C) then by
(1) we obtain

exp (@, 1(C™)) C @, 1(C") NTH(C) = &, ' (C* x C" 7).

u

O

Proof of Proposition [{.3. Write u = [uy,...,u,]T € C". Suppose that E(u) =
C", otherwise we replace G by G p(,). So G/g) = G and U, = U. Since
exrp/i, () = €xp/t,, () ®---dexpr, () and CIDJI = @;11@- . -EBCIDJS. Then
by Lemma

exp(®, (V) = [[expr,, ©) (24 (C™)) C [[@u (CxC™ ) =~ 1(U).
k=1 k=1
O

As consequence of Proposition [L.d, we have the following results:

Corollary 4.5. The map [ = ® 0 exp;p(cn) © ot E(u) — U, is well
defined and continuous.

5. Proof of Theorems [L.2, [[.5, [l.§ and Corollaries and

By Proposition R.§, suppose that G is an abelian subgroup of IC;;J,((C) and
then g=exp H(G)NK,,(C).

In all this section fixed u € C" and suppose that E(u) = C" and G /() =
G, leaving to replace G by G,p(,). Denote by & = o, :C" — G. By
Corollary R4, exp : K, ,(C) — K +(C) is a local difeomorphism and by
Proposition [E.1], ® is an open map. Then we introduce the following Lemma
which will be used in the proof of Theorem [[.2

Lemma 5.1. Let O' be an open subset of C" such that expo(0ry : ®(0') —
exp(®(0)) is a diffeomorphism. Then

exp (®(0')) Nexp(g) = exp (P(O') NE).
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Proof. Let A € exp(®(0")) N exp(g), then A = e*@ for some z € O'.

By Lemma P.7.(ii), exp(g) = G, so A € G. Since A € exp(g), there ex-

ists a sequence (By,)men in g such that lim ePm = A = e®@)_ Since
m—+00

exp/p0ry : P(O') — exp(®(0')) is a diffeomorphism, exp(®(0’)) is an
open set containing e?, so ePm € exp(®(0’)), Ym > p, for some p € N.
Then B), = exp/_(%(o/)(eBm) c ®(0'), ¥m > p. Since ePm € exp(g) = G
and ®(0') C K,,(C), then B, € exp ' (G) N K,,(C) = g, for every
m > p. Therefore lim B, = ®(x), so ®(z) € ®(O') Ng and hence

m—r-+00

A€ exp(®(0))NE.
Conversely, by continuity of exp ooy : ®(0') — exp(®(0')), one has

exp (®(0')) Ng C exp (P(O')) Nexp (g) C exp (®(O)) Neap(g).
The prove is completed. O

5.1. Proof of Theorem [.5. The equivalence (i) <= (ii) follows from
Theorem [L1].(i).
(i) <= (i4i): By Lemma B.1], suppose that E(u) = C"and U, = U (leaving
to replace G by Gg(,)). Then by Proposition i1 and Corollary 1.9, ® =
@, :C" — @G is an isomorphism satisfying ®(G(u)) = G and ®(g,) = g.
By Proposition @.(i), there exist a vector space V, contained in g, a
vector space W such that VW =C" and g, = (g, N W)@V, with g, N W
is discrete.

By corollary R.§ and Proposition P.4, there exists an open subset O of
C™ such that O Ng; = V. By Corollary R.2, the exponential map exp
Kyr(C) — K ,.(C) is alocally diffeomorphism, then there exists an open
subset O’ C O, of C" such that the restriction exp/py : ®(0) —
exp (®(0")) of the exponential map on ®(0’) is a diffeomorphism. Since
O’ C O, then

ONg,=0nV. (1)

Since O’ C U, then by Corollary [£.] the map fror = o1 oerp/po 0P :
0" — 0" is well defined and as exp/p(or) is a diffeomorphism then f/o is
a diffeomorphism. By Lemma R.7, one has exp(g) = G and then:

fOYNG(u) = Loexp(®(0) NG(u)
= gL (exp (®(0')) N @(G(u)))
=&~ (exp ((0")) NG)
= o (eap (9(0")) Nean(e) )

By Lemma p.] and by (1), we obtain
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FO)YNGu) = oexp (®(0')NE)
=3 'oexp (P(O)NT(g))
=d loexpod® (O/ﬂg_u)
= (Ifloexpofb(O/ﬂV)
= f(O'nV).

As f(O’) is an open subset of C" and O’ NV is an open subset of the
real vector space V, then f(O’) N G(u) is a manifold with dimension m =
dim(V) = dim(g,). We conclude that G(u) is regular with order m. Since
C™ is a real vector space with dimension 2n and V is a real subspace of C"
with dimension m, so m < 2n. We conclude the equivalence (i) <= (ii7).

O

5.2. Proof of Corollary [L.3|.
o Complexr Case: Suppose that K = C. Let G be an abelian subgroup of
GL(n,C) and u € C". By Theorem [L.g, the orbit G(u) is regular with order
m if and only if dim(g,) = m. Since g, is a closed additive subgroup of C"
(Lemma R.7.(i)). Then dim(g;) > 0, so G(u) is regular with order m > 0.
This proves the complex case.

o Real Case: Suppose that K = R. Let G be an abelian subgroup of GL(n,R)
and z € R™. So G is considered as an abelian subgroup of GL(n,C). By the
above case, G(x) is regular with some order m, with m < 2n. Then there
exists an open subset O = O1 + 10Oy of C™ with O1, Oy are open subsets of
R™, such that G(x) N O is a manifold with dimension m. One has 0 € Oy,

since G(z) C R™. Then G(z) N O = G(xz) N O; and m < n. It follows that
G(zx) is a regular orbit in R™ with order m. The proof is completed. O

5.3. Proof of Corollary [[.4.

Lemma 5.2. ([[l] Corollary 1.3). If G has a locally dense orbit v in C"
then v is dense in C™.

Proof of Corollary [1.4.
(i) If G(u) = R™ then G(u) is a manifold with dimension n, so G(u) is
regular with order m = n.

Conversely, if G(u) is regular with order m = n, then G(u) N O is a man-
ifold with order m = n, for some open subset O of R™. Hence G(u) N O is
an open subset of R™. Therefore G(u) is locally dense.

(ii) We use the same proof of (i) and by Lemma .3 we have G(u) = C*. O
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5.4. Proof of theorem [1.§. If G(u) is a vector subspace then G(u) = E(u),
so G(u) is regular with order 2r(u).

Conversely, if G(u) is regular with order 2r(u), then G(u) N O is a manifold
with dimension 2r(u), for some open set O. Since dim(FE(u)) = 2r(u) over

R, then G(u) N O is an open subset of E(u). So G(u) is locally dense in
E(u). By lemma p.3 applied on G p(,) we have G(u) = E(u). O

5.5. Algebric Lemmas.

Lemma 5.3. ([T}, Proposition 4.5). Let H = Zuy + ..... + Zuy, with uy, =
[Uk,1,- - - ,uk,n]T eR” k=1,...p. Then H is dense in R™ if and only if for
every (si,...,sp) € ZP — {0} :

u171 e e up71
rank : : : : = n+1.
Uln - cee Upn
S1 e e Sp

Corollary 5.4. Letp > n+1 and H = Zuy+---+Zuyp, u, € R", 1 < k < p,
such that (u1,...,u,) is a basis of R™. If there exists 0 < m < n such that
m

Uk = D O jUjyn—m, for everyn+1 < k < p. Then the following assertions
j=1

are equivalent:
(i) dim(H) = m.
(ii) w1, ...,up satisfies property D(m).

Proof. Let E = Rup_py1®- - -BRu,. We replace R by E in Lemma @ and
we obtain: uy, ..., u, satisfies property D(m) if and only if K = Zuy—p, 41+
..... + Zu,, is dense in E and this is equivalent to dim(H) = m since H =
Zui + -+ Ztgyey + K. O

5.6. Proof of Theorem [L.§. Denote by

-up=ler1,...,er1)t and ep 1 = [1,0,...,0/T € C™, k=1,...,r.

- v9 = Pug, where P € GL(n,C) is defined in Proposition [.1 so that
PGP C K5 - (C).

Proposition 5.5. ([B], Theorem 1.5) Let G be an abelian subgroup of GL(n,C)
generated by Aq,...,A,. Let By,...,B, € g such that A}, = eBr k=

D r
1,...,p. Then g, = >.ZByvo+ 3. 2inZPe®).
k=1 k=1
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By construction of K (C), remark that for every u € U there exists
Q e, +(C) such that Quo = u. Then as a consequence of Proposition [5.3
we get the following Corollary:

Corollary 5.6. Let G be an abelian subgroup of K}, . (C) generated by Ay, ..., Ap.

LetBl, .., B, EgsuchthatAk—e ,k=1,...,p. Then for everyu € U,

gu = ZZBku + Z 2inZQe*) | where Q € K5, +(C) such that Quo = u.
k=1 k=1

Proof of Theorem [1.§. The proof of Theorem [L.§ results from Theorem [L.3,
Corollary 5.4 and Corollary p.6. O

6. Examples

Let D, (C) = {A = diag(a1,...,an) : ar € C*, 1 <k <n }andlet Gbe
an abelian subgroup of D, (C). In this case we have G = G is a subgroup
of Ka1,..1)n(C) and rg =n.

Example 6.1. Let G be the group generated by Ay, = diag(\g 1€™%1,..
E=1,...,p, where A\ ; € R, ap; € R, 1 < j<n. Let u= [xl,...,mn]T €
c", then the following assertions are equivalent:
(i) G(u) is regular with order m.
(i) wk = [(logAk1 +iog 1)z, ..., (logAkn + iak,n)xn]T, 1<k <p with
2imeq, ..., 2ime,, satisfies D(m).

Proof. We let By, = diag(logAi1 + iy 1, .., l0g\g n + P04 5),
One has eB* = A}, and By, € D,(C), 1 <k < p. Then By, € g. The result
follows then from Theorem @ O

Example 6.2. ([I, Example 6.2) Let G be the subgroup of GL(4,R) gen-
erated by

1000 1000
0100 0100
A=1001 0] 2 B=|3 1 ¢
100 1 010 1

Then:
i) if u € (Q*)? x R?, G(u) is discrete. So G(u) is regular with order 0.
i) if u € Q* x (R\Q) x R?, G(u) is dense in a straight line. So G(u) is
regular with order 1.
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In this example, G is considered as a subgroup of GL(4,C). We have
G = G is a subgroup of T%(C) and G(ey) = {[1,0,0,n+m]", n,meZ},
then E(e;) = Cey + Cey and U,, = C*ey + Cey. So E(ey) # C™.

Let By = Ay — I and By = Ay — I4. Since B? = B2 =0, so P! = A; and
eP2 = A,. By Theorem L6, g. = ZBiu+ ZBou + 2inZe;.

For every u = [x,7,2,t]T € R* x R3, we have g, = (Zz + Zy)eq + 2inZey,
then:

-if £ ¢ Q, then g; = Rey + Zey, so dim(g;) = 1. By Theorem [[.6, G(u) is
regular with order 1.

-if £ € Q, then g, = Zaey + Zey, for some a € R, so dim(g,;) = 0. By
Theorem [[.6, G(u) is regular with order 0. O

A simple example for n = 1 and K = R is given in the following, to show
that the closure of a regular orbit is not necessarily a manifold.

Example 6.3. Let A > 1 and G be the group generated by A.idr, then for
every x € R*, we have G(z) = {\", n € Z} and G(z) = {\", n € Z} U{0}.

Thus G(x) is discrete, so it is regular with order 0, but G(x) is not a manifold.
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