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Abstract

If rotating dust stars would exist in general relativity, they would represent ex-
amples of an improbable complete balance between the attractive quasi-Newtonian
force (gravitoelectricity) and the repulsive gravitomagnetism. However, nonexis-
tence proofs are available hitherto only for some dust “stars” extending to infinity,
and for isolated dust stars of a very restricted class. By analyzing the lines of con-
stant generalized Newtonian potential U in the interior and exterior of a large class
of (hypothetical) stationary and axisymmetrically rotating dust stars in general rel-
ativity, we find that the existence of such stars can be disproved as soon as minima
of the potential U in the exterior vacuum region can be excluded. We present some
ideas how this minimum-problem could be attacked, and we summarize the present
knowledge about Newtonian and Einsteinian rotating dust systems.

PACS numbers: 04.20.Cv, 04.20.Ex, 04.40.Dg

1. Introduction

There are at least three reasons why the question of existence of rotating dust stars
in general relativity is particularly delicate and mathematically difficult.

a) It has to be clarified why such stars presumably cannot exist, whereas already a
small pressure, respectively a small pressure gradient at the surface can stabilize a
star. We argue that a decisive difference between the two cases (a tiny cause with
drastic consequences!) shows up in the level lines of the generalized Newtonian po-
tential near the rotation axis (in a metric form which provides maximal similarity
with the Newtonian case): Whereas for stars with pressure these lines are every-
where orthogonal to the rotation axis, for dust stars they are parallel to the rotation
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axis in the matter region near the axis, what leads to a type of singularity of the
level lines at the “poles” where the axis leaves the matter region. (Another difference
between the two cases is of course that for stars with pressure the surface is fixed as
the location with pressure p = 0, whereas for dust stars the surface geometry would
remain largely arbitrary.)

b) The quasilocal difference in the structure of these level lines alone can, however,
not explain why rotating dust stars should not exist: In Newtonian gravity, where
the level lines of the potential for (hypothetical) dust stars have the same structure
as described above, it was shown by an explicit example [1] that a rotating dust star
can be stabilized by exterior (strained) matter which can be arbitrarily far off the
dust region. Although it will be difficult to construct such an explicit example in
general relativity, it is clear that also in general relativity the problem of existence of
a rotating dust star is a genuinely global one. We find that the existence of rotating
dust stars can be disproved as soon as minima of the generalized Newtonian poten-
tial U in the exterior vacuum region can be excluded, a question which seems to be
open, notwithstanding a huge literature and considerable progress on the stationary
and axisymmetric vacuum Einstein equations (Ernst equation, integrable systems,
algebro-geometric methods). In Sec. 4 we present some ideas how the question of
U -minima can be attacked. And although we are not yet successful in this goal, our
article may motivate other researchers to look into this mathematical problem.

c) It has been known since long time, and by quite different proof methods, that
isolated Newtonian rotating dust stars cannot exist. (See below.) But there is no
chance to simply generalize these proofs into the regime of general relativity. On
one hand we know that general relativity comprises physical phenomena completely
absent from Newtonian gravity: gravitational collapse, gravitational waves, and,
particularly interesting for our stationary problem, gravitomagnetism. It has been
argued already long ago [2] that the gravitomagnetic potential can have a repulsive
or pressure-like effect for rotating stars, and we will partly strengthen these argu-
ments. However, we suspect that the effect of this gravitomagnetic potential can
never be strong enough to stabilize a rotating dust star. (In the weak field limit,
and for rotating shell-like and ring-like objects, it was shown in [3] that a com-
plete compensation between gravitational attraction and gravitomagnetic repulsion
is possible only for unrealistic limiting cases.) On the other hand, the mathemati-
cal structures of Newtonian gravity and general relativity are very different. And,
although considerable progress has been made here, mainly through the work of the
late Jürgen Ehlers [4], there are still many open problems concerning the Newtonian
limit of solutions of general relativity, and even more so concerning generalizations
of existence- or non-existence-results from Newtonian gravity to general relativity.
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Before we present (in Sec. 2) in detail the mathematical structure of the problem
of rotating dust stars in general relativity, and derive (in Sec. 3) consequences for
the level lines of the generalized Newtonian potential as a possible first step for
a nonexistence proof for such objects, we like to summarize here what is already
known about rotating dust systems in Newtonian and Einsteinian gravity.

In Newtonian gravity there exist convincing and quite different (physical, ge-
ometrical, and analytic) arguments why stationary and axisymmetrically rotating
dust stars cannot exist. The possibly simplest argument (see, e.g., [5]) uses a plane
orthogonal to the rotation axis and “shifts” it from infinity until it touches the dust
matter at one or several points P . At P the gravitational attraction points into the
half space containing the dust matter, whereas the centrifugal force is tangent to
the plane. Therefore the dust particle at P cannot be stationary. Obviously this
argument breaks down if the matter covers only a two-dimensional disk orthogo-
nal to the axis. And indeed, rotating dust disks do exist in Newtonian [6] as well
as in Einsteinian gravity [7]. In this article we confine ourselves to (hypothetical)
dust stars with spherical topology, and do not address possible star solutions with
toroidal or more complicated topology. To our knowledge the first analytic proof
for the nonexistence of axisymmetrically rotating dust stars in Newtonian theory
was given by Bonnor [2]: The gravitational potential U is independent of the axis-
coordinate z in the dust region, is continuously differentiable across the surface, and
analytic in the exterior. Therefore U,z fulfills the Laplace equation in the exterior,
is zero at infinity and at the star surface, and therefore is identically zero in the
exterior. Together with U −→ 0 at infinity, this leads to U ≡ 0 in the exterior,
and, e.g., through the Poisson integral, to energy-density ǫ ≡ 0. In [1], Sec. 2.4, we
have given an alternative analytic nonexistence proof, using a minimum principle,
which has a better chance to show the way to an extension to general relativity, e.g.,
through the consideration of U level lines.

In general relativity the first dust solution (dust particles in stationary, cylin-
drically symmetric, and rigid rotation about a symmetry axis) was discovered by
Lanczos [8], and discussed as a cosmological solution. The solution was rediscovered
and generalized by van Stockum [9]. Winicour [10] succeeded in showing that even
for differential rotation the Einstein equations in the dust reduce to quadratures,
and that the general solution depends upon an arbitrary axisymmetric solution of
the flat Laplace equation together with an arbitrary function of one variable. Bon-
nor [2] hinted to the fact that the gravitomagnetic potential of general relativity
leads for rotating dust systems to a repulsive “force” in the axis direction, coun-
teracting the Newtonian gravitational attraction. However, in Bonnor’s explicit
example of a rigidly rotating dust cloud extending tenuously to infinity (hereby
realizing asymptotic flatness), the stabilization results not so much from this grav-
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itomagnetic potential but from a singularity of the solution at the center. (See [1],
footnote 12.) Indeed, Caporali [5] could show, using the results of Winicour [10],
that even for differential axisymmetric rotation of dust no nontrivial, singularity-
free, and asymptotically flat solution exists as long as the energy-density is non-zero
in an open neighborhood of the whole axis. In detail he proves that the total mass
M of such a system has to be zero, and therefore ǫ ≡ 0, as long as we do not admit
negative energy densities. Frauendiener [11] could show that stationary and ax-
isymmetric dust solutions (and more general solutions with non-negative two-trace
of the energy-momentum tensor) do not exist on spatially compact manifolds. Re-
cently, Gürlebeck [12] has, for the first time, presented some nonexistence results
for rotating dust, occupying only a finite space part Ω around the axis, and he does
this — maybe surprisingly — by analyzing the Einstein equations only in the dust
region. In detail, he considers dust in stationary, axisymmetric and rigid rotation.
Technically he works in the corotating coordinate system (as already van Stockum
[9] did), and transforms the gravitomagnetic potential — similar to the formalism
of the Ernst equation in vacuum — to a new potential fulfilling the Laplace equa-
tion. Hereby he can show that the solution in Ω is already determined by a largely
arbitrary energy density ǫ on the axis. (This is, due to the action of gravitomag-
netism, in contrast to the Newtonian case where rigid rotation implies constant ǫ.)
Gürlebeck then shows that there do not exist solutions with ǫ = 0 on ∂Ω, or with ǫ =
const. in Ω. It should, however, be clear that these methods do not work for dust
stars in differential rotation. And also for rigid rotation, and ǫ > 0 on ∂Ω, or ǫ 6=
const. in Ω, it will be necessary to consider the global problem with an appropriate
exterior vacuum solution.

We consider in the following (in Secs. 2 - 4) rotating dust stars in general relativ-
ity which can have differential rotation with an angular velocity of arbitrary analytic
dependence on the coordinates. We confine ourselves to star shapes which satisfy a
sphere condition at least at the north pole, i.e., which do not have a cone or cusp
there. Furthermore, we assume that the energy density of the dust at the north pole
is either positive, or has one nontrivial derivative in the axis direction.

At the end of this Introduction we should like to add a remark on stationary
and axisymmetrically rotating stars with pressure: Although such systems seem to
make up (in good approximation) most of the visible matter in our universe, the
theoretical state of art for these systems is still in bad shape in Newtonian and Ein-
steinian gravity. Only for static stars, and for slowly rotating stars with constant
density or with polytropic equation of state in Newtonian theory, existence proofs
and some results about their physical properties are available. In general relativ-
ity, the only existence proof for rotating stars was given by Heilig [13]. However,
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since this work is based on the implicit function theorem, it is hard to judge how
relativistic or compact, and how fastly rotating these stars can be. And no real
progress on these questions has been made since the publication of [13]. In [14] we
have presented mathematical techniques which should be applicable to a wide class
of rotating stars, but details are still waiting for their elaboration.

2. Setup of the mathematical problem

We confine ourselves to stars consisting of ideal fluid (with or without pressure p) in
stationary and axisymmetric motion along the orbits of the axial Killing vector ∂ϕ,
i.e., we exclude any convective motion in the direction of the other spatial coordi-
nates ρ, z. We allow, however, for differential rotation, i.e., the angular velocity ω of
the fluid particles may depend on ρ, z. With the fluid four-vector uµ = u0(1, 0, 0, ω),
and with the energy density ǫ, the energy-momentum tensor has the structure

T µν = (ǫ + p)uµuν + p gµν . (1)

It is known since a long time [15] that for such systems the metric attains a “block
structure” with separate parts in the (ρ, z)- and (t, ϕ)- spaces. One popular form is
the Lewis-Papapetrou metric (see, e.g., [16])

ds2 = gµνdxµdxν = −e2u(dt + adϕ)2 + e−2u[w2dϕ2 + e2k(dρ2 + dz2)]. (2)

However, another form, patronized in particular by Bardeen [17], is superior for our
purposes, and leads to more similarities with the Newtonian analysis of the same
systems. (See the comments about metric (2), later in this section.)

ds2 = −e2Udt2 + e−2U [W 2(dϕ − Adt)2 + e2K(dρ2 + dz2)], (3)

with the invariant potentials U, A, W, and the conformal factor e2K , all being func-
tions of (ρ, z). (For convective motion a more general metric has to be used, and
much less is known about these systems [18]. Even in Newtonian theory such more
general dust stars obviously have not been considered.) For the metric (3), one com-
bination of Einstein’s field equations reads W,ρρ +W,zz =: ∆2W = 16 πe2(K−U)W p.
(In the sequel we use also the flat Laplacians in higher dimensions n > 2 : ∆nf :=
f,ρρ +f,zz +((n − 2)/ρ)f,ρ.) For dust with p ≡ 0 we therefore have ∆2W = 0, with
the consequence that we can use globally (both in the exterior vacuum region, and
in the interior matter region) Weyl coordinates with W ≡ ρ. (The fact that this
is not possible for pressure-stars, represents another decisive difference between the
two cases.) We use a gauge in the (ρ, z)-plane such that the rotation axis is given
by ρ = 0. The essential (elliptic) field equations for the potentials U and A read:
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∆3U − 1

2
ρ2e−4U |DA|2 = 4π ǫ e2(K+U)N−1(1 + ρ2e−4U Ã2); (4)

∆5A − 4 < DU, DA > = −16π ǫ e2(K+U)N−1Ã, (5)

with Ã = ω − A, N = e4U − ρ2Ã2, and where < DU, DA >= U,ρ A,ρ +U,z A,z
denotes the Euclidean scalar product of the gradients. Since the time-component
of the dust four-velocity is given by u0 = eU N−1/2, we have to have N > 0, and
therefore ρ|Ã| < e2U , what limits the lateral extension of the dust star. (The velocity
of no dust particle may exceed the light velocity.) The conformal factor e2K appears
in equations (4) and (5) only in combination with the energy density ǫ. According
to the field equations

K,ρ = ρ(U,2ρ −U,2z ) − ρ3

4
e−4U(A,2ρ −A,2z ); (6)

K,z = 2ρ U,ρ U,z −
ρ3

2
e−4UA,ρ A,z , (7)

the potential K results from line integrals as soon as the potentials U and A are
known. In the interior matter region (ǫ > 0), the field equations (4) and (5) have to
be supplemented by the relativistic Euler equation ∇µT

µν = 0, leading to the two
equations (for ν = ρ, z)

(e4U + ρ2Ã2)U,ρ = −ρ2Ã(A,ρ −Ã/ρ); (8)

(e4U + ρ2Ã2)U,z = −ρ2 Ã A,z . (9)

(The same equations result from the demand that the geodesic acceleration of the
dust particles must not have ρ- and z- components.) Equations (8) and (9) com-
prise an interesting analogy between Einsteinian rotating dust stars and Newtonian
rotating stars with pressure: If one divides equations (8) and (9) by (e4U + ρ2 Ã2),
and compares them with the nonrelativistic Euler equations U,µ = −p,µ /ǫ + δµρ ω2ρ
for µ = ρ, z, it is seen that the gravitomagnetic potential A acts like a positive pres-
sure. Differentiating equation (8) with respect to ρ, we get a relation between U,ρρ

and A,ρρ, and equally a relation between U,zz and A,zz from equation (9). Insertion
of these relations into equations (4) and (5) leads to an expression for the energy
density, containing only the first derivatives of U and ω:

4π ǫ e2(K+U) =
N2

2ρ2Ã2
|DU |2 +

N U,ρ
ρ

+
1

2
Ã2 +

e4U

Ã
< Dω, DU > +

ρÃe4U

N
ω,ρ . (10)

Obviously, the last two terms vanish at the axis.
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In the special case of rigid rotation (ω =const.) equations (8) and (9) can be
explicitly integrated with the result

e−2U N = e2U0 , (11)

where U0 denotes the constant potential along the whole interior axis. This constant
U0 is in principle observable through the redshift Z0 = e−U0−1 of photons emanating,
e.g., from the poles of the star to infinity. (This implies U0 < 0 for a “real” dust star
with mass M > 0.) Equation (11) can be used to express the potential Ã through
the potential U :

ρ Ã = e2U
√

1 − e2(U0−U). (12)

Insertion of equation (12) into the field equations (4) and (5) even results (only in
the matter region!) in an elliptic equation solely for U , where also K and ǫ cancel
out. For rigid rotation the above expression (10) for ǫ simplifies to

ǫ =
1

8πρ2
e4U0+2U−2K |DB̃|2, (13)

with B̃ = ρ e−2U0

√
1 − e2(U0−U). In this case, ǫ therefore is automatically non-

negative. Since the potentials U and A have to be continuously differentiable at
the surface of the (hypothetical) dust star (no mass or angular momentum shells!),
equation (12) together with its derivative normal to the star’s surface could be used
as boundary conditions for the solution of the exterior vacuum equations (equations
(4) and (5) with ǫ = 0). Since, however, the boundary condition (12) for dust stars
differs only slightly from the corresponding boundary condition for stars with small
pressure (for which we expect a transition from nonexistence to existence of physical
solutions U and A), we doubt the usefulness of these boundary conditions, even in
the case of rigid rotation.

Instead, we see from equation (9) that also for differential rotation the term U,z
is zero along the interior axis (ρ = 0), and therefore U ≡ U0 at this axis. Although,
according to equation (8), also U,ρ is zero at the interior axis (no “gravitational
force” there!), the ratio U,z /U,ρ = ρ A,z /(ρ A,ρ +A − ω) is zero there if |ω| > |A|,
as is to be expected on physical grounds (compare item e) below). Therefore, the
decisive (geometric) difference between dust stars and pressure stars shows up in the
structure of the level lines of the potential U : In the dust region they are parallel to
the rotation axis in its neighborhood, whereas they are orthogonal to the axis in the
exterior, resulting in a type of singularity of the level lines at the poles. In contrast,
for pressure stars the U level lines are everywhere orthogonal to the axis, without
any singularity at the poles.

For the metric form (2) the potential u in vacuum obeys the differential equation
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∆2u = −e4u|Da|2/2ρ2, being singular at the axis, so that not all solutions can be
analytic; the potential a has, with r =

√
ρ2 + z2, and with the angular momentum

J , the asymptotic behavior a −→ 2Jρ2/r3, being different for axis- and off axis-
directions, what does not happen for the potential A −→ 2J/r3; and — most im-
portant — the potential u is not constant along the interior axis, so that the analysis
of the u level lines does not lead to comparably useful results.

Before we take (in Secs. 3 - 4) first steps to a nonexistence proof for rotating
dust stars, we should like to summarize here some mathematical properties of the
potentials U and A in the exterior and interior of the hypothetical dust star.

a) Due to the axial symmetry, the potentials depend only on ρ2.

b) For a real rotating star, with mass M > 0, and angular momentum J 6= 0,
the potentials have the asymptotic behavior U −→ −M/r, A −→ 2J/r3, with
r =

√
ρ2 + z2. According to equation (4) with ǫ = 0, the rotation, i.e. the term

|DA|2, contributes to the asymptotic behavior of U only in order r−4.

c) In the vacuum region, equations (4) and (5) do not explicitly depend on z, and
in the matter region an explicit z-dependence can only come from the angular ve-
locity ω(ρ2, z). Of course the solutions U and A will depend on z, e.g., in order to
fulfil the asymptotic conditions. However, at least in the exterior, for any solution
(U(ρ2, z), A(ρ2, z)) there exists also a solution (U(ρ2, z − z1), A(ρ2, z − z1)) with an
arbitrary constant z1. And we can fix the origin of our coordinate system (ρ, z) such
that it lies in the matter region.

d) According to a mathematical theorem by Morrey [19], made applicable to gen-
eral relativity by Müller zum Hagen [20], U and A are real analytic functions in the
exterior. Therefore U and A in the exterior are determined by their axis values, as
can be explicitly confirmed by writing them as (convergent!) power series’ in, e.g.,
τ = 1 − z/r. Whereas for stars with pressure the differentiability class of U and A
in the matter region is connected with the differentiability of the equation of state
ǫ(p) (according to Proposition 5 of [21], U and A are of the class Ck+2 if ǫ(p) is
of class Ck), for dust stars also the interior potentials U and A are real analytic,
if the angular velocity ω(ρ2, z) is an analytic function, what we like to presume.
Evolving equations (4)-(5) and (8)-(9) in powers of s = ρ2, one finds that in the
expression ω(s, z) = ω0 + ω1(z)s + ω2(z)s2 + ... the first term ω0 is constant, and
each ωn(z) produces one new integration constant cn. The functions U, A, ǫ, and
ωn(z) for n > 1 can then be expressed in the whole dust region through the function
ω1(z) and its derivatives, together with the constants cn. (In the case ω1(z) ≡ 0,
the function ω2(z) takes over the role of this central free function. In the case ω =
const., i.e. ω1 = ω2 = ... ≡ 0, the energy density ǫ0(z) at the axis takes over this
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role, as was already stated by Gürlebeck [12].) Across the surface, U and A are only
continuously differentiable, at least if ǫ > 0 at the surface.

e) According to the weak maximum principle (see, e.g., [22], Theorem 3.1), equa-
tions (4) and (5) tell that there can be no maxima of U , and no maxima or minima
of A within the exterior vacuum region. Whether U can have minima there, is
“the big question” which was already mentioned in the Introduction, and to which
we will come back in Sec. 4. It is clear that minima of second order cannot ap-
pear on the axis because there we have ∆3U = 0, and therefore different signs
of U,ρρ and U,zz. Since the rhs of equation (4) is positive in the interior dust re-
gion, U can also not have maxima there. Equation (7) together with K −→ 0
at infinity leads to K(0, z) = 0 on the whole axis. Equation (4) then yields
U(ρ, z) = U0 + π e−2U0ǫ(0, z)ρ2 + O(ρ4) near the interior axis, so that U increases
there for a dust star with ǫ(0, z) > 0. (Insertion of the above U(ρ, z) near the axis
into equation (10) leads to 2πǫ(0, z) = Ã2(0, z)e−2U0 + O(ρ2).) Together with the
absence of maxima, we get U > U0 on the whole star interior and surface outside the
axis. If we apply the weak maximum principle for generalized solutions (see, e.g.,
[22], Theorem 8.1) to equation (4) for a ball with very large radius around the origin,
we get for a bounded U (no singularities!) with U −→ 0 at infinity: −∞ < U ≤ 0.
In the case of rigid rotation we can substitute −Ã for A in the lhs of equation (5).
Again applying the weak maximum principle to this equation, and using A −→ 0 at
infinity, we get (for ω > 0) : 0 ≤ A ≤ ω. (Dragging velocity smaller than or equal
to the dust velocity.) For differential rotation we can expect similar inequalities at
most in some averaged sense because we can then choose ω arbitrarily small, or even
negative, in some local region.

Before we perform (in Sec. 3) an analysis of the potential U near the pole of
a rotating dust star, and address (in Sec. 4) the question of minima of U in the
exterior vacuum region, we like to present here a simple nonexistence proof for static
dust stars in general relativity. In the static case (ω = 0) there exists of course also
no gravitomagnetic potential: A ≡ 0. Then equations (8) and (9) tell that U is
constant in the dust region. Herewith we have ∆3U = 0, and from equation (4)
ǫ ≡ 0, i.e., no real dust star. (The analysis in the matter region suffices here, as
was the case for the nonexistence proofs by Gürlebeck [12].) An alternative nonex-
istence proof for static dust stars (using the positive energy theorem) was given by
Shiromizu [23], and in [24] a concrete threshold for p/ǫ (in dependence of U) was
given maintaining nonexistence.
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3. Analysis of the potential U near the pole of the dust star

As already indicated in Secs. 1 and 2, a decisive means on the way to a nonexistence
proof for rotating dust stars should be the study of the level lines of the U -potential
near the north pole (ρ = 0, z = z0). Up to now we are successful in this analysis
only if we put some (mild) restrictions on the model class of the rotating dust stars:
a) We require that the star surface near the north pole allows for an osculating
sphere, i.e., that we have no cone or cusp there. b) The energy density ǫ(0, z) at the
axis should either be positive at the pole z0 (hard surface), or one of its z-derivatives
should be non-zero at z0. (Otherwise the energy density ǫ(0, z) near z0 had to have a
very unusual behavior like e1/(z−z0).) According to item d) of Sec. 2 the basic degrees
of freedom of the rotating dust are given by a series of constants cn, by the constant
ω0, and by the function ω1(z) in a power series ω(ρ2, z) = ω0+ω1(z)ρ2+ω2(z)ρ4+ ....
Due to ǫ(0, z) = c̃ ω2

1(z), with a positive constant c̃, the above conditions on ǫ(0, z)
are lastly conditions on the function ω1(z) at z = z0 (or on ω2(z), in the case ω1 ≡ 0).

We consider now equation (4) in the dust and in the vacuum region near the axis
ρ = 0. There we have K ≈ 0, N ≈ e4U , U(ρ2, z)−U(0, z) ≈ ρ2 f(0, z), and therefore
∆3U ≈ 2U,ρρ +U,zz, where the symbol ≈ indicates that in the limit ρ −→ 0 any
correction terms vanish more strongly (typically an order ρ2 stronger) than the
terms explicitly denoted. (The validity of these approximations may be interpreted
as another — mild — restriction for our class of rotating dust stars.) Then equation
(4) reduces near the axis to

2 U,ρρ +U,zz ≈ 4 π e−2U0ǫ(0, z). (14)

In the dust region we have, due to U(0, z) ≡ U0 the result U,zz ≡ 0, and therefore
U,ρρ ≈ 2π e−2U0ǫ(0, z). For a surface with sphere condition at the north pole U,ρρ

is continuous across this surface. Therefore we have in the vacuum region near the
north pole z = z0:

U,zz ≈ −2U,ρρ ≈ −4π e−2U0ǫ(0, z0). (15)

In the case ǫ(0, z0) > 0 we have U,zz (0, z0) < 0, so that U(0, z > z0) falls below the
value U0 < 0. Together with U −→ 0 at infinity, and with the analyticity of U(ρ2, z)
in the vacuum region, this enforces a minimum of U(ρ2, z) there. Since near the north
pole U(ρ2, z) has its steepest descent in the positive z-direction, one may argue —
also on the basis of symmetry reasons — that this U -minimum should be reached
at an axis-point. But on the axis we have U,zz = −2U,ρρ, what forbids minima of
the second order. Therefore solutions of this “most simple type” can already be
excluded, i.e., nontrivial rotating dust star solutions of this type cannot exist. More
generally, from equation (15) in the case ǫ(0, z0) > 0 follows that the vacuum solution
U(ρ2, z) near the north pole is given by U(ρ2, z) ≈ U0 + π e−2U0ǫ(0, z0)(ρ

2 − 2z′2),
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with z′ = z − z0. Therefore the level line U = U0, which is the z-axis in the dust,
bifurcates at the north pole z = z0 into the two branches z′ ≈ ±ρ/

√
2. What

can be said about the continuation of this bifurcating level line U = U0 < 0 into
the vacuum region? i) This level line cannot terminate inside the vacuum region
because, as an analytic curve, it would allow an analytic continuation beyond such
an “end-point”. ii) It cannot extend to infinity because there we have U −→ 0. iii)
It cannot “return” to the star surface because there we have U > U0 outside the
axis. Therefore we are left with two other realistic possibilities: iv) The level line
closes within the vacuum region without enclosing the dust region. Then it encloses
a finite vacuum domain with U < U0, in which there exists (due to the analyticity
of U) a U -minimum. v) The level line U = U0 encloses the whole dust region, and
has U < U0 < 0 in its exterior. Due to U −→ 0 at infinity, there has then to exist
a second closed level line U = U0 exterior to the first one. And between these two
level lines there has again to exist a minimum of U .

For the stabilized Newtonian dust star we have shown in [1] that it realizes the
alternative iv): The level line U = U0 starts as the z-axis in the dust region, and
bifurcates at the pole (ρ = 0, z = R1) into two branches with slope z′ = ±ρ/

√
2

(because ǫ > 0 at the dust surface for this model). The outer ring of strained matter
in the region R2 ≤ r ≤ R3 “bends back” these branches to one closed curve which
includes a region with U < U0, containing a U -minimum at (ρ = 0, z = R2). (See
Fig. 3 of [1]. This U -minimum at the axis is not in contradiction to the statement
under e) of Sec. 2, excluding such minima in the vacuum region, because now
we have matter in the region R2 ≤ r ≤ R3, leading to a discontinuity of ∆3U at
r = R2.)

In the case ǫ(0, z0) = 0, but −4π e−2U0∂jǫ(0, z)/∂zj =: ǫ̃ > 0 at z0 for some
integer j ≥ 1, the potential U(ρ2, z) is (j +1) times continuously differentiable with
respect to z near the pole, and the (j + 2)th derivative has a finite discontinuity
there. Then we can take the jth z-derivative of equation (14), and get (like above
for the case ǫ(0, z0) > 0) in the vacuum region near the north pole, with V (ρ2, z) :=
∂jU(ρ2, z)/∂zj : V,zz ≈ −2V,ρρ ≈ ǫ̃. Therefore U(ρ2, z) is given there by U(ρ2, z) ≈
U0− ǫ̃ z′j [ρ2/4j!−z′2/(j+2)!], and the level line U = U0, being the z-axis in the dust,

divides at the north pole into the 3 branches z′ ≈ 0, and z′ ≈ ±1
2

√

(j + 1)(j + 2) ρ.

In the area 0 < |z′| < 1
2

√

(j + 1)(j + 2) ρ near the north pole the potential U(ρ2, z)
falls below the value U0 < 0, and therefore has to attain a minimum somewhere in
the exterior vacuum region.

Herewith we have shown that, at least for the restricted class of rotating dust
stars as characterized at the beginning of this section, the existence of such stars
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(with M > 0) in general relativity leads to a minimum of the potential U(ρ2, z) in
the exterior vacuum region.

4. The question of minima of the potential U
in the exterior vacuum region

In this section we analyze the Einstein equations for stationary, axisymmetric, and
asymptotically flat systems only in the vacuum region where equations (4) and (5)
simplify to

∆3U =
1

2
ρ2 e−4U |DA|2; (16)

∆5A = 4 < DU, DA > . (17)

And the central question concerns possible minima of the (quasi-Newtonian) poten-
tial U , because the exclusion of such minima would, according to Sec. 3, and by
the principle of contradiction, imply that rotating dust stars (at least of the mildly
restricted class considered here) do not exist in general relativity. From a qualita-
tive physical point of view, a minimum of U in the exterior vacuum region would be
hardly imaginable anyhow: Which place (ρ̄, z̄) in the largely “structureless” vacuum
region should be distinguished by a maximal gravitational attraction in the direc-
tion of the dust part? However, we are of course looking for a strict mathematical
non-existence proof for U -minima.

Although the stationary and axisymmetric vacuum Einstein equations are pre-
sumably the systems in general relativity which have been studied most thoroughly
over many years, and about which there exists a huge literature (see, e.g., [16], and
literature quoted there), obviously no mathematical proof is available hitherto ex-
cluding minima of the potential U in the general case. (It is, however, easy to prove
that for the Schwarzschild and Kerr geometries, written in our metric form (3), the
potential U has no minima.) The mathematical literature (at least in the form of
textbooks and review articles) on coupled, nonlinear, and elliptic systems of differen-
tial equations seems, anyhow, to be quite sparse. The textbook [25] treats (in Chap.
8) such systems, which are even applicable to the Einstein equations, since they are
typically bilinear in the first derivatives of the “potentials”. However, the question
of extrema of the solutions is not addressed there. Moreover, the Einstein equations
have a very special structure (with hidden symmetries) so that general mathemati-
cal theorems about differential equations are usually of little profit. Admittedly, the
transcription of the stationary and axisymmetric vacuum Einstein equations to the
Ernst equation, and its treatment with inverse and algebro-geometric methods (see,
e.g., [26]) takes advantage of this special structure. Since, however, these methods
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are intrinsically local, they obviously give no answer to our global problem concern-
ing minima of U . We have tested local expansions of the potentials U and A around
the north pole, around the hypothetical minimum position of U , and around infinity.
But in each case there remain too many “degrees of freedom”, so that solutions of
the system (16)-(17) with a U -minimum cannot be excluded in this way. Also the
fact that the system (16)-(17) does not explicitly depend on z, what produces for
any solution (U(ρ2, z), A(ρ2, z)) corresponding solutions (U(ρ2, z−z1), A(ρ2, z−z1)),
with arbitrary constants z1, seems not to be helpful for our goal.

Therefore, we see two remaining strategies for excluding U -minima:
i) One can directly study the mathematical structure of the system of differential
equations (16)-(17). The comparison with the stabilized Newtonian dust star in [1]
shows that in equation (16) the term |DA|2 (with the asymptotic behavior r−8) acts
like a positive mass density which falls off in all asymptotic directions. Since the
analysis in [1] has shown that there exist exterior mass distributions which stabi-
lize the (Newtonian) rotating dust star, and lead to U -minima in this region, an
exclusion of U -minima can only result from appropriate restrictions of the gradient
of the potential A in equation (16), and such restrictions obviously can only come
from equation (17). The sought after restriction on A is, however, not of the type
that the absolute value of A or |DA| is restricted, because the factor 1

2
in equation

(16), or any other positive constant C2 could be integrated into a new potential
A′(ρ2, z) = C A(ρ2, z), which again fulfils the homogeneous equation (17). And on
physical grounds we like to consider (and exclude) dust stars with nearly arbitrary
angular velocity ω. Therefore, no a priori restriction on the values of A(ρ2, z) seems
possible, besides the condition that the velocity of the equatorial dust particles must
not exceed the light velocity c, what is not a stringent restriction, at least for “small
stars”. It should also be mentioned that the insertion of dimensional quantities into
equation (16) changes A to A/c, what also explains why the Newtonian nonexistence
problem is so much simpler than the Einsteinian problem. (Compare the Newtonian
nonexistence proofs in the Introduction.)

ii) A second strategy for excluding U -minima may be the transcription of the equa-
tions (16)-(17) to a “simpler system”. The substitution S = e2U leads to the system

S ∆3S = |DS|2 + ρ2|DA|2; (18)

S ∆5A = 2 < DS, DA >, (19)

what consititutes presumably the structurely simplest form of our problem, equation
(18) being purely quadratic in S and A, and equation (19) being homogeneously
linear in both potentials. By the substitution B = ρ A we can produce flat 3-
dimensional Laplacians in both equations, but only at the cost of additional terms
with ρ-derivatives. We mentioned already that the transcription of the system (16)-
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(17) to the Ernst equation promises no progress in the exclusion of U -minima. In
analogy to work by Weinstein [27] one may think of an application of harmonic map-
pings to these equations. However, direct application of the formalism of [27] does
not seem to be successful because results about extrema of the potential X = ρ2e−2U ,
appearing there, say nothing about U -minima. A very ambitious goal (which was
successfully achieved in some mathematical problems of similar structure) is a “de-
coupling” of equations (16) and (17), i.e., the discovery of a separate differential
equation for some (obviously nonlinear) combination of U and A, and of their gra-
dients. For instance, one can think of energy-like expressions as they appear in the
components of the Landau-Lifshitz pseudotensor for the gravitational field. How-
ever, hitherto we did not yet succeed with this attempt. (The transcription to the
Ernst equation leads only seemingly to such a decoupling because it contains be-
sides the complex Ernst potential E also the real part Re(E) = e2u.) Should some
decoupling turn out to be realizable finally, it would presumably also lead to a bet-
ter understanding and a further simplification of the algebro-geometric methods as
applied to the Ernst equation.
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