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Covariant gravitational dynamics in 3+1+41 dimensions

Zoltén Keresztes'2, Laszlé A. Gergely®?
L Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720, Hungary
2 Department of Ezperimental Physics, University of Szeged, Dém Tér 9, Szeged 6720, Hungary
(Dated: February 25, 2010)

We develop a 3+1+1 covariant formalism with cosmological and astrophysical applications. First
we give the evolution and constraint equations both on the brane and off-brane in terms of 3-
space covariant kinematical, gravito-electro-magnetic (Weyl) and matter variables. We discuss the
junction conditions across the brane in terms of the new variables. Then we establish a closure
condition for the equations on the brane. We also establish the connection of this formalism with
isotropic and anisotropic cosmological brane-worlds. Finally we derive a new brane solution in the
framework of our formalism: the tidal charged Taub-NUT-(A)dS brane, which obeys the closure
condition.

PACS numbers:

I. INTRODUCTION

In recent years the idea of exploring the possibility of the gravitational interaction acting in more than 4-dimensions
(4d) attracted a lot of attention. In particular, one of the simplest such models arises from the curved generalization
of the one-brane Randall-Sundrum model [1] (for a review see [2]), where gravity acts in 5-dimensions (5d), however
standard model fields are confined to the 4d brane. Nonstandard model fields can occur in the 5d space-time. A
Zy-symmetric embedding looks natural only if the brane is envisaged as a boundary; otherwise generic asymmetric
embeddings should be allowed. The generic dynamics was given in Refs. [3] and [4] in a 5d-covariant approach.
Although promising at the level of allowing new degrees of freedom, which seem to be adjustable to explain for
example dark matter [5]-[8], the complexity of the brane-world dynamics also represents a major impediment in
obtaining simple exact solutions or in monitoring the evolution of perturbations. Therefore new approaches to
gravitational dynamics in brane-worlds are worth to study.

In Ref. [9] the 5d space-time was foliated first by a family of 4d space-times and a second family of 4d space-like
hypersurfaces (see Fig 1. in Ref. [9]). Such an 5d space-time is double foliable. This structure of the 5d space-time
allowed to describe the gravitational degrees of freedom in terms of tensorial, vectorial and scalar quantities with
respect to the 3-space emerging as the intersection of the two hypersurfaces. They represent the gravitons, a gravi-
photon, and a gravi-scalar and are given by quantities with well-defined geometrical meaning, namely the tensorial,
vectorial and scalar projections of the spatial 4d metric and their canonically conjugated momenta: the extrinsic
curvature (second fundamental form of the 3-spaces with respect to the temporal normal), normal fundamental form
and normal fundamental scalar. The evolution equations for these variables were given & la ADM both on the brane
and outside it. An extension of this formalism towards a full Hamiltonian description was advanced in Ref. [10]. It
has been shown, that among all gravitational variables on the brane, only the momentum of the gravi-vector has a
jump across the brane, related to the energy transport (heat flow) on the brane.

The formalism presented in Refs. [9]-[10] however is not straightforward to be applied in brane cosmology. A formal
difference would be the definition of the time derivative. In Refs. [9]-[10] this was defined in the tradition of canonical
gravity as a Lie-derivative taken along the temporal direction (which is not necessarily orthogonal to the 3-space)
projected to the 3-space, whereas in cosmology by tradition the time derivative is defined as a covariant derivative
along the normal to the 3-surfaces (this derivative happens to enter only in expressions projected onto the 3-space).
Obviously this mismatch in the definitions of the time derivatives is not crucial, as the two definitions differ only in
terms taken on the 3-space. However the formalism developed in Refs. [9] and [10] relying on the double foliability of
the 5d space-time is unable to deal with the possible vorticity of the word-lines of observers.

In this paper we develop a formalism overcoming this inconvenience and derive the full set of evolution and constraint
equations governing gravitational dynamics in a 34141 covariant form. Provided the space-like normal n has vanishing
vorticity on a hypersurface (the time evolution vector can still have vorticity), the formalism becomes suitable for
describing gravitational dynamics on the brane (then n becomes the brane normal). In this sense the formalism is a
generalization of the brane 3+1 covariant cosmology [11] (which in turn is a generalization of the general relativistic
3+1 covariant cosmology [12]-[15]).

This newly developed formalism also generalizes the s+141 covariant brane-world dynamics developed in Ref. [9].
Both the vector field n and the time evolution vector u are allowed to have vorticity in the present formalism. Though
observational evidence suggest that the directly detectable 3+1 part of the universe is best described by a Friedmann
brane with perfect fluid, when discussing cosmological perturbations, the vorticity of u should be allowed, similarly



as in existing formalisms of covariant cosmology in both general relativity and brane-worlds. We can also argue for
the need of keeping the vorticity of n. One reason would be, that if it is vanishing at some initial instant, it should
stay zero; and the formalism should be able to handle its ”evolution”. Secondly, and more important, the vorticity of
n should not necessarily vanish at other locations, than the brane, a gauge freedom worth to explore.

We note that a lower-dimensional, 2+1+1 formalism was developed in Refs. [16], [17] and applied in the general
relativistic covariant perturbations of Schwarzschild black holes and rotationally symmetric space-time; then for
investigating spherically symmetric static solutions in f(R) gravity theories in Ref. [18].

In general relativity the important topic of cosmological perturbations, related to both the Cosmic Microwave
Background and structure formation, has a rich literature, from which (without claiming completeness) we mention
Refs. [19]-[27], all based on the 3+1 covariant approach.

Brane-world cosmological perturbations are equally important, however additional difficulties emerge due to the
complexity of brane-world theory and the impediment to predict and perform observations on the brane. At a technical
level, the latter is obstructed by the lack of closure of the perturbation equations on the brane. Despite impressive
developments [28]-[40], many questions remain unanswered. Although we cannot overcome well-known difficulties, we
expect our new formalism will provide the most convenient and complete tool-chest for approaching the problems.
We also foresee the possibility of important applications for brane-world exact solutions.

We establish the generic 34+1+1 covariant formalism in Sec. II, by defining the kinematical quantities and the
decomposition of the Weyl and energy-momentum tensors. We also relate the curvature and Ricci tensors and the
3-dimensional (3d) scalar curvature to kinematic, non-local (Weyl) and matter-defined variables. In Appendix A the
commutation relations among all types of derivatives emerging in the formalism are given.

Sec. III contain the full 3+1+1 decomposed covariant gravitational dynamics and constraints, together with the
available matter field evolutions. In Appendix B we discuss the gauge freedom in the frame choice and give the
transformations of all relevant quantities under infinitesimal frame transformations.

Taking into account that the brane is a 4d time-like hypersurface, in Sec. IV we discuss the decomposition of the
Lanczos equation and of the sources of the effective Einstein equation. Then we specify the generic evolution and
constraint equations on the brane, expressed in terms of quantities defined on the brane. These equations arise from
combinations of the equations given in Section III, evaluated on the brane. Appendix C contains the brane equations
for an asymmetric embedding. We continue Section IV by specializing to a symmetrically embedded brane, by taking
into account the Lanczos equation. Then we conclude the section by deriving a closure condition for the equations
on the brane.

Sec. V contains the derivation of the most important cosmological equations to a hypersurface (a generic brane),
then the discussion of the particular case of cosmological symmetries and perfect fluid source on the brane. As a test
of our formalism we recover the Friedmann, Raychaudhuri and energy balance equations and compare them with the
relevant results of Ref. [4]. In subsection V B and Appendix D we also relate our formalism to anisotropic brane-world
cosmologies.

Sec. VI contains an astrophysical application of our formalism devoted to locally rotationally symmetric (LRS)
space-times, at the end of which we recover a new brane solution with NUT charge. This solution obeys the previously
derived closure condition.

Sec. VII contains the Concluding Remarks.

Notations. Quantities defined on the 3-space orthogonal to both u® and n® carry no distinguishing mark and
the 3d metric is denoted hgp. Quantities defined on the brane carry the pre-index (¥, the only exception being the
4d metric gqp. Quantities defined on the full 5-space carry a distinguishing™ mark. FExceptionally, other quantities
also carry the distinguishing™ mark. These are (a) the 3+1+1 decomposed components of the 5d energy-momentum
tensor, which are defined on the 3-space orthogonal to both u* and n®, and (b) the kinematic and extrinsic curvature
type quantities related to another singled out spatial vector e* in Sec. VI. Calligraphic symbols denote 34141
decomposed components of the 5d Weyl tensor. Whenever possible, identical symbols are used for quantities related
to the temporal vector field u® and the brane normal n®, the latter distinguished by a”mark. We denote the average
of a quantity f taken over the two sides of the brane by (f), and its jump by Af. Angular brackets ( ) on abstract
indices denote tensors which are projected in all indices with the metric hyp, symmetrized and trace-free. Round
brackets ( ) and square brackets | | on indices denote the symmetric and antisymmetric parts, respectively.

II. THE 3+4+1+1 COVARIANT FORMALISM
A. Decomposition of the metric

Let u® = da®/dr and n® = dz®/dy be a time-like and a space-like vector field in the 5d space-time, with 7
and y the affine parameters of the respective non-null integral curves. They obey the normalization conditions



FIG. 1: Elements of the 3+1+41 decomposition of the 5d space-time geometry with metric g,; and compatible connection V.
The 4d brane with normal n® has induced metric gar = Gap — nanp and extrinsic curvature (4)Kab = gﬁgﬂl%cnd. The 4-velocity
field u® of observers in the brane defines local 3d orthogonal spatial patches, hypersurface-forming only when the vorticity
wab = 0. The other kinematical characteristics of u® are the expansion © and shear o,,. The expansion, shear and vorticity of
n® are é, Gap and Wap, the latter vanishing on the brane. The temporal, off-brane and 3d covariant derivative are shown for
the vorticity 1-form wg.

—u®ug, = 1 =n"n, and the perpendicularity condition u®n, = 0. The 5d metric is decomposed as
Jab = Nam + Gab » (1)
with
Jab = —UqUp + Nap (2)

the metric on the 4d temporal leaves y =const (with the brane at y = 0) and the spatial part h,p, of this metric
obeying u®hgp = n%hey = 0. We denote by €44 the volume element associated with hgp. The 4-vector u® represents
the time-like velocity field of brane observers (see Fig 1).

We employ three type of derivatives, all associated with projections of the 5d connection 61 A dot and a prime
denote covariant derivatives along the integral curves of u® and n®, respectively, while D is the 3d covariant derivative
compatible with the metric h:

Tb“c = uaﬁaTbuc s (3)
Téuc = naﬁaTb..c ) (4)
DuTy.c = hhy' h, /N 4T ;. (5)

Note that the D-derivative is the same as introduced in general relativity employing the corresponding projection
of the V-derivative (V being the connection compatible with gq;). This is, because both generate the covariant
derivatives formed with the connection compatible with hg,. Concerning the time-derivative defined above, except for
scalars, it differs from the corresponding general relativistic time derivative employed in the 34+1 covariant formalism
(which is defined with V) in n® and u® terms. Nevertheless, when projected to the 3-manifold with h,*, the two
definitions agree.



B. Kinematic quantities

We introduce the kinematic quantities through the decomposition of the 5d covariant derivative of u%, n® as

Vatup = —uqdp + Kugny + Kngny + noKy + Lany + Kap (6a)
Vony, = na;l\b + Kngup + I?uaub — ual?b + Loup + I?ab , (6b)
where
Aa = iL(a> s A\a :n’<a> ,
Ko = uigy,  Kao=1ay,
K = nbuj , K =u"n |
L, = hacndﬁcud ,
Kab = Dan ) I?ab = Danb . (7)

As a rule, an overhat is used for kinematical quantities related to the vector field n® in order to distinguish them
from the similar kinematical quantities related to the vector field u®. Here A, is the acceleration. All scalars, vectors
and tensors in the abgve decomposition are defined on the 3d manifold orthogonal both to n® and u®. The tensorial
expressions K,p and K, can be further decomposed into (trace-, trace-free symmetric and antisymmetric) irreducible
parts as follows:

(C]
Kab = ghab + 0ap + Wap ’ (8)
~ &) R
Kab = ghab + Tab + Wab (9)

where we have defined the expansion, vorticity and shear of the vector fields u* and n® as

O = D%, y  Wab = D[aub] y Oab = D(aub) )

0 = D“na 5 Qab = D[anb] , 8ab = D<anb> . (10)

The antisymmetric 3d tensors wy, and W, can be also encoded in the vorticity vectors w® = £, /2 and &% =

£y, /2. When the vorticities of both vector field n® and u® vanish wqp = ©Dap = 0, the tensorial expressions K,p, and

~

K, are symmetric and they represent the two extrinsic curvatures of a 3d hypersurface. The condition Wy, = 0 is also
necessary in order to have a brane at y = 0, but not sufficient. Indeed the brane is a 3+1 dimensional hypersurface
which can exist only if the higher-dimensional vorticity of its normal &, = V{4ns) vanishes. This condition translates
into 0 = Yl Cgb]dﬁcnd = —Uq (I?b] + Lb]> + Wap, therefore (due to Frobenius’ theorem) the necessary and sufficient
conditions for the existence of the 341 brane are

aab|y:0 =0,

L,y = — K| . (11)

In summary, the independent components of ﬁaub are expressed by three scalars (K, K , 9), four 3-vectors
(Ao, Kay La, we) and a symmetric trace-free 3-tensor (o4p). The corresponding decomposition of ﬁanb consists
of the three scalars (IA( , K, (:)), four 3-vectors (/Ta, IA(a, L., ©,) and a symmetric trace-free 3-tensor (04p). The
irreducible decompositions of the covariant derivatives ﬁaub and 6(177,1, have therefore 20 independent components
each (due to the constraints ubﬁaub =0 and nbﬁanb =0).

C. Gravito-electro-magnetic quantities

The non-local gravitational properties of the 5d space-time are carried by the 5d Weyl tensor, the principal directions
of which lead to a classification scheme generalizing the general relativistic Petrov classification [41]. Here we are



interested in the 3+1+1 decomposition® of éabcd, which can be given in terms of the quantities (with a total of 35
independent components):

E = C’abcdn“ubncud ,
Hi = %Ek ®Capeaun® ,  Fi = Capeahfuhyn®
Ek = aabcdhk“nbucnd , &= albcdhk“ubncud ,
Em = albcdh(k“n hl>cnd v E = @bcdh<k"u hl)cud ;
i = Lo o L o w

We note that all tensorial quantities defined above are trace-free (from the properties of the Weyl tensor), and further

in the tensors Fy;, Hy; and H}., the brackets () are equivalent with the round brackets ( ). The Weyl tensor in terms
of the quantities defined in (12) is

~ 2

Cabea = —2 (Egpahuje — Ecpahna) + 2 (5d[ hy)e 5c[ahb]d> - gghc[ahb]d
+2 ( i Z[anb] + e 47:[\i[cnd]> -2 (Ecd iHi[aub] + e iHi[cud])
+ (ncn Eb 4= NdN[q Eb] ) + 2 (ucu[aé},}d — udu[aé'b]c)

(ucn[a}"b d — Uan[qFpje + NeljaFpja — NdU[aFp)e )

2
-2

— (njeugvar + uenyadr) H* — (Ujanaeper + niatyCack)
—2 (upena€avk + vanpear) H* — 2 (Ehyyena + Echayane)
—2

(5[ahb] [cUd) + 5[chd [a U] ) + AEupanp)ueng

-2 (ncudn[aé’bl - ucndn[ac‘,’b] + naupnEq — Uanpn Ed])
+2( UenqU[eEp) — NeUaU[qEy) + uanbu &) — Ny Ed])
2
—58 (ndn[ahb]c — ncn[ahb]d) + 58 (Udu[ahb]c — Ucu[ahb]d) . (13)

This relation generalizes the general relativistic 3+1 covariant decomposition of the 4d Weyl tensor Cypeq (which
has only 10 independent components), where only two tensors Ey; = C’abcdh<k“ubhl>cud and Hy; = %E(k abhl)CCabcdud
appear, the electric and magnetic parts of the Weyl curvature. On the brane the relation between the set of variables
& and Hy; and the variables Ey; and Hy; is given by

10 1(5 ©\. 1. ., 15 5
Eap = Eop + igab - 5 <K + g) Oab + 50-(;(@0-1)) + iK(aKb) ’ (14)
Hab = Hab - E(a Cdab)c]:?d . (15)

D. Decomposition of the energy-momentum tensor

The 5d gravitational dynamics is governed by the Einstein equation

Gab = *Xgab + ,’52 [fab + Tab5 (y):| ) (16)

where %2 denotes the 5d coupling constant. The sources of gravity are the 5d cosmological constant K, the regular
part of the 5d energy-momentum tensor T, and a distributional energy-momentum tensor with support on the brane:

Tab = _)\gab +Tap - (17)

I The case of a generic n + 1 decomposition of the Weyl tensor was discussed in Ref. [42].
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Here ) is the constant brane tension and T, describes standard model matter fields on the brane?, decomposed with
respect to a brane observer with 4-velocity u® as

Tap = puauy + q(aupy + phap + Tab - (18)

The quantities p, q,, p and m,, are the energy density, the energy current vector, the isotropic pressure and the
symmetric trace-free anisotropic pressure tensor of the matter on the brane.
We decompose the regular part of the 5d energy-momentum tensor relative to u* and n® as:

Tap = puatiy + 2q(aUp) + 2qu(anp) + Phap + Tnanp + 27Ny + Tab (19)

where p is the relativistic energy density relative to u®, p the isotropic pressure, q, and ¢ the relativistic momentum
densities on the 3-space and in the direction n®. The quantities 7, 7, and the symmetric and trace-free tensor 7, are
related to the scalar, vectorial and tensorial components (with respect to the 3d space) of the 5d anisotropic pressure
tensor, which is

3(m— ~ ™ ~

%nanb + 27T(a’nb) + pThab + Tap - (20)

By employing the definitions given in this Section we give the commutation relations among the temporal, off-brane
and brane covariant derivatives in Appendix A.

E. The Gauss equation and its contractions
We define the local 3d curvature tensor Rgpeq of the space orthogonal to both u® and n® as

1
~RapedV (21)

DDy Ve — wapViey + Dap Vi = 5

resulting in

Rabed = haihbjhckhdléijkl — (Dguc) (Dyug) + (Doua) (Dpuc)
—+ (Danc) (Dbnd) — (Dand) (Dbnc) . (22)

This is a natural generalization of the definition used in general relativity [22], [44], [45]. By the definitions of the
kinematical, gravito-electro-magnetic and matter variables, we have

2 = ~ g~ ] hejah
Rabea = [—5(@2—92)_5+A+K2<p+p_ﬂ)}%
~2

~ ~ 2 ~ ~
-2 (gd[ahb]c - 8c[ahb]d) +2 (gd[ahb]c - gc[ahb]d) - % (hd[aﬂ-b]c - hc[aﬂ-b]d)

20
7? [(Ua[c + Wa[c) hd]b + (Ub[d + Wb[d) hc]a] -2 (Ua[c + Wa[c) (Ud]b - Wd]b)

~

20 [, . ~ ~ ~ —~ ~ —~
+? [(Ua[c + Wa[c) hd]b + (Ub[d + Wb[d) hc]a] +2 (Ua[c + Wa[c) (Ud]b - Wd]b) ) (23)

2 For DGP / induced gravity type models [43], Ty should be replaced by Ty — (7//{2) Gap, with Ggp the Einstein tensor constructed
from the metric g4 and 7 the dimensionless induced gravity parameter. Randall-Sundrum type brane-worlds are recovered for v — 0,
on the ¢ = —1 branch.



and the local 3d Ricci tensor and Ricci scalar become

2 ~ ~ g o | hac
Rae = hbdRabcd: |:_§ (@2_®2> _25+A+’€2 (p+p_7T):| %
-~ R_ 20 20
+5ac*€ac+%7rac*?(O—ac+wac)+?(o—ac+wac)

b b b
+0ap0, " — wpw hge + Wawe — 20‘[a Welb

~ ~ b . o~ ~b ~ o~ ~ b~
—0ab0 + wpw hac — Waele + QU[a Wc]b 5 (24)

[\)

R = hRae=—-26+A+R2(G+p—7) — = (@2 féQ)

w

—2waw® 4 Ty ™ + 25,0% — Fapo ™ . (25)

Eq. (25) can be referred as a generalized Friedmann equation in the 5d space-time, as will become evident in Section
V. The general relativistic counterpart is presented in Refs. [44], [45].

III. 34141 COVARIANT DYNAMICS

The full set of the 34+1+1 covariant evolution and constraint equations for the kinematic, gravito-electro-magnetic
and matter variables are given by the projections of the Bianchi and Ricci identities for u® and n®. These equations
hold as the main result of the paper, and they are presented in the following three subsections. In particular, the first
subsection contains all Ricci identities; the second subsection contains twice contracted Bianchi identities, which by
virtue of the Einstein equations describe evolutions for the energy density and currents; while the third subsection
contains the rest of independent Bianchi identities. A related Appendix B gives the transformation rules under a
frame change for the totality of the kinematic, gravito-electro-magnetic and matter variables, to linear order accuracy.

A. Ricci identities

The Ricci identity for u® gives the following independent equations:
0= K+ K +A,A% + K2 - K* 4 L,K? — K,K* — L,K*®
A RE
—i—é‘—g—i—%(p—?r-i-Sﬁ), (26)
) 02 -
0 = ©—D"Ay+ o+ OK — A"A, — 2w,w" + oo™ — &
A =2

_ _\ A o
i (KaKa+KaLa+L“Ka) -5+ %(er?TJrfﬁ : (27)

. o) 0\ ~
_ /
0 = K<a>A<a>+<K+§)Ka+<K§)Ka+Sa

+I? (A\a + Aa) + (wba + Uba) (Kb - I?b) - %%a ) (28)
. . POC C
0:L<a>+DaK+ K+_ La+ K+§ A+ K*g Ka
N =2
+ (U/}ab + EJ—\ab) Ab - (Wab + Uab) (Kb - Lb) + ga - %%a ) (29)
1 =~ 20 1 . = -~
0 = @) — 5% ““Deda+ KDy + Zrwa — o’ + 5, (Kch KoLy + Kch) , (30)
. 20 S
0 = O(aby — D(aAb) + ?O'ab + Koap — A(aAb) + K(aLb>
~2
~ ~ [
+K<aKb> + L(aKb> + wwpy + Uc<a0b>c +Eab — ?ﬂab , (31)

0 =0 —DK,— (K - g) O+ (K*+ LY Ay — A* (Ko — Lg) — 2G,w® + G0 — 727, (32)



w| )

_>La+<}—?+

w|

>Ka

©

=2

3

1 1 —~
' o P Daky — i (Ab n Ab> (Ko — La) — (K _ —) o

1 1
~ b ~
Opa® + 5% oo, — §Hk ,

~

©
— La>) + A(b (Ka> + La>) + gO’ab

0\ . ~ ~ ¢ ~ ~ ¢
— <K — —> Oab + W(aWp) + WeaOpy ~ + a<adwb>d + 0c(a0yy + Fab

~ O 0\ . PN - -
£ Dy Ly +2 (K + §> wg + 2 (K - g) O + 5 Pwalp — Traw® + o3 — £ Co5,° + Hi, ,

0\ -~ .
/
0 <a>DaK+<K§>Aa<K
~ ~ b b & K
+(Uab +Wab) (K +L ) - (Wab+0ab)f4 _ga'i‘?Qa 5
+§ + 15 ab B l’\ a _
3wk 5 k WaWp 2Ukaw )
0 = ol — Dk — Ap (Ko A
3
0
0 = D, — Aw® + 0% (Ka - La) ,
0
20
0 =

2
D ooy, + €, *Deowy, — 300+ Lo 2, kLD,

+2¢, ck (Acwy, — Kco) — aabLb + (Zfa +

3

2

H2

B

The Ricci identity for n® gives the following independent equations:

0

~

< _ . © _ SN Y
— ©- DK, + (K + §> o— (K“ - L“) A, + A° (Ka + La) — 20, B + Gy — 722G

BY 1 -~ 1 ~ ~ ~
= W) ~ 55 YD Ky + 5€k ab (Ab + Ab) (Ka + La) + <K + -

@>
Wi

-~ 1 ab~ 1
+§L«Jk + Ec‘:‘k WaWp — 5

~

a\]mwa

2

~

3

. . _ o
= O(ab) — D(aKb> + A(b (Ka> + La>) — A(b (K@ — La>) + gO’ab

= D(ka> + Eab<ka0'c>a + 2A<ka> — 2K<C®k> — L<c®k> + E(kab30>bLa + Hpe

1 N 1 N 1
— —Okaw® + 5% abacbaac + §Hk ,

-~ O R R R R
+ (K + —) Oab + WiaWpy — wc<aab>c — a<adwb>d + 0’c<a0'b>c + Fab

3

~

~ = - 0) ~ ~ © ~
o /
K<a>A<a><K§>Ka<K+§)KaK(Aa+Aa)
oy o\ s R
+(Wba+0ba)(K *K)‘i’ga*?(ha
. - @2 P
= @ —D%A, + 5 - OK + A®A, — 20,0% + G50 + &
_ _ AR
—(K“Ka—KaLa—LaKa)+§+%(w+p—f5),
R 1 g ~ 20
0 = wgargsa DAy — Kw, +
~/ - Qé/\

0 = Glay) =~ DiaAy) + 5 0ab —

Kog + A\mA\w + I?(aLb)

=2

A~ ~ ~ ~ ~ N o~ H‘/ —
—K (oK) + Lo Ky + ©ap) + Tc(a0p)" + Eab + 3 Tab

0 = D%y + Ayi® — w® (

~

Ko+ L

).

o, -
S0 = Fu — 5o, (KoRa+ RoLa+ KoLa) |

(44)



0 = D(cam + Eab<ka30>a — 221\(053@ + QI/E(cwk) — L<cwk> + €k abO'c>bLa + ﬁkc )

. N 2 ~ 20 ‘
0 = D'Gup+e, *D.oy, — 3P0+ F-La—¢, FLewr, (49)
ck (7~ - b 2R _
—2¢, (Acwk — chk> —oal’ — &, — 5 Ta - (50)

B. Conservations laws

The twice-contracted 5d Bianchi identities imply %“fab = 0, which can be decomposed into the projections taken
with u, n and h, respectively:

0 = p+¢ +D%u+p(K+0)+K7+0p+ 70

—5(2}? . é) 4+ (2Aa - Ea) 47 (Lo + K,) (51)
0 = G+7 + D%y +7 (é . f() —Kj— Op— 7%,

152K +©) — 7 (221a _ Aa) P (f{ - La) , (52)
0 = Guy + Ty + DiP + DFar + ?%kJr ?Qk — K7y, + KGi, + pAy, + T Ay,

5 (A = Ap) + Tk + T 0 + 7 Dok + TGar + 7 (Ri+ K ) — For (47— 47) . (53)

The first of these equations is the continuity equation, as can be easily verified in the homogeneous, isotropic case
(=q¢=7*=7%=0and © = 3H) and for K = 0. The ensemble of the equations represent an incomplete set of
evolution equations for the 5d matter (there are no evolution equations for p, 7, 7o, Tab)-

C. Bianchi identities
The equations independent from Eqs. (51)-(53) arising from the 5d Bianchi identities are:

. - 4 . . .
0 = £-D"E,+ 306+ E40™ — Fopo® + 3H,G% — &, (2Ka + La) — 928, A°

R? 2k2 282
—7(0 T+p) —YD“qa—Y@(erﬁ)
2% 42 2K 2r% _
3 @q — g GaA® — %ﬂ'a (2Ka + La> — %ﬂabaab , (54)

. 1 N . 0
0 = €y + D"Fra + 52 " DaMy — Epa (R + 17) = EnaL® - <K + ) & + ®5k

4E€ ~ 1
+— KkJFj:kaA - §(Uka+wka)5 — (Oha — 20ka) E" — 2Hpal® — Hpaw®

~2 72

~ ., 3 QK" ~ - - =
+eg abHcaO'b ¢ — 5519 abHaAb -+ ?P(M -+ —Dkq -+ ? (7T 7@K}€
2/ %2 ([~ ©)\. 2&?
+—3 (P+7) Ly — e <K+ g) qr — T(L«Jka-i-aka)aa
282 . -~ 252 - 2Kk20 _ 2r2G
K K a K ot nqu’ (55)

*?WkaKa + R (Wka + Oka) T +
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+2H<kw1> —+ 25a(k0 + 2€< b0'k>aHb + 5<ka (wj)a — 30j)a) .7:<] (wk — Uk) )

2K2 . 252 252

-~ - -~ K
¢ “Hia (240 = Ap) = “Ha (Ko + L) + “5- Ty + =5 Doy + - O
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~2 %2

~ K —~ — ~ ~ ~ —~ ~ ~
—38<jwk> + ?Eab%Daﬂ'ﬁb + %2 (q<jwk> + 7T<jwk>) + ?E(k ab (Uj)aQb + Uj)aﬂ'b) , (69)
0 = DPHj — Hapo™ + Hapo™ — 3E,0% — 36,07, (70)
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~ 1 [CIPN ,
0 = D%, — DEyp. — ngS — =&, — ggk + 3Hpaw® — gy, abHacUb ¢

3

17, N N P ~ R
—|—§ [(kaa + Gka) E + (Bwka + Oka) EY| — SHkaW® + €, abHacab ¢ — ?Daﬂ'ak
R 2520 _ 22O _ 2 oan R
g Dr(P=F+P) = == — —5— Tk + R Q" wia + S0 ok + RO + 37 Oha s (71)
1 ~ O A . JURN .
0 = DaHak + 5519 abDaEb — ng — ?wk — 'HkaLa — 2.7-‘;mw“ — (O’]m — kaa) Ha (72)
ra a ab ra c 1 ab %2 ab ~
- (5ka - 35ka) w* — €y (gac - 5ac) T = 5Ek Ealy + 3 Ek D.qp
~2 _ 2~2 . 2~2 ~ ’V2~ ~2 o
f%sk abﬁaLb + % Wi + % (p Jrf?)wk - %Wkawa - %Ek ab% “Ope , (73)

A 1 ) o\ ~a  4E
0 = D%Hak — 36k PDo&y — ng — HiaL® + 2Fpqw® + (Eka - 35;m) o — 5 @

1 ~ o /a R
— (Oha — 2wra) H® — 2%k P L&y + 4, 5, (50“ - 8“1) R "Daiy

R 9Rq 9. R ., W2
— 3o Lals — 3wk — = (F = D)0k — TR +

e Fad,C . (74)

IV. 341 GRAVITATIONAL DYNAMICS ON THE BRANE
In this section we consider distributional energy-momentum tensor sources on the brane, in addition to the regular

energy-momentum tensor fab. Such a distributional source comes together with a discontinuity in the extrinsic
curvature, as related by the Lanczos equation.

A. The Lanczos equation

The extrinsic curvature of the brane is (YK, = Vicnay = ggcgg)ﬁanb, equal to the symmetrized version of the last

four terms of Eq. (6b). Replacing Kau by the expression (9), and specializing to the brane cf. Eqgs. (11), the extrinsic
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curvature is expressed as

~

. 9 R
(4)Kab = Kugup — QU(aKb) + ghab +Oab - (75)

As we approach the brane from left or right, the limiting values of the extrinsic curvature could be different, according
to the embedding and 5d metric in the two regions. Therefore we introduce averages and differences of the extrinsic
curvature.

The Lanczos equation [46], [47] relates the jump of the extrinsic curvature across the brane to the distributional
matter layer:

~ T
A(4)Kab = 7/12 (Tab - ggab> . (76)

The u®u®, u®h?, trace and trace-free parts of the h‘ghf’i projections give:

~2

AR = T (A =20-3p) . (77)
AK, = ®%q, , (78)
AB = -2 (A +p) , (79)
A/U\ab = —%271'@},. (80)

The Lanczos equation is necessary in order to derive the gravitational dynamics on the brane, given by a scalar (the
twice-contracted Gauss), a 4d vectorial (the Codazzi) and a 4d tensorial (the effective Einstein) equations [3]. The
latter has been first derived in [48], later generalized to include bulk matter and asymmetric embedding contributions

(Eq. (1) in [3)).

B. The 341 decomposition of the source terms of the effective Einstein equation

We give the 3+1 covariant decomposition of the source terms of the effective Einstein equation. This equation is

[3]:

72 (7)
2

Gap = — (A - ) Gab + H2Tab + 7‘Q'ALSab - <(4)gab> + <Lab> + (Pab> : (81)

The sources are: the stress-energy tensor Ty, representing standard model matter [decomposed in Eq. (18)]; the source
term Sgp quadratic in Ty (dominant at high energies), (Pap) the pull-back to the brane of the bulk matter; (L,p) a
source term originating in the asymmetry of the embedding and &, the contribution of the electric part (relative
to the vector n®) of the 5d Weyl tensor. We have defined the 4d coupling constant x? and the brane cosmological
constant A as

6k2 = R'X, (82)
2 = Ii2)\+</~\> . (83)

The quadratic source term is decomposed as

1 . 1 , .
Sab = ﬂ (2/)2 _ 3ﬂ_cdﬂ_cd) UqgUp + ﬂ (2p2 —+ 4pp - 4ch(/ + ﬂ_cdﬂ'(’d) h/ab

1 P 1. p+3p 1 :
+ZQ(aQb> + g(Z(aub) - §qc7rc(aub) - Tﬂab - Zﬂc(awb)C . (84)
Some of the numerical coefficients here are corrected with respect to the corresponding expression (7) given in Ref.
[11].

The electric part of the 5d Weyl tensor expressed in terms of gravito-electro-magnetic quantities defined in Section
IIC is

<(4)5ab> — (&) (uaub + %hab> 9 <E(> up) + <Eb> . (85)
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The asymmetry source term is decomposed as

7> 7oC 7> a\2 9 . ~cd
R) -0 {5) (1) - (8)"+ 550 )]
N N 0 ~\ _ SR
+(Ka) (Bo)+ (= =K ) (Gas) = (64°) (6oc) - (86)
As the induced metric is continuous, the average of the trace L = g®®Lq; is the trace of the average:

(L) = (Gea) (5°%) — 2 <f<b> <I?b> - % <(f)>2 42 <(f)> <f(> . (87)

~

For a symmetric embedding <(4)Kab> = 0, therefore cf. Eq. (75) <é> = <K> =0= <I?C> = (Gcd), so that (Lgp) = 0.
Finally,

6P
=7 = 3(5+ D) waws + 8Gaw) + (5+ ) hao + 4T (83)

C. Gravitational dynamics on the brane: generic embedding

In order to obtain the evolution and constraint equations on the brane, we select a subset of the Ricci and Bianchi
equations given in subsections III A and III C, by combining them in such a way, that the off-brane derivatives of the
kinematical and gravito-electro-magnetic quantities drop out.

First we express Hq, Eq, Fap and Hep from (37), (50), (43) and (49) respectively and we employ the definitions
(14), (15) in order to introduce Eq, and H,p in place of £, and Hgp. Inserting these into the system of equations
given by the following equations: (41), (29), (54), (57)-(66), (27), (30), (31), (38), (39), (40), (58)+(61), (60), (71)
and (73), evaluated at the brane, we obtain a system of equations to be referred as the brane Eqs. These equations
are either evolution or constraint equations on the brane and for a generic asymmetric embedding are presented in
Appendix C. The evolutions refer to the quantities @ Ka, O, Wy, Oa, &, Ea, Eup, Hap.

D. Gravitational evolution and constraint equations on a symmetrically embedded brane

In this subsection we restrict ourselves to symmetrically embedded branes. The Zs-symmetric embedding arises
when there is a perfect symmetry between the 5d space-time regions on the two sides of the brane. In this case the
extrinsic curvatures on the two sides of the brane are opposite. This is due to the fact, that the normal vectors to the
brane on its two sides are n* and —n®, respectively. Therefore AWK, = 20K, and K 4 = 0.

We present a system of evolution and constrain equations, which hold on the brane and contain no off-brane
derivatives.We obtain these equations by specifying Egs. (C1)-(C14) for a symmetrically embedded brane; then
replacing @ Ka, K and G, with the corresponding matter variables as given by the projections (77)-(80) of the
Lanczos equation, again specified for a symmetrically embedded brane. Finally, we employ the definitions (82) and
(83), whenever possible.

For improved clarity we group all general relativistic contributions on the left hand side of the equations, keeping
the brane-world contributions on the right hand side:

P+ D%+ (p+p) O +2¢"Au + Tapo™ = =27, (89)

) 40 ~
q(a) + Dyp + Dbﬂ'ab + ?qa + (p +p) Al + 7"'abAb - Wabqb + Uabqb = —2T, , (90)
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For vanishing 5d matter these equations reduce to the corrected form of the Egs. (26)-(29) and Appendix A of Ref.
[11].

Egs. (89) and (90) express the interchange of energy density and energy current between the brane and the 5d
space-time (due to the nonvanishing right hand sides). In the absence of the 5d sources, these equations become
evolution equations for the brane matter alone. Similar relations for the effective nonlocal energy density and effective
nonlocal energy current are given by Eqgs. (91) and (92).

Even for the chosen Z5-symmetric embedding and with the simplifying assumption fab =0(thus0=p=q=q, =
T = Ta = Tap = D) the above equations do not close on the brane, due to the absence of evolution equations for gab,
Tab, and p. Assumptions fixing 74, (typically by kinetic considerations employing the Boltzmann equation) and p (by
choice of a continuity equation) are required already in general relativity for closing the system, however on the brane
(even with empty 5d space-time) an additional assumption for Eab is equally required [11]. From these considerations
it is immediate to establish the closure in the special case Eab = 0 = 7y, provided the equation of state is known.

As the closure is difficult to achieve even in the simple 5d vacuum case, in order to tackle realistic problems we
need to consider the ensemble of all dynamical and constraint equations given in the preceding section.

E. Closure conditions

The general relativistic 3+1 covariant formalism contains 10 gravito-electro-magnetic variables with 10 evolution
equations (besides there are also 12 kinematic variables with 9 evolution equations and 15 constraints altogether).
The 34141 brane-world formalism developed in this paper contains 35 gravito-electro-magnetic variables with 35
evolution equations (beside 35 kinematical variables with 28 evolution equations and 77 constraints altogether).

The subset of equations on the brane, given in subsection IV D has 1049 gravito-electro-magnetic variables with
only 10+4 evolution equations (there are also 12 kinematical variables with 9 evolution equations and 15 constraints
altogether.) The 9 new gravito-electro-magnetic variables are the quantities appearing on the right hand side of Eq.
(85); among them the last term Eab, representing 5 independent variables, has no evolution equation. It has been
known that the system of equation is closed by the condition Eab =0 [11].

In this subsection we want to explore the extra information we have in the complete system of evolution equations
derived. In particular, Eq. (61) contains the desired temporal evolution, however it also contains terms not appearing
in subsection IV D. Remembering, that on the brane Wy, = 0 we could impose

5~ 6 . - 3 _
Figy = <2K - g) Frj = F(;“Orya + KEkj + K&y — & (gKm + Ly — K@)

3~ o~ o~ ~ ~ 3 ~
+55(kAj) — E(k aij>a (Kb — 2Kb) — €<]- aka>aAb + §E<j ab0k>aHb y (106)

such that Eq. (61) becomes

5 s O4 4& = =
0=y = Diny + g8k + 5om = 280Aj) + 5" (Wia + 0hya) + My (107)
with the 5d matter contributions
K2 . R k2 R2q . K20 _
Mij = FTug) + 3 Dol + 5 (+P) owj + =570k + —5= k)
K2 K2 = R_
t @A + 5T (QKM + Lk>) + 375" (Wra + ora) (108)
A particular solution of Eq. (106) would be
Frj=Hij=E=H;j=K=A4;=0. (109)

None of the quantities above appear in the brane equations presented in subsection IV D, thus those equations are
not altered by the choice (109), and the system becomes closed by Eq. (107).2

3 The no-go theorem for closure given in Ref. [32] does not apply here, as it was derived for perturbations of 5d Anti de Sitter spacetimes.
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The 5d Schwarzschild-Anti de Sitter space-time containing a Friedmann brane emerges as special case of the space-
times obeying Eqgs. (107) and (109), as they have My, = 0= K and

0 = Ea:é\a:Ha:La:Ka:I?a:Wazaa:Aa:A\a;
0 = Eab = fab = 7—lab = é\ab = ﬁab = Oab = a—\ab . (110)
At the end of this section we emphasize, that Eq. (107) closing the system of brane equations should allow for far
more solutions than the trivial one for £,;,. We will construct a specific example in Section VI.

V. COSMOLOGY

In this section we consider generic embeddings. By employing the definitions (82) and (83), also the conditions
(11), arising from the existence of the brane, we can derive average and difference equations on the brane. We give
here but the most relevant such dynamical equations. The rest of the equations is straightforward to derive, although
it may be lengthy.

The average taken on the two sides of the brane of Eq. (25) reduces to the generalized brane Friedmann equation.

~ ~\ 2 ~\ 2 ~
We also rewrite <@2> = <@> + (A@) /4 and use a similar relation for 7,,. We take A© from the Lanczos equations
(77)-(80). Eq. (25) then becomes

2

R ©2 1 <9> 1 s RE

5t 3 —A—K%p (1 + %) - ioabaaberawa =—(&— %Trab’/Tab+ 5 3 (Gap) (377 + % (p+p—m) . (111)
The generalized brane Raychaudhuri equation is obtained from the average of Eq. (27), by employing the same

sequence of simplifications, as for the Friedmann equation. We obtain:

. 02 2
O+ 5+ Oap o™ — 2ww® — D A, — A A, + 5 (p+3p) = A
~4 ~2

B0 (21 8p) + " gug® (8) (RY+ (Ra) (R*) = - (5 +7+75) - (112)

= -5 4

Finally we give the generalized brane energy-balance equation from the jump across the brane of the Eq. (41) by
the same procedure:

P+0O(p+p)+ Dug® +2A,¢" + Tapo™ = —A7 . (113)

These equations hold for arbitrary branes. Again, general relativistic contributions are on the left hand sides, brane-
world contributions on the right hand sides.

A. Friedmann brane with perfect fluid

In this case the conditions w, = 0 = o4, = Adg hold, arising from the particular geometry and matter source
chosen, also R = 6k/a?, where a is the scale factor. Moreover

©/3 = H = a/a, where H is the Hubble parameter. The Friedmann, Raychaudhuri and energy-balance equations
become:

k p
2 —_— = 2 —_— —_
3<H +a2> A+l€p(1+2)\) (€)

o\ 2
B 1y B -
+T—§<0ab><0 >+§(P+p—ﬂ>- (114)
X K2 w4 w4
3(H+H?) + 5 (p+3p) = A = (&) = "L (2p+3p) + “-qua”

2 4
—<(:)> <f{>+<f{a> <f{“>—%<ﬁ+%+ﬁ} : (115)
p+3H (p+p)=—-Aq. (116)
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For symmetric embedding the equations simplify by <(:)> =0 = (04p). For generic asymmetric embedding Eq. (114)
can be rewritten as

k p (L) R?
3<H + a2) A+k p<1+ 2)\) + kU V) (m) (117)

where (L) is given by Eq. (87) and U is defined by

2
<@> 1\ 7o\ 1/ /oy 1 72
KU =L 4 <@> <K> - <Kb> <K"> — = (Bap) (5) — (E) + = (F+D) - (118)
6 2 2 4 2
The quantity U is nothing but the effective energy density introduced in Ref. [4], encompassing the trace-free parts
of the Weyl, embedding and 5d matter sources in the effective Einstein equation, given here in terms of the 3+1+1
kinematic, gravito-electro-magnetic and 5d matter variables.

B. Anisotropic brane-worlds

Full brane-world solutions with homogeneous, but anisotropic 5d space-times are also known.

In Ref. [49] a vacuum 5d static and anisotropic space-time with cosmological constant admitting a moving Bianchi
I brane was analyzed. The Zs-symmetric junction conditions could be obeyed only by anisotropic stresses on the
brane, hence the brane cannot support a perfect fluid. Isotropy of the brane fluid could be achieved only for isotropic
5d space-time and brane.

This setup was generalized in Ref. [50] by allowing for a non-static 5d space-time. Assuming separability of the
metric components, new 5d solutions combining the 4d Kasner solution with the static 5d solutions of Ref. [49] were
obtained.

For the reader’s convenience we give in Appendix D the list of kinematical, gravito-electro-magnetic and matter
variables for the 5-dimensional models presented in Ref. [49]. Working out the respective quantities for other metrics
would be a similar straightforward exercise.

VI. STATIONARY VACUUM SPACE-TIMES WITH LOCAL ROTATIONAL SYMMETRY

In this section we discuss an application of our formalism, by assuming vacuum in both 4d and 5d, but keeping the
respective cosmological constants. The embedding of the brane is symmetric. Then the effective Einstein equation
reduces to

1 N N
Gap = ANgap — € (uaub + §h‘“’) + 28(aub) —Eub . (119)

We are interested in stationary space-times, therefore f = 0 for any scalar field f. The stationarity implies a
singled-out temporal Killing vector, therefore the 34+141 decomposition of the gravitational dynamics developed in
this paper turns particularly useful for the study of gravitational dynamics on the brane (which defines the other
singled-out direction).

We also specialize our treatment to space-times with local rotational symmetry (LRS) on the brane. Such a
symmetry singles out an additional space-like unit vector field e?, in the sense that there is a unique preferred spatial
direction at each point that assigns the local axis of symmetry. Once such a special vector field is chosen, a further
decomposition of the spatial quantities would lead to a generic 2414141 formalism. For this, the metric h,, should
be further decomposed as

Nab = €a€p + qab » (120)

where ¢gp is the induced 2-metric on the surface perpendicular to both e* and u*, and lying in the brane.

In what follows we will see that these symmetries assure that the structure of the space-time can be described solely
in terms of scalars, thus no vectors and tensorial quantities are needed. This is a powerful feature of the formalism.
Furthermore, the symmetries assure, that all scalars f depend only on the coordinate parametrizing the integral
curves of the rotation axis field e*. We denote this coordinate derivative as f* = e*D, f (a spatial covariant derivative
along these integral curves).
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A. Independent kinematic quantities related to the vector field e
1. Decomposition

For the purposes of the present application it is enough to give here the decomposition of the covariant brane
derivative of the vector field e® in terms of kinematical quantities and extrinsic curvature type quantities analogous
to the ones appearing in the decomposition of the vector fields u® and n®*. We keep the familiar notations, with the
remark that the quantities belonging to the decomposition of Ve, will carry a distinguishing” mark. We thus have

~ - ~ ~ 6 .
Vaey = Luqup — Loup — uo Ky + e, Ay + < dab + Tab + Wap (121)
with

L = ucudﬁced , (:):q“bDaeb ,
L, = udhacﬁced , I?b:uchbdﬁced , /Tb:ecqbdﬁced ,

. . N . 6
Wab = Q[a Qb]dvced ;s Oab = (g, devced* §Qab . (122)

We remark that L and Ea are not independent from the previously introduced sets of variables, they can be expressed
in term of projections of the kinematic quantities related to u®:

- - o
L= —eaAa , Lo = —ed (ghad + Oad +wad) . (123)

By contrast, the quantities é, IN(b, gb, oap and wgp are independent of the rest of the kinematical and extrinsic
curvature-type variables. Similarly to w, and &,, we can also define a rotation vector

- 1 ~be
We = Eeabcwl“ . (124)

2. LRS symmetry

The preferred spacelike unit vector field e, satisfies u“e, = 0, e%e, = 1. We employ here various results following
from the LRS symmetry, following Ref. [51]. The symmetry and normalization implies:

eaDaeb =0 y é(b} =0 y (125)

i.e. e, is geodesic with respect to the connection compatible with h,, and is Fermi propagated along the world line
of a brane observer. The above equations and normalization further imply that Eq. (124) can be rewritten into the
standard form

Wa =€, bcq[b eqc] dﬁeed = eapeDleC . (126)
Due to LRS, all spacelike vector fields must be proportional to e®, thus
A% = Ae?, w,=we,, W, =we, .
£ = EVe" , D"©=0%,, D.,E=CE%, , (127)
The vector field e* and the induced metric g, define a unique spacelike tracefree symmetric tensor field e, as

qab

Cab = €als = 5 (128)
satisfying:
ueqy = 0 , eeap=c¢€p, , €', =0, 2e4.€° =e€ap+ hap
eqpett = g Dbeqp, = ?ea , Clapy =0 . (129)
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Again, due to LRS all 3d tracefree symmetric tensor fields are proportional to eqp:

2 p _2E, g 2 B 256
Oagb = —7=€q ) ab — —=Ca ) ab — —=Caqa ) ab — —=Ca .
b 73 b b 73 b b 73 b b 73 b

In Egs. (127) and (130) we have introduced suitably normalized scalars A, w, @, o, é\v, fj‘, FE and H, replacing the
vectorial and tensorial variables.
From LRS, by use of Egs. (125), (127), (130) and (129) also follows that

(130)

-~ ~ © 20
L = —A 5 La = — (g + %) €q (131)
Koy = Ag=0, Gap=0 . (132)

Thus there are only two kinematic quantities related to e® left, which are both non-trivial and independent from those
introduced the Sec. II. These are © and w.

B. LRS class I type conditions

The general relativistic classification of the LRS models presented in [51] is recovered for Ea =0= Eab and £ < 0.
For brane-worlds, when the above conditions do not hold even under the simplifying assumptions of this chapter, this
classification should be refined, however for the application we are interested in, we shall still assume the conditions
@ = © = 0 = 0 characterizing the LRS class I of general relativity. From these conditions, Eqs. (96), (126), (127)

and £4;5e'e! = 0 we also find EV = 0. Therefore we have verified, that all conditions (109) which close the system of
brane equations are obeyed for the considered stationary vacuum space-times containing LRS class I type branes.

1. Dynamics

The evolution of the single kinematic quantity 5) characterizing e® can be inferred from the Ricci identity for e*:

é*+@ffﬁ+g+£,%
2 /3 3 V3 03

Other nontrivial brane Egs. are (92), (93), (94), (97), (98), (103), and (105). Under the assumptions of this section

they simplify to:
. 30 .
E + <7 + A) £

A+ (B+A) A+ 2+ A = €, (135)

(133)

E* +4AE +2V3

Il
o

(134)

A*+<A%>Aw2\/§E @, (136)
V3w

H+(2A—6>T =0, (137)
w*+(éﬂ4)w ~ 0, (138)
30 & 308 &
1% g & L 1
+ 3w Tt 35 (139)
QH* +30H + 6w = & _LE . (140)

V3

Eliminating A* from Eqgs. (135) and (136) we obtain the algebraic equation

5 A
O:%+3w2+A+\/§E+E+g. (141)
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Also for any solution of the system (133)-(138), Eqgs. (139) and (140) are identically obeyed. This can be seen as
follows. By taking the x-derivative of Eq. (141) and employing Eqs. (133)-(138) we obtain Eq. (139). Similarly, the
*-derivative of Eq. (137), combined with Egs. (133)-(138) gives (140).
As we have 6 independent (2 algebraic and 4 first order differential) equations left for the 7 variables (€, g , (:)7 A,
w, B, H), we need to impose an additional ansatz, chosen as
2&

E=-%. (142)

This condition will considerably simplify the algebraic equation Eq. (141).

2. Discussion

The algebraic Egs. (137) and (141) give H and E in terms of the rest of variables. By Eq. (142) the system
(133)-(135) and (138) reduces to

@2

é*+7—éA—2w2:0, (143)
£ 4280 = 0, (144)
A+ (B+A) At 2+ A = €, (145)
w*Jr((:)fA)w:O. (146)
From the newly arised two algebraic Eqs. (144) and (146) we express
~ *
6 = (1n 5—1/2) , (147)
A = (lnw5_1/2> . (148)
In terms of the auxiliary variables
r = In&EY?, (149)
y = lnwE 2, (150)
the remaining Eqgs. (143) and (145) become
(a4)
x*+ Eca Try* = 2eY77 (151)
Y+ (y*)2 +aryt = — (Qey_“ +e 4 A) . (152)

They form a coupled second order system, which would eventually give w and &£ in full generality. The solution of
this system is however not immediate, therefore in what follows we will employ a metric ansatz in order to find a
particular solution.

C. Taub-NUT-(A)dS solution with tidal charge

We take the following metric ansatz, compatible with the chosen symmetries:

f(r) 2, 9(r) o 2 2, 2
ds? = ——L (dt + widp)” + dre + g (r) (d9° 4+ Qid , 153
where
sinf , k=1
O = 1, k=0 (154)

sinh @ , k=-1
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and wy is another function of . The axis of LRS is given by

f1/2 b a
et = W E . (155)
Choosing the 1-form u, as
f1/2
u= g (dt + 2widyp) (156)

and employing €Y = 0, Egs. (130), (142), (155), the electric part of the 5d Weyl tensor is found as

(4)gtt = (4)57‘T = (4)599 = — (4)541390 =& (4)gtw = 28w . (157)

Both from Ea x &V =0 and from H,p, being proportional to ey, we find

d2wk ko %

—_—— — =0. 158
K2 de de (158)
Equivalently, by an integration:
_ dwk
O ——=-2 159
where [ is constant. A second integration gives
2lcosf + L | k=1
wi (0) = —20+L 0 , (160)

k—
—2lcoshf + L , k=-1

where L is another integration constant. Locally, this constant can be absorbed in a new time variable t + Ly — t,

which translates to the choice L = 0.
Direct computation, employing Eq. (160) shows that the metric ansatz is compatible with the chosen LRS class I

conditions
O=0=a=E"=0 . (161)

The nontrivial kinematic and Weyl quantities, by employing Eqgs. (153) and (160) are

. f1/2dg d (f)1/2 lf1/2
_ A= — (L . w=

0O = —5—, = =,
9372 dr ar \ g g3/2
1/2 1/2 2
e [UPd (112N 3Pk
g5/4 dr \ g3/% dr PR

2 _ 1 Af 2 dfdg  f (dg\* APf 2%
V3 3gdr2  3g2drdr = 3g¢3 \dr 393  3g’

2F 1 d%f 1 d(f3/2dg> A% f  k

V3 6gdr®  3fY2dr \ g2 dr 3¢5 3g
2H d . _

These quantities are constrained by Eqgs. (137), (141), (142), and (143)-(146). From here by straightforward algebra
we find two independent equations for the metric functions f (r) and g (r):

d2g1/2

3/2 72

/ —a =1, (163)
2
o 2k —4Ag . (164)

dr?
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By multiplying the first equation with dg/dr and integrating, we get

dg ? 2
ar +41* = C4yg , (165)

with C7 > 0 an integration constant. A further integration then gives
g(r) = (r+ )’ + 5, (166)

with Cy another integration constant. The constant Cs can be absorbed into r by a redefinition of its origin, therefore,
without restricting generality we choose Co = 0. Also the constant C; disappears in the following rescaling of the

coordinates and parameters: <2t/C’11/2, 011/27’/2, 4l2/C’1) — (t, T, 12). Formally this is the same as choosing C = 4.
Eq. (164) then gives the other metric function as

A
F(r) = Ca+ Csr + (k — 212A) r* — 57“4 , (167)

with C3 and Cy emerging as integration constants. With the reparametrizations C5 = —2m and Cy = ¢ — kl® + Al*
we find the brane solution given by Egs. (153), (154) and

4
f(r) = k(r212)2mr+qA<%+212r214) :

g(r) = r*+1%,

2l cos b , k=1
w () = —210 k=0 . (168)
— 2lcosh@ k=-1

This is quite similar to the charged-Taub-NUT-(A)dS solution of a general relativistic Einstein-Maxwell system with
mass m, electric charge @, NUT charge [, and cosmological constant A, however the constant ¢ replacing Q? is not
restricted to positive values. A glance at the effective Einstein equation (119) shows that this constant could possibly
arise only from the electric part of the 5d Weyl tensor, Eq. (157). Indeed from the fourth Eq. (162) we get

g=-——94 (169)

(12 +72)?

As q originates in the Weyl sector of the higher dimensional space-time, the derived solution has the interpretation
of a Taub-NUT-(A)dS brane with tidal charge.

VII. CONCLUDING REMARKS

In this paper we have developed a generic 3+1+1 covariant formalism for characterizing 5d gravitational dynamics
on and outside a brane. The singled-out directions are the off-brane and temporal directions, thus the 3-spaces are
constant time sections of the brane. Generalizing previous approaches, like 3+1+1 with the extra requirement of double
foliability [9], [10], 3+1 in general relativity [12]-[15] and in brane-worlds [11], finally 24141 in general relativity [16],
[17], we presented gravitational evolution and constraint equations in terms of kinematic, gravito-electro-magnetic
and matter variables, defined as scalars, 3-vectors or 3-tensors. The number of variables being higher than for other
lower dimensional formalisms, the 5d matter and especially the 5d Weyl tensor leads to a multitude of projections
without counterpart in the mentioned approaches. Only the kinematical set of variables is similar. We have compared
and checked our results with those presented in a recent work by Nzioki, Carloni, Goswami and Dunsby [18] on the
2+1+1 decomposition of f(R) gravity and we give the correspondence between our and the notations of Ref. [18] in
Table 1.

Our generic formalism contains the complete set of dynamical equations in the 5d space-time. All equations, with
the exception of those in IV to VI are independent of the particular form of the dynamics on the brane. As such, they
can be employed both to discuss DGP / induced gravity type [43] branes (a project deferred for future work) and
one-brane Randall-Sundrum type branes. For the latter, we have given both the full set of equations on the brane,
and those containing off-brane evolutions.
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TABLE I: Comparison of the notations for the kinematic quantities with Ref. [18].

Ng — €aq K—>%@—|—Z K- —A
A, — A, K, — 3q + a0 I?a — Qg
A\a—>aa @—>@—%Z @—>¢>
Ly, — X4 — 50.be Wab — Qeap Qab - gsab
hat = Nap Oab — Lab Gab — Cab

The brane equations are more general than previously published results by the inclusion of arbitrary 5d sources.
Although we have recovered the known fact that in the generic case this system does not close on the brane (excepting
the trivial case gab = 0), by deriving the complementary system of equations of the 5d dynamics we could establish
a more generic condition for closure. This is given by Eqgs. (109), which carry much richer possibilities than the
previously known Eab = 0 case.

The initial value problem in general relativity is usually discussed in ADM-like variables (including modifications
enhancing stability, like the use of variables with factored-out conformal factors [54]), therefore a similar treatment
would be possible to develop in the framework of the Hamiltonian approach presented in [9, 10]. A 341 covariant
approach for discussing the evolution of cosmic microwave background anisotropies in the cold dark matter model
was employed in Ref. [24]. The complete set of infinitesimal frame transformations given in the present paper may
turn useful in the study of perturbations in a 3+1+1 setup.

We have decomposed the Lanczos equations and all source terms of the effective Einstein equation in terms of the
3+1+1 covariant variables. The ensemble of these results opens the possibility for applications, both cosmological
and with other symmetries.

We have given generalized Friedmann, Raychaudhuri and energy balance equations for a generic brane, and by
specifying for cosmological symmetries we have established correspondence with previous related work [4]. We have
also established the correspondence with the anisotropic brane-world presented in Ref. [49].

We have also employed the 34141 covariant formalism to discuss stationary space-times with local rotation symme-
try of class I, imposed on the brane. We have shown that such space-times obey the closure condition presented here.
The symmetries and metric ansatz (153) implemented in the 3+1+1 covariant formalism led to a simple decoupled
system of second order differential equations for the metric functions, the solution of which gave a new exact solution
of the effective Einstein equation, the tidal charged Taub-NUT-(A)dS brane, given by Egs. (154) and (168).

In the spherically symmetric and rotating cases tidal charged brane solutions were already found [52]-[53], which
correspond to electrically charged general relativistic Einstein-Maxwell solutions, when a formal identification of the
electric charge squared with the tidal charge is carried on. Here we also found that replacing the electric charge squared
in the electrically charged Taub-NUT-(A)dS solution of an Einstein-Maxwell system with a tidal charge originating
in the Weyl curvature of the 5d space-time leads to a brane solution with the same symmetries. Unless the electric
charge squared, the tidal charge however is allowed to have both positive and negative values, thus allowing to either
weaken gravity, or contribute towards its confinement on the brane.
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APPENDIX A: COMMUTATION RELATIONS

In this appendix we enlists some useful differential identities, obtained by computing the commutators among the
derivatives u*V, = D/dr (dot), n®*V, = D/dy (prime), and D, (induced metric compatible covariant derivative) on
scalars, brane-vectors and symmetric brane-tensors of second rank.



For a scalar field ¢ the following commutation relations hold:

nVa(@) = uVe(¢) = K¢/ + Ko+ (K" = K") Dus |
Do¢ — hy'n"Vy (Di¢) = — (Ko — La) §+ Aad + %Daqs + (@ab + Tap) D9
Dad) - h'aiubﬁb (Dz¢) = 7Aaq-5 + (I?a + La) ¢/ + gDa(b + (Wab + Uab) Db¢ )

D[an]¢ = Wabqgfaabqsl :

For a 3-vector field V* the following commutation relations hold:

By 0 Va(Vig) = by TV AV]y) = —era MOV + KV + RV + (K = K*) DaVy
—AVOKy + K VoA, + K, VOA, — A, VK, |
. . . : S) O~ S)
[ J RVA TR _ / _ = _ _
hy'hy Iu"V, (D;V;) — D, (V<d>> - (K + LC> Vig + AVia) = 5 DeVa+ 5 KaVe = 5 AV
1~ 1~ R2
- (Uac - wac) Dan + §gavahcd - §8d‘/c - EdabHCbVa + ?Qavahcd
R 5) S N U,
_?‘/CQd - ghcd +Wed +0ca | KV + Ky (Wca + Uca) |4
@ a a
+ ghcd + Wed + 0cd Aav - Ad (Wca + Uca) Vv )
e : ~ 5) S) o
he'hy 10 (DiVy) = De (Vi) = = (Lo = Ko) Viay = AcVjyy = 5 DV —  KaVe + = AaVe

P 1 1 ~ K2
- (Uac - wac) Dan - §gavahcd + §8d‘/c - EdabHCbVa - ?Wavahcd
~2

~ ©
+%‘/;7Td + <§hcd + Wed + Ucd) KaVa - K4 (wca + Uca) Ve

@ ~ ~ 1 1/a 1T~ ~ a
- <§hcd + Weq + Ucd) AV + Aqg (wca + Uca) Ve,

DiaDyVe = wapViey = BanViey + hefa€u1aV* + EciaViy — healngaV? — EciaViy

1 ~ S}
—§ (@2 — @2> hc[a‘/b] - 5 (Uc[a - wc[a) ‘/b]

~

(C] ) ~ ~

— g hela (041a +wija) V¢ + 3 hela (Gbja + Drja)

- (Uc[ - wc[a) (wb]d + Ub]d) Vd + (ac[a - wc a) (wb]d + Ub )
Y %2 ~2 ~2

+—= hc[a%] + g( =T+ D) hea Vi) + z efaTnjaV® + %%c

&
©
3 (Uc[a - wc[a) VE)]
&

ghc[a‘/b]

[a V] -
For a symmetric trace-free 3-tensor field Ty, the following commutation relations hold:
hie gy NV a(Tigy) = b hgy " uP(T(i)) = KTy + KT ey + K*DoTog — K*DoTeg
72K<0Td>aAa + 2A<0Td>aKa + 2A<0Td>aK
72K<0Td>aAa — 25ab(ch> @b )
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(A5)

(A6)

(A7)

(A8)

(A9)
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-~

L 5
ha "Ry "0V (DiTy) = Da (They) = = (La = Ka) ey = AuTpy — = Dalhe + € Toya

20
(Wad + Uad) D Tye — 2T Ec dzH + 3 ha(ch)de

20 ~ 20 ~
*ha(bT@ dgd + ?A(chm - ?ha(ch)dAd

-2 (wad + 0ad) K(ch> di9 (aad + Cad) A\<ch> d
+2 (Waip + Tarp) TeyaK? = 2 (Bagp + Fagp) Tc)d;{d

20 2r? 2R%
——K<bT> —h (bT> Tq + _W(ch)a , (AlO)
3 3 3
hy *hy'h  JudN g (DyT;) — D (T — (Rut L) Tl + AaToey — 2 DT —EuT
a (b bey d kLij a (bc) a a (be) at (be) 3 dLbe (bLcYa

(Wad + Uad) D The — 2T(b Ec) dzH + ha(b c) 8d

2@ 20 20
ha(ch)dK + —K(bT> — _A(ch)a

a+ Gad) KTy = 2 (Waa + 0ad) Ap T,

3

+2 (@a

( (b + Ua(b) c)dK +2 (Wa(b + Oa(b ) Tc}dAd
20 2k?

BawTeyaA? —hT ~—quT. All
+3a<b>d +3 (b>Qd 3 dtoa - (Al1)

These results apply for arbitrary (not necessarily small) scalar, vector and tensor fields.

APPENDIX B: INFINITESIMAL FRAME TRANSFORMATIONS

An infinitesimal frame transformation from the diad (u®, n®) to the diad (u®, m®) can be defined as a generalization
of the corresponding general relativistic procedure [25] as:
Ug = Ug+ Vg +vng , with u®vg, =nv, =0, (B1)
Tla = Ng + 1o + mu, , with v, =n%, =0, (B2)
where vy, lo, v, m are all O (1).* The new diad also obeys

WU =—1, 1, =1, W, =0, (B3)

which implies
v=m. (B4)

For v, = l, = 0 the above parameters define an infinitesimal orthogonal transformation (this is a 2-dimensional
infinitesimal Lorentz boost). The parameters v, and [, represent infinitesimal translations. These transformations
represent gauge degrees of freedom, worth to explore in order to achieve particular tasks, for example to fulfill physical
conditions, to conveniently close subsets of differential equations etc.

The fundamental algebraic tensors hqp and 45 change accordingly:

hav = hab + 2uUp) — 2n(aly) (B5)

Eabe = Eabc — (ncgabele + 2n[a5b]ce) I°+ (ucgabd + 2u[a€b]cd) vt (BG)

The new 3-metric obeys hapT® = hapu® = 0.

4 The quantities denoted O (1) all vanish for identical transformation. We also assume a first order accuracy, thus all quantities O (2) =
0 (1)? will be dropped.
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The covariant derivatives of the new diad vectors can be invariantly decomposed as

| @

Vally = —TaAp+ §ﬂaﬁb + Kngly + Mo Ky + Lol + 3 hab + @ab + Tab (B7)
Valiy = ﬁazb + K7t + Eﬂaﬂb - EaEb + Lot + gﬁab + @ab + ab (B8)
which imply the following transformations for the kinematic quantities:
K = K — A0+ (Ko + L) 1* —mK +m/ | (B9)
E:I?anl“Jr(f(afLa)u“mefm, (B10)
0 = 8+mO+ D, — 194, — 0" (La - f(a> , (B11)
© = ©+mO + D, +v"A, —1° (K, + La) , (B12)
A, = A+ 0" Ayue + Kl — 1P Apn, + %vc + (Wae + Tac) V> +m (KC + IA{C) + 00 (B13)
A = Ao~ Ayn, — Kve + v Ayue + %zc - @ae + Fae) 1+ m (Ko Ke) + 1y (B14)
K. = K, — Kl +u0" Ky — nJ Ky + %C + (Cae + wae) 1 +m (AC + flc) + ol (B15)
Ko = Ko+ Kve — "By + uct? Ky + gvc + (Gae + Gac) v +m (AC + Ac) +ly (B16)
L. = L.— I?Uc — Kl.+u.v*Ly — Ly — gvc
+§lc + Dem — (G + Do) V0 + (Tca + wea) 1 (B17)
Ged = Oed +M0ca+ Diclay + v (Ad> - Ld>> - l<cﬁd> + 209G g (atte) — 21T a(ane) (B18)
Ted = Ocd +M0ed + Dcvgy — lie (Kd> + Ld>) +v(eAgy — 2004 ane) + 200 qUe) (B19)
Bed = Ded + Mweg + Diclg) + v (Ad] - Ld]> - l[C;l\d] + 20" B[t — 21T qpqne) 5 (B20)
Wed = Wed + MBed + Dicvg) — le (Kg) + Lay) + vjeAg) — 21%Wa[ane + 20 wg gty - (B21)



Similarly, the transformation laws for the gravito-electro-magnetic quantities are

E = E+42E,0% + 28,1,
— ~ 4
Ep = & —m& — gezk + E 0% — Eql Ny + ek HOUP + Epal® — Frav® |
= ~ 4 ~ ~ ~
Ep = Ep—m&p + gcka — Elny + Equugy — ek HU + Epav® — Fral®

Hi = Hi — %sk e b, — %sk ey — npHal® + upgHav® — g, E Uy + Hiav® — Hial®
Frw = Fr+ 2uwFiav® — 2ngpFipal® — S&kv»
+g§<kll> +mE + mE — can Hy v’ — a1
S = &+ 2mFu+ 20E1y — Egelyy + 2uEnav® — 2nkEpal® — 2€ab(kﬁl>alb ;
Er = Ex+2mFu — 2.8y + vy + 2uwEnav® — 2n:Epal® — 200 My 0" |
Hia = M +mHy + ;H(klw — e “"Foals + 22, “PEyavy
—E(k “bgz)avb = 2nHpal® + 2ugHyv*
Hi = Hig + mHi + gHUCUz) +eg “Fyaus — 26 BE aly
+e abgl)alb + 2u(kﬁl)av“ — Zn(kﬁl)al“ .
The matter variables transform as

5 = p— 20, —2mq ,
T = T4 2%, — 2mq ,
2 2

; =p- gva% - gla%a )

El_v: §+la§a*’0a%a*m(ﬁ+%)a
ga = aa - ﬁva - @7@ - 2]77)(1 - 2%abvb + uavcac - nalcac — M, ,
Ta = Ta — qUa + 2Dlg — Tl + 2Fabl® — nalTe + UV Te — My ,

Tab = Tab + 25?)(@11,(,) — 2fﬂ<anb> — 25]?@11(,) + 2’/T<ad’u,b>?}d — 27r<acnb>lc - 2%(alb) .
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(B22)
(B23)

(B24)

(B25)

(B26)
(B27)
(B28)

(B29)

(B30)

T @
D W
NG

(B31)
(B32)
(B33)
(B34)
(B35)
(B36)
(B37)

We have checked that in the particular case [* = 0 = m, by applying the Lanczos equations (77)-(80) for eliminating
the quantities K , é, L, = —I?a and G4, by suppressing the quantities related to the brane normal, in particular
imposing We, = 0, we recover the linearized form of the transformation laws for the kinematical and dynamical
quantities (0, oup, wWap, Aa) and (p, P, qa, Tap) of Ref. [25]. Similarly, by employing Eqgs. (14) and (15), we obtain

the required transformations for the Weyl projections (Eqp, Hap).

If we would like to apply the generic transformations derived in this Appendix in a brane-world scenario, we have to
impose {* = 0 = m on the brane (in order to preserve the vector field n® at y = 0, which defines the brane), however
the derivatives along the off-brane direction (the derivatives denoted by prime) of these quantities can be different

from zero even at y = 0.

APPENDIX C: GRAVITATIONAL EVOLUTION AND CONSTRAINT EQUATIONS ON AN

ASYMMETRICALLY EMBEDDED BRANE

The brane equations describing the gravitational dynamics are
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A~

= @—D“f(a+<f(+

w| @

) O —2K%A, + Gapo™ — 727, (C1)

By ~ 2~ © = = ~9~
= K — D, (K - 56 §> Ay — GapAY — Wb K + 0 Kb + R27, | (C2)

\_/

40 ~ s
— D% + ?K — (K +

. ~ 4 ~ ~ . ~ ~ 2 ~ ~
= £- D¢+ 308+ Eav0®™ — 28, A" + 55 4y — T’ Dy Ky — K* DGy + K" D.6

S O PG ~ 20 ~ SN
—24,K,0% + gaaba“b + <K + 5) o0 + Ccalp g 3 ZK,K*— o4, K°K"
72 k2 252 %2 45?2 %2
*T(P*WJFZA?) *—DQQa*—G(PJF@*—@Q*?%A *?Wabffba (C3)

4E SO 2 o
k} + 6519 — Dkg — ?Ak — D%y — Erg A® — (wka — O’ka)ga + J(ka>Ka

2({~ © 20 (~ O\ s au s s o
( )deb-l—K OckO, +§<K+§> Dk@—l—?(K—l— g) K, —2K*D,K,+ K*D, K}
]‘ >a 7> ~ bira 25 ~ab ~ab -~ ~ amnba 1/\ a o)
g KD — 2K A(kKa) — Oba Oy K+ gKkO'abo' + 0 Dpoay — oy D’0r, — gO’k D,©
. , S 2R? 72 252 [~ ).
+5cabKawbakC te, achwaab — %ﬂ'(k) + 5 —Dy (p+37—3p) + 3 <K — §> Tk
2~2 2‘V2 2~2 2‘V2 ~2
~ K — - (2R + K ) + T Fra A — S (7~ ) Ay - o T | (C4)
3 3 3 3 3
) 02 - =2
®—D“Aa+?+®K—A“Aa—2waw“+oaba - K°K, —5——A+—(p+7r+;3), (C5)
1 ) 20
d)<a> — 56(1 CchAd + ?wa — Uabwb , (06)
_ 20 1~ ©)\. 1~ ~
0 = &y — DiaApy + 3 0wt g <K - §) Tab — AaApy — §K<a b)
P S 14 "2
Fwewpy + Tc(a0p) + 500(a0b> + Eap + Egab — ?ﬂ_ab , (Cn)
0 = D%, — Agw® (C8)
0 = D(cwk) + Eab<kaUC>a + 2A(cwk) + Hgyy, (C9)

2 20 ~ 72
0 = D,y — gDa@ + e, *Dowy, — ?Ka + 26, FAwp + G K + &4 + 3 . (C10)
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. BN @ 1 ~ O ~ ~ 2&
0 = E(kj} — ig(k]) — Eab(kD Hj>b + §D<k5j> + @Ekj — Egkj + g(kAj) — ?Ukj
—lg-a(w + 0 )—l—E “(w- — 30, )—1—25 abpy. A—1 I?—Q Gipi
9 k)a k)a (k J)a Ja (k Jatth T o 3 (k)
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S . 6(5 © 70 5 S S 0) - O ..
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1 ~
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1{~ © o, 1 SO SR
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+®€k K&dd—f—gak Ka-i-?D Tak — EDk (p—7r+]7)+7(9qk—?q (kaa+aka) s (013)
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+§ <K — 5) O We + EEk UabeKc — EO'abo‘ bwk + EUcaUk w4+ 5 <K — 5) €L baacab
1 PN . RZ_ R _ 2" K2 ~
—|—§€k 5106, Loy, ¢ — ?ﬂ'}mwa + R ®D .Gy + 5 (P+Dp)wk — R DBE ope . (C14)

We note that this system of equations is valid on both sides of the brane.
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APPENDIX D: KINEMATICAL, GRAVITO-ELECTRO-MAGNETIC AND MATTER VARIABLES FOR
BIANCHI I BRANE-WORLDS

In this Appendix we rewrite the Bianchi I brane-world, presented in Ref. [49] in terms of our variables. The
brane-world solution contains an unspecified function V (y) of a Gauss normal coordinate y (which is however not

related to the brane normal).

The kinematical quantities appearing on and outside the brane are presented in Tables II and III, respectively,
while the gravito-electro-magnetic quantities on and outside the brane are given in Tables IV and V. Tables III and
V contain quantities, which were not computed in Ref. [49].

TABLE II: Brane kinematical quantities (first column) for the brane-world [49] (second column; notations and Eq. numbers
are from this reference).

|kinematic quantity” for the metric in Ref. [49] |
Aq 0
S} O, as given by Eq. (63)
Cab 0AB, as given by Egs. (64)-(65)
Wa 0

TABLE III: Off-brane kinematical quantities (first column) for the brane-world [49] (second column; notations are from this
reference).

kinematic quantity” for the metric in Ref. [49] |
> e Vv’
\/15,7 (Z_u ot 17\/2)
1 V' Ve v’
K _m(ﬁ"‘_ua'*‘kw)
&) c 3u/ _ Co
\/m 4u u
A, 0
Ka 0
K, 0
L, 0
Wa 0
3
o Gie e G = )
Tab Z; Giewaen ; 0= —F— (Co + 3C;)

TABLE IV: Brane gravito-electro-magnetic quantities (first column) for the brane-world [49] (second column; notations and
Eq. numbers are from this reference).

|kinematic quantity” for the metric in Ref. [49] |
E —k2U given by Eq. (53)
Ea 0
Eap —k*Pagp given by Eqgs. (54)-(55)

The notations for the brane matter variables (after the straightforward change in the indices from lower case to
upper case letters) are identical in this paper and in Ref. [49], with g, = 0. There are no off-brane matter variables.
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TABLE V: Off-brane gravito-electro-magnetic quantities (first column) for the brane-world [49] (second column; notations are
from this reference).

|kinematic quantity” for the metric in Ref. [49] |
Ea 0
Ha 0
3
Eab ; Eieicei , Bi=—g5 [(Co+3Ci)u' — 3C —2(C3 +3C7)]
er [(Co +3C) v — C +4C; (Co — Cy))
3
Far 1; Fieiaein , Fi= (1—?/‘2)u2 [C -ZSC. w4+ Cs (Co — Cy) — %]
Hap 0
Hab 0
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