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Introduction

Classical solutions of general relativity in diverse dimensions have been analyzed over the years from various perspectives. Instanton-like configurations have in particular attracted attention because of their potential role in the determination of transition amplitudes in quantum gravity. Similarly, their real-time counterpart turns out to be useful in the Hartle-Hawking formulation of quantum cosmology, even though general relativity would ultimately require a ultra-violet completion, possibly provided by strings. In fact, several classical solutions turn out to be embeddable in string theory, sometimes even as exact backgrounds, and instantons have certainly played a major role in addressing many issues, among which are those related to (super)symmetry breaking.

Following the paradigm of self-dual Yang-Mills instantons [START_REF] Belavin | Pseudoparticle solutions of the Yang-Mills equations[END_REF], self-duality has been successfully implemented in four-dimensional general relativity. In order to be operational, self-duality must be accompanied by some specific ansatz for the geometry M. The usual ansatz is to assume M topologically R × Σ 3 and, further, the leaves Σ 3 to be homogeneous spaces, admitting at least a three-dimensional group of motions G3.

The first solution obtained according to the above pattern is due to Eguchi and Hanson [START_REF] Eguchi | Asymptotically flat self-dual solutions to Euclidean gravity[END_REF][START_REF] Eguchi | Selfdual solutions to Euclidean gravity[END_REF] under the assumption of Bianchi IX geometry i.e. with SU(2) isometry. This gravitational instanton was an alternative to the earlier Taub-NUT metric, constructed from a different perspective though [START_REF] Newman | Empty-space generalization of the Schwarzschild metric[END_REF]. Both were self-dual and SU(2)-homogeneous, with isometry enhancement to SU(2) × U [START_REF] Belavin | Pseudoparticle solutions of the Yang-Mills equations[END_REF]. General extensions of Eguchi-Hanson solution to strict SU(2) were obtained soon after [START_REF] Belinsky | Asymptotically Euclidean Bianchi IX metrics in quantum gravity[END_REF], observing that the equations were a special case of the Euler top -with some peculiar inertia momenta -known as the Lagrange system [START_REF] Gibbons | The positive action conjecture and asymptotically Euclidean metrics In quantum gravity[END_REF]. A similar achievement for the Taub-NUT instanton revealed far more involved, and a particular solution was finally obtained in Ref. [START_REF] Atiyah | Selfduality In four-dimensional Riemannian geometry[END_REF]. The difficulty to solve in full generality the corresponding equations was later understood in terms of non-algebraic integrability properties, as it was realized [START_REF] Takhtajan | A simple example of modular forms as tau functions for integrable equations[END_REF] that the system at hand had already been set by Darboux [9], and solved extensively by Halphen [START_REF] Halphen | Sur un système d'équations différentielles[END_REF][START_REF] Halphen | Sur certains systèmes d'équations différentielles[END_REF], more than a century before, in terms of modular forms 1 .

The above account for the Bianchi IX group raises immediately two questions: do other Bianchi groups possess similar solutions and what is the classification principle behind the appearance of distinguished classes of equations such as La-grange versus Darboux-Halphen systems? Despite the large amount of information accumulated so far (see e.g. [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF]) and the physical interest of some -even simple -solutions like Kasner's Bianchi I [START_REF] Kasner | Geometrical theorems on Einstein's cosmological equations[END_REF], a precise and definite answer to these questions was still missing. The aim of the present work is to tame the plethora of scattered results under a simple classification principle. Our analysis is performed along the lines announced in [START_REF] Bourliot | Gravitational instantons, self-duality and geometric flows[END_REF]. It is general and exhaustive, and makes no assumptions on the geometry, other than those already quoted above. In particular, the issue of the choice of a diagonal versus non-diagonal metric in a given G3-invariant frame is treated with care, as opposed to some former, more cavalier approaches for non-unimodular Bianchi groups. As a bonus, this enables us to discover a new solution for Bianchi III, completing thereby the existing landscape.

Let us summarize the method and the results. Self-dual vacuum solutions satisfy Ω = Ω where Ω is the Riemann curvature two-form2 . These are second-order equations and are equivalent to the first-order set obtained with the connection one-form: ω = ω + A. The one-form A appears as a "constant of motion" of the second-order system. It stands as the anti-self-dual so(3) part of the Levi-Civita connection and must be flat. The program is thus cast as follows: (i) find all possible flat so(3) connections over G3, and (ii) for each of them, write the corresponding first-order equations, and find the most general solution. The latter can represent a bona fide geometry, but in most cases it is spoiled by naked singularities, if not everywhere degenerate like in all non-unimodular groups, except for Bianchi III.

In Sec. 2 we provide some technical tools, useful to set our philosophy for the subsequent developments. Section 3 contains the core of the classification principle (point (i) above), whereas the exhaustive solution search (point (ii)) is presented in Sec. 4. A last section ( 5) is devoted to the subtle issue of rotating (locally) the frame where ω = ω + A into a frame where the connection is genuinely self-dual. Conclusions follow and a summary of all G3-invariant metrics finally available is presented in the appendix.

Notations and general considerations

Inspired by applications to homogeneous cosmology, we consider Euclidean spaces admitting a G3 group of motion acting transitively3 on 3-dimensional invariant subspaces of the form M = R × Σ 3 . The metric on these spaces can always be locally written as (see for instance Ref. [START_REF] Ph | Gravity before supergravity[END_REF] for a proof):

ds 2 = N (t) 2 dt 2 + δ ab Θ a Θ b . (1) 
Let us introduce the co-frame defined by Θ 0 = N (t) dt and Θ a = θ a α (t) σ α , where σ α are invariant 1-forms:

dσ α = 1 2 c α βγ σ β ∧ σ γ . ( 2 
)
From the latter we obtain

dΘ a = θa α dt ∧ σ α + 1 2 θ a α c α βγ σ β ∧ σ γ (3) = 1 N θa α θ α b Θ 0 ∧ Θ b + 1 2 θ a α c α βγ θ β b θ γ c Θ b ∧ Θ c (4) 
providing the non vanishing structure coefficients:

β a 0b = 1 N θa α θ α b = -β a b0 , (5) 
β a bc = θ a α c α βγ θ β b θ γ c = -β a cb , (6) 
and connection coefficients

γ 0ab = 1 2 (β ab0 + β ba0 ) = γ 0ba , (7) 
γ ab0 = 1 2 (β ab0 -β ba0 ) = -γ ba0 , (8) 
γ abc = 1 2 (β abc + β bca -β cab ) = -γ bac . (9) 
With respect to the basis {dt, σ α } the metric components are g 00 = N (t) 2 , g 0α = 0 and g αβ = δ ab θ a α θ b β . The Levi-Civita connection one-forms are:

ω 0i = 0iα σ α , ω ij = ij0 dt + ijα σ α .
Finally, we need the expression of the curvature components, which are:

Ω 0i = dω 0i + ω 0k ∧ ω k i = ˙ 0iα dt ∧ σ α + 1 2 0iα c α βγ σ β ∧ σ γ -0kα k i0 dt ∧ σ α + 0kβ k iγ σ β ∧ σ γ , (10) 
Ω jk = dω jk + ω j0 ∧ ω 0 k + ω jl ∧ ω l k = ˙ jkα dt ∧ σ α + 1 2 jkα c α βγ σ β ∧ σ γ + j0α 0 kβ σ α ∧ σ β + jl0 l kα dt ∧ σ α -jlα l k0 dt ∧ σ α + jlα l kβ σ α ∧ σ β . (11)
With respect to this basis, the anti-self dual components of the curvature 2form read as:

Ω 0i - 1 2 ijk Ω jk = ˙ 0iα -0kα k i0 - 1 2 jk i ˙ jkα + jl0 l kα -jlα l k0 dt ∧ σ α (12) + 1 2 0iα c α βγ + 0kβ k iγ -0kγ k iβ -jk i 1 2 jkα c α βγ + j0β 0 kγ + jlβ l kγ σ β ∧ σ γ or, introducing Īiα := 0iα - 1 2 jk i jkα , (13) 
Ω 0i - 1 2 ijk Ω jk = [ İiα -Īlα l i0 ]dt ∧ σ α + 1 2 [ Īiα c α βγ + jk i Ījβ Īkγ ]σ β ∧ σ γ . ( 14 
)
Let us emphasize however that the one-forms θ α k are not completely fixed, but defined up to time-dependent O(3) transformations and time-independent GL(3, R) transformations, we have indeed not yet fixed the basis of invariant forms.

Self-duality equations

Self-duality requires that

Ω 0i - 1 2 ijk Ω jk = 0. ( 15 
)
We see that to trivially obtain first integrals from this equation a sufficient (and necessary) condition is to require that

ik0 = 0 ⇔ θiα θ α k -θkα θ α i = 0 ⇔ θiα = -g αβ θβ i , (16) 
after which [START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF] becomes equivalent to

İiα = 0 Īiα c α βγ + jk i Ījβ Īkγ = 0 (17) 
The gauge freedom allows us to always satisfy this condition. Indeed if we have a solution θ aα , using a time dependent rotation we obtain θaα := O b a (t)θ bα which will fulfill the symmetry condition if

Ȯ b a = 1 2 O c a (θ α c θb α -θcα θ αb ). ( 18 
)
This is a kinematic problem aiming to determine a sequence of rotations knowing the angular velocity so that it always admits a solution. Then the only transformations still possible correspond to the choice of the initial conditions of the kinematical problem, denoted from now on by the matrix O b a , and of arbitrary GL(3, R) time independent transformations, denoted from now on by the matrix

Λ β α , θ aα → O b a θ bβ Λ β α . (19) 
In the gauge defined by ( 16), the first integrals ( Īiα = const.) furnish the first order equations we need to solve:

1 N θiα -θ -1 θ iγ (n γµ -a ρ ργµ ) g µα - 1 2 δ γ α n µ µ := Īiα (20) 
where θ = det(g αβ ) and the symmetric tensor density n γµ = n (γµ) and vector a ρ are defined by the relations

c α βγ βγµ = 2(n αµ + αµβ a β ). ( 21 
)
In the following we shall call the t coordinate time and speak about evolution, to describe this flow, though the framework is Euclidean.

Using time re-parameterizations, we may choose a specific N without loss of generality. Equations [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF] strongly suggest to adopt, in a first step at least, the gauge N = θ. 4 Let us notice that in order to preserve this gauge condition when we make a transformation [START_REF] Gibbons | Classification Of Gravitational Instanton Symmetries[END_REF] we have to simultaneously rescale t by a factor 1/ det(Λ β α ); then the time variable may still only be changed by a shift t → t + t 0 . But before trying to integrate equations [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF] it is mandatory to solve the constraint equations:

Īiα

c α βγ + jk i Ījβ Īkγ = 0 . ( 22 
)
The solutions of these equations describe homomorphisms from the Lie algebra of the homogeneity group g 3 into the Lie algebra so(3):

Ī : g 3 → so(3). ( 23 
)
Depending on the subalgebra of so(3) on which we project g 3 different simplifications can occur. Let us remind that the only subalgebras of so(3) are the trivial ones: so(3) and the null one {0} and the one-dimensional ones : R (all equivalent, i.e. linked by internal conjugation). Thus if the constants of motion Īiα are not identically zero (in which case we have the trivial homomorphism mapping g 3 onto {0}) either g 3 = so(3) or the algebra g 3 has a 2 dimensional ideal.

These remarks lead to the following Bianchi types to be considered, according to the rank of the matrix Īiα :

• rank 3 (maximal) type IX ,
• rank 2 impossible,

• rank 1 types I, II, III, IV, V,VI,VII,

• rank 0 all Bianchi types .

But it remains to examine if all these cases can effectively be obtained i.e. if there are no obstructions coming from [START_REF] Bourliot | Gravitational instantons, self-duality and geometric flows[END_REF]. Let us notice that using [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF], condition [START_REF] Bourliot | Gravitational instantons, self-duality and geometric flows[END_REF] can be written as Īiα θ α j -Ījα

θ α i = 2 a ρ θ ρk kij . (24) 
From this equation we see that for rank 0, we must have a ρ = 0, which is the statement that rank 0 solutions must be from Bianchi class A, i.e. types I, II, VI 0 , VII 0 , VIII and IX, see table 1 for our conventions. For the rank 1 cases, as shown in the next section, the only solutions whose metric determinant does not everywhere vanish are those of Bianchi class A and type III. 5 Thus if we also require the metric determinant to not everywhere vanish, the above list is reduced to

• rank 3 (maximal) type IX ,
• rank 2 impossible,

• rank 1 types I, II, III, VI 0 ,VII 0 , 5 To see this, first decompose Īiα as Īiα = λ i I α where I α and λ i are two triples. For all types of Bianchi class B, except type III, the only solution to the constraint ( 22) is to take I α proportional to a ρ . In this case, one may show that (24) requires the determinant of θ α i to vanish.

• rank 0 types I, II, VI 0 , VII 0 , VIII, XI.

Thus, according to the rank of the mapping Ī we obtain the classification of solutions in the next section.

All self-dual solutions

In this section, we obtain all the self-dual solutions categorized by the rank of Ī. Some of them have been discussed in the past in [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF] 6 . On a similar ground of simplicity, the only rank 3 solution coming from the type IX Bianchi algebra has also been studied in [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF] and various other places in the past. We finally deal with the new cases, solutions of rank 1. Thanks to residual symmetries and constraints coming from the self-duality requirement, we simplify as most as possible the equations and present the most general solutions as well as some particular simplified solutions when available.

Rank zero

All Īkα are zero. The Bianchi type must be of class A, (a ρ = 0), i.e. types I, II, VI 0 , VII 0 , VIII and IX. Equations [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF] imply that the symmetry condition is always satisfied :

θi α θ α j = θ i γ n γµ - 1 2 n ν ν g γµ θ j µ = θj α θ α i . (25) 
At an initial time, one may simultaneously diagonalize g µν and put n µν in its canonical form (see table 1). Thus at initial time the co-frame components θ i γ may be chosen diagonal, and they remain so during their evolution. The explicit integration of the evolution equations has been described a long time ago in Ref. [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF], here this class of self-dual spaces is presented in appendix A for completeness.

Rank three Of course only Bianchi IX is possible for this case of maximal rank.

In an appropriate frame the matrix n is the identity matrix. The self-duality condition [START_REF] Barrow | Some exact non-vacuum Bianchi VI(0) and VII(0) instantons[END_REF] can be reinterpreted as a relation between three 3-dimensional Euclidean vectors :

I 1 = I 2 × I 3 (26) 
and two similar relations obtained by circular permutation of the indices 1, 2, 3. Thus these three vectors are perpendicular to each other and actually define an 

A I 0 0 0 0 Translations II 0 1 0 0 Galilean VII 0 0 1 1 0 Euclidean VI 0 0 1 -1 0 Poincaré IX 0 1 1 1 Rotation VIII 0 1 1 -1 Lorentz Class B V 1 0 0 0 IV 1 1 0 0 VII h h > 0 1 1 0 VI h =1 h > 0 1 -1 0 III ≡ VI 1 1 1 -1 0 orthonormal frame of E 3 .
Thus acting with an appropriate element of O(3), on the flat indices i, we may assume that -( Īiα ) is the identity matrix. The integration of (20), under these assumptions, was first discussed in [START_REF] Gibbons | The positive action conjecture and asymptotically Euclidean metrics In quantum gravity[END_REF]9,[START_REF] Halphen | Sur un système d'équations différentielles[END_REF][START_REF] Halphen | Sur certains systèmes d'équations différentielles[END_REF] and the solution is given in appendix A.

Rank one

In that case there exists two triplets I α and λ i such that Īiα = λ i I α . Condition [START_REF] Barrow | Some exact non-vacuum Bianchi VI(0) and VII(0) instantons[END_REF] reduces to

I α c α βγ = 0. ( 27 
)
Bianchi class A In this case, condition (27) is equivalent to

I α n αβ = 0, (28) 
so the matrix (n αβ ) has to be singular. Consequently the Bianchi type has to be I, II, VI 0 or VII 0 . The symmetry condition (24) becomes then:

λ i ρ j -λ j ρ i = 0 with ρ k = θ α k I α . (29) 
It is easy to see that if the initial conditions satisfy this condition, then the equation will automatically be preserved throughout the evolution. This can be seen by computing the evolution of ρ i using [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF] to obtain:

ρi = ( 1 2 n µν g µν -λ k ρ k )ρ i . (30) 
Thus we find no restrictions on the existence of solutions to our self-dual problem.

In order to find the rank 1 solutions for Bianchi class A, let us start with the most general expression of the matrix of frame components :

(θ α i ) =   a p q r b s u v c   . (31) 
It can be simplified by making use of the transformations [START_REF] Gibbons | Classification Of Gravitational Instanton Symmetries[END_REF]. Using an O(3) transformation we may assume λ = (0, 0, 1) and, without altering the canonical value of the structure constants, using GL(3, R) transformations set

• I α = -(0, 0, 1) for Bianchi I,II • I α = -(0, 0, Z) for Bianchi VI 0 ,VII 0
Moreover, for Bianchi type I, II, VI 0 and VII 0 (Bianchi type of class A), without loss of generality, we may also assume the matrix (31) diagonal. This can be done using the transformations [START_REF] Gibbons | Classification Of Gravitational Instanton Symmetries[END_REF], which now leave I α and λ i invariant as well as the canonical values of the structure constants. The integration of the resulting self-duality equations was given in ref [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF].

For illustrative purpose let us discuss the Bianchi type VI 0 . The integration proceeds as follows. First we observe that (29) imposes u = v = 0. Equations (30) then insure that if u, v are chosen zero at the initial time, they will remain null. Then we remark that the evolution equations imply that the functions q and s are proportional to c:

q(t) = Q c(t), s(t) = S c(t) ( 3 2 ) 
and that the transformations [START_REF] Gibbons | Classification Of Gravitational Instanton Symmetries[END_REF] of the frame that preserves the canonical choice of the structure constants, of I α and λ are given by: 

O =   ± cos(φ) sin(φ) 0 ∓ sin(φ) cos(φ) 0 0 0 1   and Λ -1 =   α β γ β α δ 0 0 1   . (33) 
(2ϕ) = - 2(a 0 r 0 + p 0 b 0 ) (a 2 0 + b 2 0 + p 2 0 + r 2 0 ) (34) 
we obtain a new frame such that now a 0 r 0 + b 0 p 0 = 0. Let us notice that (34) makes sense because from (a 0 ± r 0 ) 2 + (b 0 ± p 0 ) 2 > 0 we deduce that its right-hand side member is always between -1 and +1. Then choosing Λ = Id and O with φ such that sin(φ)

p 0 + sin(φ) b 0 = 0 = -sin(φ) a 0 + cos(φ) r 0 ( 35 
)
we have obtained a diagonal frame at time t 0 .

It remains then five functions to be determined: a, b, r, p and c. These functions have to satisfy the equations: 

ȧ = a ∆ -2κ b 2 κ 2 , ( 36 
) ḃ = b ∆ + 2κ a 2 κ 2 , ( 37 
) ṗ = p ∆ + 2κ r 2 κ 2 , (38) ṙ 
= r ∆ -2κ p 2 κ 2 , (39) ċ 
= c ∆ -2 Z κ 2 κ 2 , (40) 
It is obvious from these equations that κ is a constant. Moreover, the fact that we may diagonalize the frame at t = t 0 implies that it remains diagonal during all of its evolution: thus r(t) = p(t) = 0.

By considering the combination X = a + i b the main equation to solve is :

Ẋ = -X(X 2 -4 i κ)/(2 κ 2 ); (42) 
after which we may finally obtain c thanks to (40). Solving both equations yields:

X = (a + i b) = 2X 0 e i t/κ i κ/(X 2 0 e 2 i t/κ -X2 0 e -2 i t/κ ) 1/2 , ( 43 
)
c 2 = c 2 0 e -2 Z t/κ /(X(t) X(t)) . (44) 
Moreover the remaining transformation with Λ -1 = diag(ρ, ρ, 1) allows us to fix κ = 1 . After a final translation of the variable t, and if necessary a flip of sign we obtain

a = 1/b = cot(t) , (45) 
c = c 0 e Z t sin(2 t) . ( 46 
)
Similar expressions can be obtained for Bianchi type VII 0 , but they involve real exponentials of time.

Bianchi class B In this case , condition ( 27) is equivalent to

I β n αβ = ˙αµν I µ a ν ( ˙123 = 1). ( 47 
)
For algebras of Bianchi types IV, VI h (with h = 0, 1) and VII h (with h = 0) we found that the only solution to the equations ( 47) is I α = λ a α , but for type III = VI 1 , we obtain a two-parameter solution. This is a reflection of the fact that the derived algebra now is of rank one instead of two.

Equations [START_REF] Saha | Bianchi type I universe with viscous fluid: A qualitative analysis[END_REF] read

λ i ρ j -λ j ρ i = 2 α k kij with α k = a µ θ µ k . ( 48 
)
As we require a non singular co-frame, they are only compatible with an algebra of Bianchi type III. By derivation, using (25) we obtain the system of equations:

ρi = ( 1 2 n µν g µν -θ λ k ρ k )ρ i + 2 θ jk i α j ρ k , αi = 1 2 n µν g µν α i -θ λ k α k ρ i . (49) 
To check the consistency of ( 48) with [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF], let us rewrite them as relations between vectors of a three dimensional Euclidean space:

2 α = λ × ρ, (50) 
˙ ρ = n 2 ρ -θ ( λ • ρ) ρ + 2 θ α × ρ, (51) 
˙ α = n 2 α -θ ( λ • α) ρ. ( 52 
)
Taking the derivative of (50) and inserting in it (51, 52), we obtain

2 ˙ α -λ × ˙ ρ = n α -2 θ ( λ • α) ρ - n 2 λ × ρ + θ ( λ • ρ) λ × ρ -2 θ λ × ( α × ρ), = n 2 α -θ ( λ • ρ) (2 α -λ × ρ).
Thus if 2 α -λ × ρ = 0 at a period of time, it always vanishes. This insures that the solution obeying this condition constitutes a self-dual solution.

It was shown in [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF] that there doesn't exist any diagonal self-dual metrics with a Bianchi type III symmetry group. We provide in the following the most general solution of type III, without any a priori (non geometrical) assumption on the co-frame, from which it is easy to see that diagonal metrics don't exist but non diagonal ones do. As previously, assuming a non singular frame, by using rotations and linear transformations we may put λ = (1, 0, 0) and I α = -(1, 1, 0). Then [START_REF] Saha | Bianchi type I universe with viscous fluid: A qualitative analysis[END_REF] implies that the frame must be of the form

(θ α i ) =   a 2 c -b -2 v -s r b s 0 v c   . (53) 
This frame can still be transformed, without altering the canonical structure constants and constants of motion, by acting on the right with the GL(3, R) matrix

Λ -1 =   1 -µ µ ν µ 1 -µ -ν 0 0 1   (54) 
and on the left with a rotation that leaves λ invariant

O =   1 0 0 0 cos(φ) sin(φ) 0 -sin(φ) cos(φ)   . (55) 
The self-duality equations imply that v(t) = V c(t). Thus we may assume that v(t) = 0 after, if necessary, a rotation of angle φ such that tan(φ) = V . Moreover we then see that s(t) = S c(t) and that by choosing an appropriate value of ν we may also assume s(t) = 0. The remaining parameter µ can by fixed by requiring b(0) = 0.

So without loss of generality, the frame we have to consider reduces to:

θ α k =   a 2 c -b 0 r b 0 0 0 c   . (56) 
In order to pursue the integration it will be useful to redefine the unknown functions as follows (using the fact that c cannot vanish as we only consider non singular frames):

a(t) = α(t) c(t), b(t) = β(t)c(t), r(t) = ρ(t) c(t). (57) 
Then the self-duality equations lead to

α = 2 + α 2 + α ρ (2 ρ -(α + ρ) β) c 2 , (58) β 
= ρ -α (2 ρ -(α + ρ) β) c 2 , ( 59 
) ρ = 2 + ρ 2 + α ρ (2 ρ -(α + ρ) β) c 2 , ( 60 
) ċ = ρ 2 -α 2 + 4 β -4 2 c (2 ρ -(α + ρ) β) 2 . ( 61 
)
They imply

d(ρ -α) dβ = (ρ + α) and d(ρ + α) dβ = 4 + (ρ + α) 2 ρ -α . (62) 
These equations are easy to solve and lead to

α = sinh β -β * K -K cosh β -β * K , ρ = sinh β -β * K + K cosh β -β * K .
Then we may express, by a quadrature, the function c as a function of β using the equation obtained from the ratio of β and ċ:

c 2 = c 2 0 cosh β-β * K (β -1) sinh β-β * K -K cosh β-β * K (63)
and finally express everything as functions of t by integrating equation ( 59) which leads to the surprisingly simple result (after a flip of the sign of t):

β = K c 2 0 t . ( 64 
)
The solution we discussed is generic. It depends on two arbitrary constants, namely c 0 , K and β * , note that we have used a time translation to set β = 0 at time t = 0.

Note that we assumed that a is always different from r. If for a value of t we set a = r, then they become identical for all times. In this special case, the derivative of β vanishes and we obtain that b(t) = B c(t) implying the remaining equations:

ċ c = R a 2 , ȧ a = -2 R c 2 - R a 2 . ( 65 
) with R = 1 2(1-B) .
To solve the equations (65) we use an auxiliary function y(t) = log |a(t) c(t)| and obtain, after elementary operations, the first integral:

ẏ2 + 4 R 2 e -2 y = L 2 , ( 66 
)
from which we deduce the expression of the product a(t) c(t) and

c(t) 2 = 2 R L coth[L t], (67) 
a(t) 2 = R L sinh[2 L t]. (68) 
Let us notice that R t has to be positive for the solution to be real. When t = 0 we encounter a curvature singularity.

Self-dual Connections

In the conventions we have used, we naturally find solutions whose curvature is self-dual while the connection is not. However, as we will show below, we may always make a local SO(4) rotation to make the connection self-dual. In fact, the vanishing of the anti self-dual part of the connection can be related to the integrability condition, thereby ensuring the existence of a pure self dual-connection. We shall illustrate this point by evaluating, in general, the gauge transformations which map our canonical co-frame to one whose associated connection is self-dual.

As is well known, the two (families of) parallelisms on the three-sphere S 3 provide a way to decompose any SO(4) rotation into the product of self-dual and anti self-dual SO(3) rotations. If u, x, y and z are the coordinates of a point of S 3 : u 2 + x 2 + y 2 + z 2 = 1, an anti self-dual SO(3) generator can be written as:

O ad :=     u -x -y -z x u z -y y -z u x z y -x u     . ( 69 
)
The gauge transformation generated by such a rotation leaves invariant the selfdual part of the connection but transforms the anti self-dual one. Accordingly, when the anti self-dual part of the connection, given by the constants Īiα , is nonzero, such a gauge transformation may set it to zero thanks to a solution of the equation:

dO = O ω a . ( 70 
)
More explicitly we obtain (with Īk := Īkα σ α and x i := (x, y, z))

du = 1 2 x k Īk , dx i = 1 2 -u Īi + ijk x j Īk . ( 71 
)
As a first immediate consequence we see that this gauge transformation has to be t independent. Moreover we also obtain from Eq. ( 22):

d Īi = 1 2 Īiα c α βγ σ β ∧ σ γ = - 1 2 jk i Īj ∧ Īk , (72) 
which indeed ensures the integrability of the equations (71). In the case of a rank one mapping, Īkα = λ k I α (normalized such that k λ 2 k = 1), this equation implies there exists a function χ such that dχ = I α σ α . Correspondingly, the gauge transformation (69) that leads to a frame which has vanishing anti self-dual connection is given by

u = sin(χ/2), x k = λ k cos(χ/2). (73) 
In the case of rank three, the only possibility is Bianchi type IX. As discussed above it can be taken diagonal, with the matrix ( Īiα ) = -δ iα . Moreover, it is well known that the components of the invariant one-forms also define parallel vector fields. Using the identities u du + x dx + y dy + z dz = 0 and u 2 + x 2 + y 2 + z 2 = 1, it is easy to check that the invariant one-forms may be expressed as :

σ 1 = -2(x du -u dx + z dy -y dz), (74) 
σ 2 = -2(y du -z dx -u dy + x dz), (75) 
σ 3 = -2(z du + y dx -x dy -u dz). (76) 
One may also check that they verify the invariance relations: dσ i = i j k σ j ∧ σ k and that (71) are identities. In the case where the matrix ( Īiα ) is not diagonal, it must be (in order to satisfy to equations ( 26)) of the form ( Īiα ) = -(O iα ) with O an SO(3) rotation matrix. It is elementary to check that the equations (71) are solved by similar functions involving variables u and (x k ) = (x , y , z ) related to (x k ) = (x, y, z) by the rotation O:

x k = -I kl x l (77) 
as it must be.

Conclusion

In this note we have achieved a complete classification of all the self-dual Euclidean spaces admitting a G3 simply transitive homogeneity group. For each Bianchi group, there are as many classes of solutions as homomorphisms Ī : g 3 → so(3).

For each of these homomorphisms, labeled by its rank, the self-duality constraint is described by a specific set of equations -like Lagrange or Darboux-Halphen in Bianchi IX, leading to distinct solutions such as Eguchi-Hanson or Taub-NUT respectively. These equations have non-everywhere vanishing solutions for all class A Bianchi groups (I, II, VI 0 , VII 0 , VIII and IX), whereas in class B solutions exist only for Bianchi III. The latter solutions (Eqs. ( 81), ( 83)) are all rank-1 and non-diagonal, contrary to the lore that it seamed "very unlikely to construct nondiagonal self-dual solutions of Bianchi types I-IX" [START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF]. This expectation was empty for Bianchi A because in the present formulation, the diagonal ansatz is the most general, but not for Bianchi B.

It is fair to stress that the above conclusions have been reached by adopting a metric representation, Eq. ( 1), such that the foliation of M as R × Σ 3 is manifest and adapted to the splitting of the group SO(4) into self-dual and anti-self-dual factors. Other choices for the metric may exist, where the distinction between the various classes of self-dual solutions is less sharp. This happens e.g. for Bianchi IX, in the Gibbons-Hawking representation [START_REF] Gibbons | Classification Of Gravitational Instanton Symmetries[END_REF], where Eguchi-Hanson (rank-0) and Taub-NUT (rank-1) are indeed, to some extent, unified. This is possible, however, at the price of abandoning the G3-invariant frames that we use. Here, this choice has been instrumental, not only for providing the classification in terms of the rank of the g 3 → so(3) homomorphism, but also for scanning all possible solutions.

Our analysis can easily be adapted to the ultra-hyperbolic case (spacetime signature (-, -, +, +)), where the algebra of Bianchi type VIII will play a role analogous to the one of Bianchi IX here. It should however be emphasized that we will have to distinguish, in that case, among the inequivalent one-dimensional subalgebras of so(2, 1). Other extensions concern the addition of a cosmological constant (Weyl self-duality), or the implementation of the method to higher-dimensional set-ups admitting self-duality, as e.g. in seven dimensions. Last but not least, the physical analysis of the new Bianchi III solutions remains to be completed. The large number of moduli in (81), (83) make such an analysis quite involved.

It would be interesting to discover if the techniques and classification presented in this paper can be generalized to cases where we have a more general setup than vacuum Einstein equations. For example, the evolution of certain Bianchi spaces in the presence of a cosmological constant, as well as various matter such as a perfect fluid and/or scalar, spinor, and electro-magnetic fields has been studied recently in [START_REF] Barrow | Some exact non-vacuum Bianchi VI(0) and VII(0) instantons[END_REF][START_REF] Saha | Interacting spinor and scalar fields in Bianchi cosmology[END_REF][START_REF] Saha | Bianchi type I universe with viscous fluid: A qualitative analysis[END_REF]. The authors have derived exact solutions in certain cases, some of which are singularity free, and a complete classification of solutions would be appreciated. In the case of Einstein's equations with a cosmological constant, it is well known that requiring self-duality of the Weyl tensor is sufficient to satisfy the equations of motion. Preliminary investigations suggest that our techniques in this case are applicable. However, the algebraic constraint equation ( 22) is modified and in particular becomes time dependent. Following the logic in [START_REF] Bourliot | Gravitational instantons, self-duality and geometric flows[END_REF], the algebraic constraint, in the case without a cosmological constant, can be interpreted as the constraint for a constant background G3-gauge field to be pure gauge. With the introduction of a cosmological constant, the background gauge field must now evolve in time.

We note that most of the Bianchi classes have solutions which necessarily have singularities. It would be interesting to discover if these singularities could be cured by the introduction of either a cosmological constant and/or additional matter fields. Examples have already been discussed in [START_REF] Barrow | Some exact non-vacuum Bianchi VI(0) and VII(0) instantons[END_REF][START_REF] Saha | Interacting spinor and scalar fields in Bianchi cosmology[END_REF][START_REF] Saha | Bianchi type I universe with viscous fluid: A qualitative analysis[END_REF] as well as [START_REF] Spokoiny | The effect of the electromagnetic fields on the evolution of homogeneous cosmological models near the singularity[END_REF][START_REF] Fay | Sufficient conditions for curvature invariants to avoid divergences in hyperextended scalar tensor theory for Bianchi models[END_REF]. most peculiar: contrary to the other classes, it requires a non-diagonal co-frame (31) (and consequently a non-diagonal metric (1)) and allows exclusively rank-1 solutions. These solutions are new.

In the following presentation, integration constants that can be reabsorbed by coordinate redefinitions have been discarded. Consequently, all remaining parameters are genuine moduli of the solutions.

Bianchi I The solution reads

ds 2 = e -2 t dt 2 + e -2 t (σ 1 ) 2 + (σ 2 ) 2 + (σ 3 ) 2 (78) 
and describes flat geometry for both rank-solutions ( = 0, 1). Notice, however, that the rank-0 case appears naturally in Cartesian coordinates, whereas rank-1 emerges in a kind of mixed Cartesian/polar, Euclidean-Rindler-like coordinates.

Bianchi II The rank-solutions are given by

ds 2 = t e 2 t/b 0 b 2 0 c 2 0 dt 2 + 1 t (σ 1 ) 2 + t b 2 0 (σ 2 ) 2 + t e 2 t/b 0 c 2 0 (σ 3 ) 2 . ( 79 
)
The Kretschmann scalar is given by

K = R MNP Q R MNP Q = 8 b 2 0 c 4 0 e -4 t /b 0 ( t) 2 + 3 b 0 t + 3 b 2 0 t 6 (80) 
from which we can see that at t = 0 the metric has a curvature singularity.

Bianchi III The Bianchi-III self-dual metrics are all rank-one. They are captured by two expressions, depending on whether a = r (Eq. ( 81)), or a = r (Eq. ( 83)), in the general co-frame (31) after a convenient rescaling of t by t → c 2 0 t we obtain:

ds 2 = F (t) 32 c 4 0 cosh 4 t -t * dt 2 + K t -1 tanh t -t * -K c 2 0 (σ 3 ) 2 + g 1 (t) F (t) (σ 1 ) 2 + g 2 (t) F (t) (σ 2 ) 2 + 2 g 3 (t) F (t) σ 1 σ 2 , (81) 
where we have introduced the functions F (t), g 1 (t), g 2 (t) and g 3 (t) given by

F (t) = 8 c 2 0 cosh t -t * K t -1 sinh t -t * -K cosh t -t * , g 1 (t) = (K 2 + 1) cosh 2(t -t * ) + 2 K sinh 2(t -t * ) + 2K 2 t 2 + K 2 -1, g 2 (t) = (K 2 + 1) cosh 2(t -t * ) -2 K sinh 2(t -t * ) +2K 2 t 2 -8 K t + K 2 + 7, g 3 (t) = (K 2 -1) cosh 2(t -t * ) + 2 K 2 t 2 -4 K t + K 2 + 1. ( 82 
)
Denoting the zeroes of F (t) as t i , we find that the Kretschmann scalar diverges as (t -t i ) 6 as t → t i , indicating a curvature singularity at each of the two zeros of F (t). The second solution with a = r is given by

ds 2 = L (B -1) 4 tanh(t) cosh 2 (t) dt 2 + L (B -1) tanh(t) σ 3 2 + L 4 (B -1) 2 B 2 csch(2 t) + tanh(t) σ 1 2 + -2 [tanh(t) -2 B (B -2)csch(2 t)] σ 1 σ 2 csch(2 t)(cosh(2 t) + 2 (B -2) 2 -1 σ 2 2 . (83) 
In this case, the Kretschmann scalar is given by

K = 384 coth 6 (t) (B -1) 2 L 2 (84) 
and we find at t = 0 the metric has a curvature singularity. The general analysis of these geometries is involved and provides interesting features, which deserve a separate study.

Bianchi VI 0 The general metric for rank-solutions reads:

ds 2 = sin(2 t) e 2 Z t c 2 0 dt 2 + σ 3 2 + tan(t) σ 1 2 + cot(t) σ 2 2 , ( 85 
)
where t ∈ [0, π/2]. A curvature singularity appears at the boundaries t = 0 and t = π/2. The Kretschmann scalar is given by

K = 16 c 4 0 e -4 t Z 6 Z sin(4 t) + [9 + ( Z) 2 ] cos(4 t) + ( Z) 2 + 15 sin 6 (2 t) , (86) 
and we see that at t = 0, π/2 the metric has a curvature singularity.

Bianchi VII 0 The general metric for rank-solutions reads:

ds 2 = sinh(2 t) e 2 Z t c 2 0 dt 2 + σ 3 2 + tanh(t) σ 1 2 + coth(t) σ 2 2 (87)
The Kretschmann scalar is given by

K = 16 c 4 0 e -4 t Z 6 Z sinh(4 t) + [9 + ( Z) 2 ] cosh(4 t) -( Z) 2 + 15 sinh 6 (2 t) (88) 
and we again find a curvature singularity at t = 0. In the rank-1 case, we may take the large-t limit of the above metric to obtain

ds 2 = c 2 0 e 2(1+Z)t dt 2 + σ 3 2 + σ 1 2 + σ 2 2 (89)
which also solves the self-duality equations but has a vanishing Kretschmann scalar and is actually flat.

Bianchi VIII There is only the rank-0 solution whose simplest writing is:

ds 2 = P -1/2 4 dx 2 + P 1/2 (σ 1 ) 2 x 1 -x + (σ 2 ) 2 x 2 -x + (σ 3 ) 2 x ( 90 
) with P = (x 1 -x)(x 2 -x)x where x 1 , x 2 are positive and 0 ≤ x ≤ min{x 1 , x 2 }.
The Krestschmann scalar blows up as x -3 (x -x 1 ) -3 (x -x 2 ) -3 , indicating that the singularity at the boundary of the domain of definition of x is a true one. Let us assume x 1 = α 2 > x 2 = β 2 . We may re-express the metric in the gauge N = θ, using Jacobi elliptic functions of module β/α. Making the substitution x = β 2 sn 2 (α t) we obtain: The t variable belongs to the interval [0, 2 K(β/α)/α], K(k) being the complete elliptic integral of the first kind of module k.

ds 2 =
Bianchi IX We have solutions in case of rank-0 (Lagrange system of equations) and of rank-3 (Darboux-Halphen system of equations). The general rank-0 solution8 was found by Belinsky et al in [START_REF] Belinsky | Asymptotically Euclidean Bianchi IX metrics in quantum gravity[END_REF] as a strict SU(2)-symmetric generalization of the Eguchi-Hanson gravitational instanton.

The latter has enhanced SU(2) × U (1) isometry and is a solution of the Lagrange system. An algebraic expression of the solution, analogous in form to Eq. (90), is

ds 2 = P -1/2 4 dx 2 + P 1/2 (σ 1 ) 2 x -x 1 + (σ 2 ) 2 x -x 2 + (σ 3 ) 2 x ( 92 
)
with P = (x -x 1 )(x -x 2 )x where x 1 , x 2 are negative. The general strict SU(2)symmetric solutions have curvature singularities. To obtain the Eguchi-Hanson gravitational instanton, one may take x 1 = x 2 = x 0 and by a translation in x set x 3 = 0. Let us assume x 1 = -α 2 < x 2 = -β 2 . In the gauge N = θ, the metric can still be expressed in terms of standard Jacobi elliptic functions but now of module α 2 -β 2 /α; using x = β 2 sn 2 (α t)/cn 2 (α t) with t ∈ [0, K( α 2 -β 2 /α)/α] we obtain: The issue of the rank-3 solution is more subtle. It is a generalization of Taub-NUT metric, with strict SU(2) isometry, and solves the Darboux-Halphen system. As explained in [START_REF] Takhtajan | A simple example of modular forms as tau functions for integrable equations[END_REF], it requires the use of modular forms. For simplicity we trade a, b, c for Ω α , α = 1, 2, 3, where Ω 1 = 1 b c , Ω 2 = 1 a c , and Ω 3 = 1 a b , and introduce a triplet of weight-two modular forms of Γ(2) ⊂ P SL(2, Z):

ds 2 =
E 1 = dλ/dz λ , E 2 = dλ/dz λ -1 , E 3 = dλ/dz λ(λ -1) , ( 94 
)
where λ is solution of Schwartz' equation 

and generates a Bianchi-IX, rank-1 gravitational instanton (Eqs. ( 1) and (31)). A generic curvature singularity is present in these geometries. This singularity can be pushed at infinity for one specific choice of λ(z): λ = θ 4 2 /θ 4 3 , where θ 2,3 are the standard Jacobi theta functions 9 . This case corresponds to the Atiyah-Hitchin solution [START_REF] Atiyah | Low-energy scattering of nonabelian magnetic monopoles[END_REF][START_REF] Atiyah | Low-energy scattering of nonabelian monopoles[END_REF]. Similar to the rank-0 solution, in the case that two of the metric factors are equal the solutions has enhanced SU(2) × U (1) isometry and takes the form of the well-known Taub-NUT metric ds 2 = r 2 4(1 + k r 2 ) 2 (σ 1 ) 2 + (σ 2 ) 2 + r 2 4 (σ 3 ) 2 + 1 (1 + k r 2 ) 4 dr 2 .

(97)

Transformations ( 33 )

 33 allow to simplify the frame components, without loss of generality. First we may put Q = S = 0 i.e. q(t) = s(t) = 0 by performing a transformation with O = Id and α = 1, β = 0, γ = -Q and δ = -S. Then we still have the freedom to make transformations (33) with γ = δ = 0. Performing, at an arbitrary time t 0 , a new transformation with still O = Id and α = ρ cos(ϕ), β = ρ sin(ϕ) where ρ > 0 is arbitrary and ϕ determined by7 sin

with ∆ = (b 2 + r 2 )

 22 -(a 2 + p 2 ), and κ = a b -p r.

2 .

 2 (95) Any real solution of the Darboux-Halphen system reads:Ω α (t) = -1 2 d dt log E α (it), α = 1, 2, 3,

Table 1 :

 1 Canonical structure constants for the different Bianchi groups Type a n 1 n 2 n 3 Usual name Class

  α β 2 sn(α t) dn(α t) cn 3 (α t) dt 2 (93) + β 2 sn(α t) α cn(α t) dn(α t) (σ 1 ) 2 + α sn(α t) dn(α t) cn(α t) (σ 2 ) 2 + α dn(α t) sn(α t) cn(α t) (σ 3 ) 2 .

A translation of the general Halphen-Darboux solutions in terms of gravitational instantons can be found in[12]. They are all plagued with naked singularities, except, marginally, for the particular solution of Atiyah-Hitchin[START_REF] Atiyah | Selfduality In four-dimensional Riemannian geometry[END_REF].

Self-duality can be imposed alternatively on the Weyl tensor, and leads thus to solutions with cosmological constant like Fubini-Study or Pedersen[START_REF] Pedersen | Einstein metrics, spinning top motions and monopoles[END_REF]. Note also that anti-self-solutions are obtained by parity or time reversal.

The three-dimensional group G3 acts simply transitively on the leaves, endowed thus with the structure of a group manifold. Hence we exclude H 3 , H 2 × S 1 or S 2 × S 1 , which are the alternatives to the nine Bianchi classes.

To see this is a valid choice, note that under a time re-parameterization t → t = f (t) we could pick f = N/θ. Assuming the metric is invertible, θ = 0, this transformation is well defined.

However in Ref.[START_REF] Lorenz | Gravitational instanton solutions for Bianchi types I-IX[END_REF][START_REF] Lorenz-Petzold | Gravitational instanton solutions[END_REF] the metrics were assumed to be a priori diagonal, a technical assumption just introduced to facilitate the integration of the flow equations. Here we justify that they furnish the most general ones in case of rank 0 cases, and when necessary shall discuss the integration of the relevant non-diagonal metrics.

We use the subscript 0 to indicate the value of the corresponding function at the instant considered : a(t 0 ) = a 0 , etc.

The metric can be chosen diagonal; the off-diagonal entries are consistently set to zero in this class.
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Appendix: G3 self-dual metrics

We summarize here all known (real) self-dual G3-homogeneous gravitational instantons, following the classification pattern we have developed in terms of homomorphisms g 3 → so(3). These can be of rank 0, 1 or 3. Whenever rank-0 and rank-1 solutions coexist (i.e. for Bianchi I, II, VI 0 and VII 0 ), they are both captured by a single expression with a two-valued parameter = 0, 1. Bianchi IX is the only case which possess rank-0 and rank-3 solutions. Bianchi III is the