Accepted Manuscript

Title: Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of *Chlamydophila pecorum*

Authors: Khalil Yousef Mohamad, Abdessalem Rekiki,

Mustapha Berri, Annie Rodolakis

PII: S0378-1135(09)00566-5

DOI: doi:10.1016/j.vetmic.2009.11.017

Reference: VETMIC 4672

To appear in: VETMIC

Received date: 18-8-2009 Revised date: 9-11-2009 Accepted date: 12-11-2009

Please cite this article as: Mohamad, K.Y., Rekiki, A., Berri, M., Rodolakis, A., Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of *Chlamydophila pecorum*, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of *Chlamydophila pecorum*

Khalil Yousef Mohamad, Abdessalem Rekiki, Mustapha Berri and Annie Rodolakis*

Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, F-37380, Nouzilly (Tours), France

*Corresponding author: Tel.: +33 2 47 42 76 34; fax: +33 2 47 42 77 79

E- Mail address: rodolaki@tours.inra.fr

Abstract

Chlamydophila pecorum strains are commonly found in the intestine and vaginal mucus of
asymptomatic ruminants and may therefore induce a positive serological response when the
animals are tested for C. abortus. They have also been associated with different pathological
diseases in ruminants, swine and koala. The aim of this study was to identify specific C.
pecorum immunodominant antigens which could be used in ELISA tests allowing to
distinguish between animals infected with C. pecorum and those infected with other
chlamydial species. A gene encoding 35-kDa inclusion membrane protein incA of C. pecorum
was isolated by immunoscreening of the C. pecorum DNA library using ovine anti-C.
pecorum antibodies. The recombinant IncA protein did not react with a murine serum directed
against C. abortus but did react with a specific monoclonal antibody of C. pecorum and
toward several ovine serum samples obtained after experimental infection with different C.
pecorum strains. This protein could be a good candidate for specific diagnosis of C. pecorum
infection.

Keywords: Chlamydophila pecorum, serodiagnosis, IncA

Introduction

Chlamydophila pecorum strains have been isolated from small and large ruminants, koalas
and swine. It is commonly found in the intestine and vaginal mucus of ruminants without any
clinical sign. However, some C. pecorum strains cause diseases in ruminants and swine,
including pneumonia, polyarthritis, conjunctivitis, enteritis, encephalomyelitis and abortion
(Kaltenboeck and Storz, 1992; Rodolakis et al., 1998). In koalas, C. pecorum is known to
cause reproductive disease, infertility and urinary tract disease (Jackson et al., 1999). C.
pecorum strains can also cause infections in wild animals, for example, conjunctivitis in the
western barred bandicoot and abortion in water buffalo (Greco et al., 2008; Warren et al.,
2005).
C. pecorum could be responsible for the positive serological response sometimes seen in
flocks, tested for <i>C. abortus</i> . Serodiagnostic tests, such as the complement fixation test (CFT)
and enzyme-linked immunosorbent assays (ELISA), are the simplest methods for detecting
chlamydial infections. The CFT was generally used until the development of ELISA tests
because of the false positive response obtained with anti-complementary serum samples in the
CFT. Thus, neither the CFT nor ELISA tests using whole bacteria or protein extracts are able
to differentiate between antibodies directed against C. abortus and C. pecorum (Brade et al.,
1987; Markey et al., 1993). Several experimental (Hoelzle et al., 2004; Kaltenboeck et al.,
1997; Longbottom et al., 2001) or commercial ELISAs developed by INRA-Nouzilly
(Buendia et al., 2001; Vretou et al., 2007) have been proposed to detect species-specific anti-
C. abortus antibodies in ovine and bovine sera.
The present study focuses on the search for a specific antigen to identify animals infected
with C. pecorum. This would allow to estimate the prevalence of C. pecorum in
epidemiological studies and to improve the diagnosis of C. abortus by removing the

51	
52	Materials and Methods
53	Chlamydial strains
54	Five chlamydial strains were used: 4 strains of C. pecorum and 1 strain of C. abortus (Table
55	1). All strains were propagated in the yolk sac of chicken embryos and stored at -70 $^{\circ}\mathrm{C}$ as
56	previously described (Rodolakis, 1976).
57	Serum samples
58	Serum samples were obtained after experimental infection of sheep and mice with various C .
59	pecorum isolates. Maintenance and care of experimental animals were in accordance with
60	National Decree, N° 2001-464, May 2001, concerning animal testing in France. Samples were
61	collected from 10 ewes: 3 inoculated with C. pecorum M14, 3 with C. pecorum AB10, 2 with
62	C. pecorum LW679, and 2 with C. pecorum iB5. Approximately 10 ⁶ plaque-forming units
63	(PFU)/Sheep of each strain were inoculated subcutaneously 4 times at 3-week intervals. Two
64	serum samples obtained from mice inoculated with C. pecorum M14 or C. pecorum AB10
65	were previously used in our laboratory (Rekiki et al., 2004). One serum was pooled from 10
66	mice infected experimentally with C. abortus AB7. Approximately 10 ⁴ PFU/mouse were
67	inoculated subcutaneously 3 times at 2-week intervals.
68	The specific monoclonal anti-C. pecorum antibody PD3 was produced at INRA- Nouzilly as
69	previously described (Salinas et al., 1996).
70	In addition, 8 bovine serum samples were collected from a herd with no clinical signs.
71	All these serum samples were examined using microimmunofluorescence (MIF) as previously
72	described (Salinas et al., 1996).
73	Construction and immunoscreening of C. pecorum genomic DNA expression library
74	Genomic DNA was prepared from purified C. pecorum M14 strain as previously described
75	(Boumedine and Rodolakis, 1998). The genomic library was constructed using Lambda ZAP

76	Express vector following the manufacturer's protocol (Stratagene, Lyon, France). The
77	recombinant phages were selected using the ovine anti-C. pecorum M14 serum. Several phage
78	clones were plaque-purified and converted to the recombinant pBK-CMV plasmid in E. coli
79	XLOR following the manufacturer's instructions (Stratagene).
80	Immunoblotting
81	Total proteins expressed by cloned C. pecorum M14 DNA in E. coli XLOLR were analyzed
82	by immunoblotting. E. coli XLOLR containing the recombinant plasmid was cultured in
83	Luria-Bertani Media (LB) at 37°C overnight. The cells were pelleted by centrifugation
84	(5000g/ 10 min), resuspended in Laemmli sample buffer containing 5% of 2-mercaptoethanol
85	(Biorad, Marnes-la-Coquette, France), and boiled at 95°C for 10 min. The proteins were
86	separated by SDS-PAGE electrophoresis (Laemmli, 1970) and transferred onto nitrocellulose
87	membranes in Tris-glycine buffer (containing 0.1 M Tris base, 0.192 M glycine, and 10%
88	methanol) at 65 mA for 60 min (Towbin et al., 1979). Immunoreactive proteins of C. pecorum
89	were detected by Western blot analysis using an ovine serum sample as the first antibody,
90	then reacted with anti-sheep alkaline phosphatase conjugate (Sigma-Aldrich, Lyon, France) as
91	the secondary antibody, and visualized by BCIP/NBT color substrate (Promega,
92	Charbonnières-Les-Bains, France).
93	DNA sequence analysis
94	Plasmid DNAs were purified by a QIAprep Miniprep kit (Qiagen, Courtaboeuf, France) from
95	cultures of E. coli XLOLR clones containing different C. pecorum M14 DNA inserts. The
96	cloned DNAs identified by Western blotting were sequenced at Genome Express (Cogenic,
97	Meylan, France) using T7 forward and reverse primers. The cloned genes were identified
98	using BLASTn and BLASTx in NCBI against the complete genome sequence of Chlamydia.
99	Cloning of incA gene

100	The DNA of the ovine C. pecorum AB10 strain was extracted using the Dneasy kit following
101	the manufacturer's instructions (Qiagen). The incA gene was amplified by polymerase chain
102	reaction (PCR) with two primers, containing BamHI and KpnI restriction sites respectively
103	(restriction sites are underlined), as follows: In-E58-F (5'-
104	CTCGGATCCACAGTGAATCCCCTACGAA -3') and In-E58-R (5'-
105	CTCGGTACCTTTTGAAGCGCTGTTTCAT -3'). PCR was performed using the GoTaq
106	Flexi DNA Polymerase protocol (Promega) in an automated DNA thermal cycler (Biometra,
107	Goettingen, Germany). After an initial denaturation period of 5 min at 94 °C, reactions were
108	subjected to 30 cycles of 30 sec at 94 °C, 45 sec at an annealing temperature of 63 °C, then 72
109	°C for 1.5 min with a final extension step at 72 °C for 10 min. The PCR product was purified
110	using the QIAquick PCR kit (Qiagen) and ligated into the pQE30-HisTag expression vector
111	(Qiagen). The recombinant construct (pQE30/incA) was used to transform E. coli TG1 cells.
112	The recombinant IncA protein was purified under native conditions using a Nickel affinity
113	chromatography column following the manufacturer's instructions (Qiagen).

Results

Immunoscreening of the *C. pecorum* genomic DNA library identified 16 immunoreactive clones with varying signal intensities (Table 2). The molecular masse of four (B3, A10, B15 and B11) of the sixteen clones were identified by Western blotting (Figure 1). Three clones (B3, A10 and B15) with a molecular mass of 32-33 kDa reacted with the same MAb PD3 (Fig. 2). Two immunoreactive proteins showing a molecular mass of 18 and 30 kDa were identified in the fourth clone (B11) (Figure 1).

Sequence analysis and BLAST search of the complete chlamydial genome sequence showed that the 18, 30 and 32-33 kDa proteins corresponded to the rRNA methylase family spoU

protein (439 bp), peptidyi-protyi cis-trans isomerase with precursor (744 bp), and inclusion
membrane protein IncA (981 bp), respectively.
The full-length incA gene of C. pecorum was cloned in pQE-30 vector and a recombinant 35
kDa protein was expressed. Immunoblotting analysis showed that the purified rIncA reacted
with the MAb PD3 (Figure 3) and with all murine and ovine serum samples obtained after
experimental infection with different C. pecorum strains. However, no reaction was seen with
the murine serum directed against C. abortus. Moreover, the ability of the recombinant IncA
to detect anti-C. pecorum antibodies in healthy ruminant herds was tested using 8 bovine
serum samples: 6 of these samples were found positive (Figure 4).

Discussion

To diagnose *C. pecorum*, several DNA-based techniques have been proposed using conventional PCR (Everett et al., 1999; Kaltenboeck et al., 1992) or real-time PCR with primers derived from 23S rRNA or *ompA* genes (DeGraves et al., 2003; Yang et al., 2006). A multiplex PCR has recently been developed to detect *C. abortus*, *C. pecorum* and *Coxiella burnetii* (Berri et al., 2009). However, at present, no serodiagnostic system can specifically detect *C. pecorum* infection.

In this study, we proposed *C. pecorum* inclusion membrane protein *incA* as a diagnostic antigen. Our results showed that the incA was obtained by immunoscreening the *C. pecorum* genomic library with the ovine anti-*C. pecorum* serum sample. Three out of sixteen clones had the *incA* gene, and a strong band reacting with ovine serum directed against different *C. pecorum* strains was detected, suggesting that this protein could be a common and immunodominant antigen for *C. pecorum*. The recombinant IncA protein reacted with the specific anti-*C. pecorum* MAb PD3, but not with the murine serum directed against *C. abortus*, suggesting that IncA could be a specific *C. pecorum* antigen. Although the

149	biochemical properties of IncA proteins, including their multimeric structure, were conserved
150	in all the chlamydial species, the incA sequences showed little similarity and antibodies
151	against IncA in the different chlamydial species did not cross-react (Delevoye et al., 2004).
152	This gene has therefore been proposed to detect C. psittaci and C. trachomatis using
153	quantitative PCR and immunodiagnostic tests respectively (Menard et al., 2006; Tsai et al.,
154	2007). Furthermore, a recent in silico study proposed IncA as a major antigen for C.
155	pneumoniae diagnosis (Park et al., 2009).
156	A coding tandem repeats (CTR) variant was identified along the <i>incA</i> gene sequence of C.
157	pecorum allowing 19 C. pecorum strains isolated from ruminants to be divided into 3 groups
158	based on the different CTR motifs (Yousef Mohamad et al., 2008a). Seven out of eight
159	pathogenic strains of different clinical and geographical origins were found in one group in
160	which the CTR of incA contained only alanine-proline (APA) motif. In addition, a multi-
161	virulence locus sequence typing (MVLST) technique was used to divide C. pecorum strains
162	into 4 groups, one containing only 6 out of 8 pathogenic strains (Yousef Mohamad et al.,
163	2008b). That study suggested that ompA, incA and ORF663 genes could be used as molecular
164	markers in epidemiological studies of C. pecorum.
165	Although the CTR in the incA sequence varied among C. pecorum strains, they did not
166	hamper the reaction of recombinant IncA protein with serum samples from sheep immunized
167	with C. pecorum, including pathogenic or intestinal strains. This suggests that the IncA
168	protein has common epitopes recognized by different C. pecorum strains. It would be
169	interesting to examine the antigenicity of these motifs and to produce synthetic peptide
170	antigens based on them which could be useful for distinguishing between animals infected by
171	pathogenic and non-pathogenic C. pecorum strains.
172	The rIncA also reacted with 6 of the 8 serum samples collected from healthy bovine herds.
173	This suggests that <i>C. pecorum</i> persists in the intestine and vaginal mucus of healthy ruminants

174	as previously demonstrated (Longbottom, 2004). More than 51% of female calves acquired
175	natural infection with C. pecorum in the first 2 months after birth (Kaltenboeck et al., 2005).
176	In addition, an investigative study showed that C. pecorum was more widespread in cattle
177	than C. abortus, and the bacteria were frequently detected in vaginal swabs and fecal samples
178	(Jee et al., 2004). It is therefore important to develop an approach able to detect clinically
179	unapparent intestinal infection caused by C. pecorum which has been reported to be prevalent
180	in both abortion-affected and -unaffected ruminant flocks (Reinhold et al., 2008).
181	In conclusion, this is the first report about the utilization of a recombinant IncA as a potential
182	specific antigen for C. pecorum diagnosis. Further analysis is needed to evaluate the use of
183	this antigen in ELISAs.
184	
185	References
186	Berri, M., Rekiki, A., Sidi Boumedine, K., and Rodolakis, A., 2009. Simultaneous differential
186 187	Berri, M., Rekiki, A., Sidi Boumedine, K., and Rodolakis, A., 2009. Simultaneous differential detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i>
187	detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii
187 188	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9,
187 188 189	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130.
187 188 189 190	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Boumedine, K. S., and Rodolakis, A., 1998. AFLP allows the identification of genomic
187 188 189 190 191	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Boumedine, K. S., and Rodolakis, A., 1998. AFLP allows the identification of genomic markers of ruminant <i>Chlamydia psittaci</i> strains useful for typing and epidemiological
187 188 189 190 191 192	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Boumedine, K. S., and Rodolakis, A., 1998. AFLP allows the identification of genomic markers of ruminant <i>Chlamydia psittaci</i> strains useful for typing and epidemiological studies. Res. Microbiol. 149, 735-44.
187 188 189 190 191 192 193	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Boumedine, K. S., and Rodolakis, A., 1998. AFLP allows the identification of genomic markers of ruminant <i>Chlamydia psittaci</i> strains useful for typing and epidemiological studies. Res. Microbiol. 149, 735-44. Brade, H., Brade, L., and Nano, F. E., 1987. Chemical and serological investigations on the
187 188 189 190 191 192 193 194	detection of <i>Chlamydophila abortus</i> , <i>Chlamydophila pecorum</i> and <i>Coxiella burnetii</i> from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Boumedine, K. S., and Rodolakis, A., 1998. AFLP allows the identification of genomic markers of ruminant <i>Chlamydia psittaci</i> strains useful for typing and epidemiological studies. Res. Microbiol. 149, 735-44. Brade, H., Brade, L., and Nano, F. E., 1987. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of <i>Chlamydia</i> . Proc. Natl. Acad. Sci. U S A.

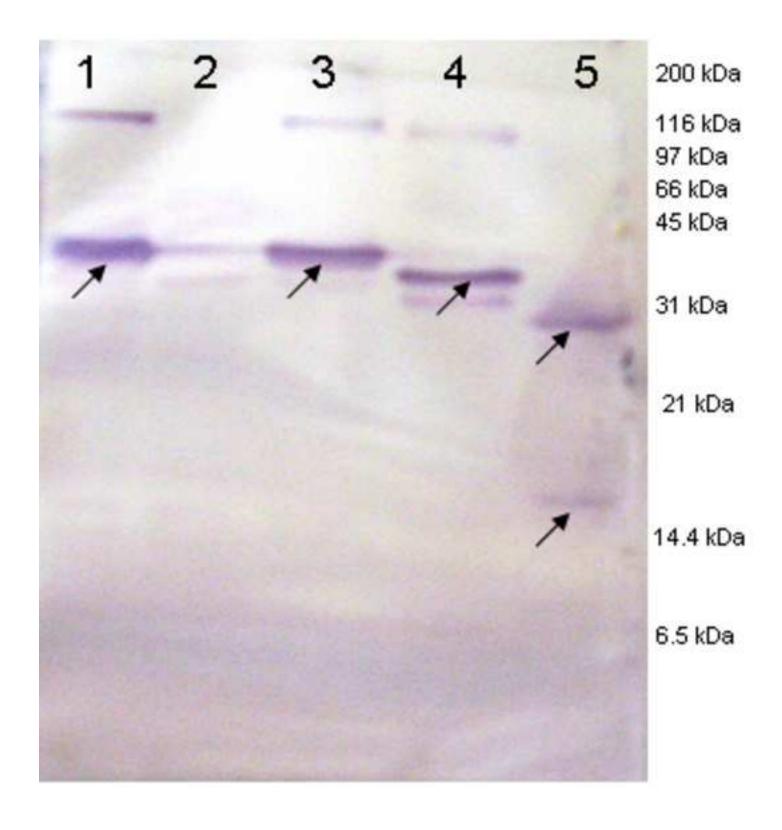
198	antigen for diagnosing Chlamydophila abortus (Chlamydia psittaci serotype 1)
199	infection. Vet. Microbiol. 78, 229-39.
200	DeGraves, F. J., Gao, D., Hehnen, H. R., Schlapp, T., and Kaltenboeck, B., 2003. Quantitative
201	detection of Chlamydia psittaci and C. pecorum by high-sensitivity real-time PCR
202	reveals high prevalence of vaginal infection in cattle. J. Clin. Microbiol. 41, 1726-9.
203	Delevoye, C., Nilges, M., Dautry-Varsat, A., and Subtil, A., 2004. Conservation of the
204	biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae:
205	oligomerization of IncA mediates interaction between facing membranes. J. Biol.
206	Chem. 279, 46896-906.
207	Everett, K. D., Hornung, L. J., and Andersen, A. A., 1999. Rapid detection of the
208	Chlamydiaceae and other families in the order Chlamydiales: three PCR tests. J. Clin.
209	Microbiol. 37, 575-80.
210	Faye, P., Charton, L., Mage, C., Bernard, C., and Le Layec, C., 1972. Propriétés
211	hémagglutinantes du virus de l'avortement enzootique des petits ruminants (Souches
212	de Rakeia d'origine ovine et caprine). Bul. Acad. Vet. Fr. 45, 169-173.
213	Greco, G., Corrente, M., Buonavoglia, D., Campanile, G., Di Palo, R., Martella, V.,
214	Bellacicco, A. L., D'Abramo, M., and Buonavoglia, C., 2008. Epizootic abortion
215	related to infections by Chlamydophila abortus and Chlamydophila pecorum in water
216	buffalo (Bubalus bubalis). Theriogenology. 69, 1061-9.
217	Hoelzle, L. E., Hoelzle, K., and Wittenbrink, M. M., 2004. Recombinant major outer
218	membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and
219	Chlamydia suis as antigens to distinguish chlamydial species-specific antibodies in
220	animal sera. Vet. Microbiol. 103, 85-90.
221	Jackson, M., White, N., Giffard, P., and Timms, P., 1999. Epizootiology of Chlamydia
222	infections in two free-range koala populations. Vet. Microbiol. 65, 255-64.

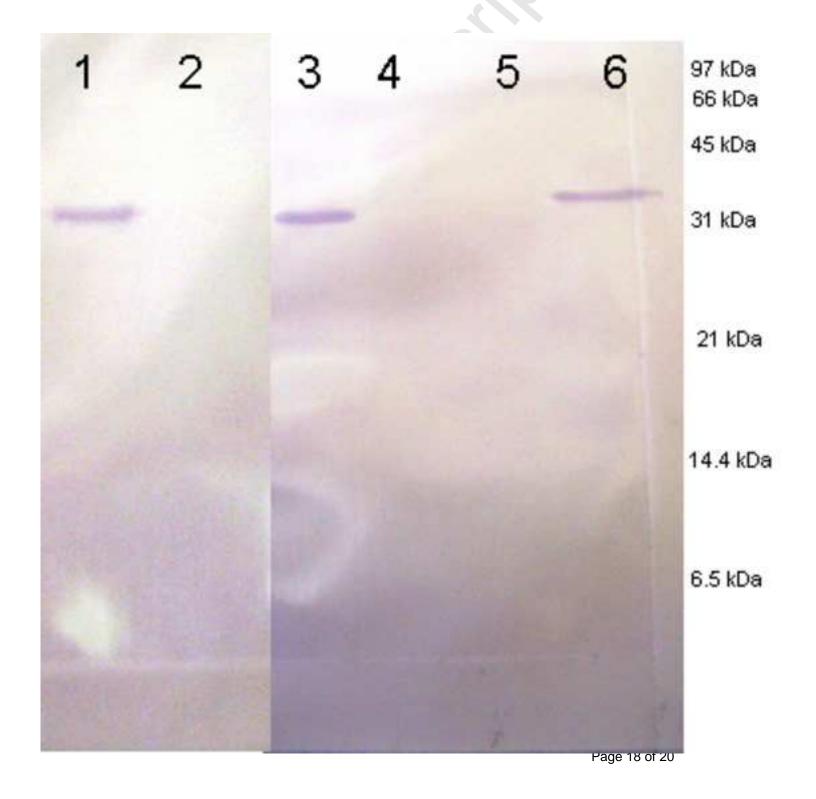
223	Jee, J., Degraves, F. J., Kim, T., and Kaltenboeck, B., 2004. High prevalence of natural
224	Chlamydophila species infection in calves. J. Clin. Microbiol. 42, 5664-72.
225	Kaltenboeck, B., Heard, D., DeGraves, F. J., and Schmeer, N., 1997. Use of synthetic
226	antigens improves detection by enzyme-linked immunosorbent assay of antibodies
227	against abortigenic Chlamydia psittaci in ruminants. J. Clin. Microbiol. 35, 2293-8.
228	Kaltenboeck, B., Hehnen, H. R., and Vaglenov, A., 2005. Bovine Chlamydophila spp.
229	infection: do we underestimate the impact on fertility? Vet. Res. Commun. 29 Suppl 1,
230	1-15.
231	Kaltenboeck, B., Kousoulas, K. G., and Storz, J., 1992. Two-step polymerase chain reactions
232	and restriction endonuclease analyses detect and differentiate ompA DNA of
233	Chlamydia spp. J. Clin. Microbiol. 30, 1098-104.
234	Kaltenboeck, B., and Storz, J., 1992. Biological properties and genetic analysis of the ompA
235	locus in chlamydiae isolated from swine. Am. J. Vet. Res. 53, 1482-7.
236	Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of
237	bacteriophage T4. Nature. 227, 680-5.
238	Longbottom, D., 2004. Chlamydial infections of domestic ruminants and swine: new
239	nomenclature and new knowledge. Vet. J. 168, 9-11.
240	Longbottom, D., Psarrou, E., Livingstone, M., and Vretou, E., 2001. Diagnosis of ovine
241	enzootic abortion using an indirect ELISA (rOMP91B iELISA) based on a
242	recombinant protein fragment of the polymorphic outer membrane protein POMP91B
243	of Chlamydophila abortus. FEMS Microbiol. Lett. 195, 157-61.
244	Markey, B. K., McNulty, M. S., and Todd, D., 1993. Comparison of serological tests for the
245	diagnosis of Chlamydia psittaci infection of sheep. Vet. Microbiol. 36, 233-52.

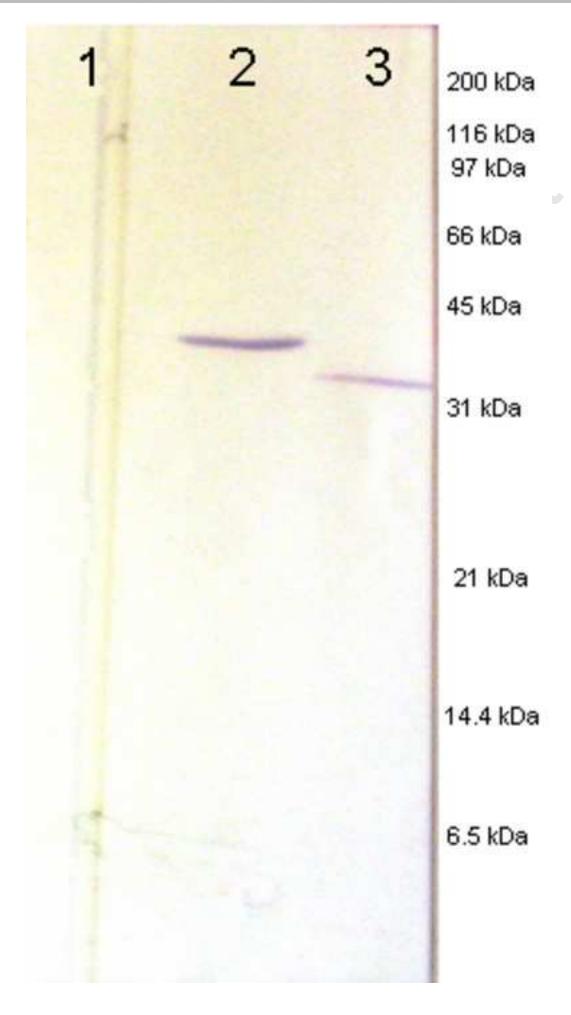
Menard, A., Clerc, M., Subtil, A., Megraud, F., Bebear, C., and de Barbeyrac, B., 2006. 246 247 Development of a real-time PCR for the detection of Chlamydia psittaci. J. Med. 248 Microbiol. 55, 471-3. 249 Norton, W. L., and Storz, J., 1967. Observations on sheep with polyarthritis produced by an 250 agent of the psittacosis-lymphogranuloma venereum-trachoma group. Arthritis 251 Rheum. 10, 1-12. 252 Park, S. H., Kwon, S. J., Lee, S. J., Kim, Y. C., Hwang, K. Y., Kang, Y. H., and Lee, K. J., 253 2009. Identification of immunogenic antigen candidate for Chlamydophila 254 pneumoniae diagnosis. J. Proteome Res. 8, 2933-2943. Reinhold, P., Jaeger, J., Liebler-Tenorio, E., Berndt, A., Bachmann, R., Schubert, E., Melzer, 255 F., Elschner, M., and Sachse, K., 2008. Impact of latent infections with 256 257 Chlamydophila species in young cattle. Vet. J. 175, 202-11. 258 Rekiki, A., Bouakane, A., Hammami, S., El Idrissi, A. H., Bernard, F., and Rodolakis, A., 259 2004. Efficacy of live *Chlamydophila abortus* vaccine 1B in protecting mice placentas 260 and foetuses against strains of Chlamydophila pecorum isolated from cases of 261 abortion. Vet. Microbiol. 99, 295-9. 262 Rodolakis, A., 1976. Abortive infection of mice inoculated intraperitoneally with *Chlamydia* 263 ovis. Ann. Rech. Vet. 7, 195-205. 264 Rodolakis, A., Bernard, F., and Lantier, F., 1989. Mouse models for evaluation of virulence of 265 Chlamydia psittaci isolated from ruminants. Res. Vet. Sci. 46, 34-9. Rodolakis, A., Salinas, J., and Papp, J., 1998. Recent advances on ovine chlamydial abortion. 266 267 Vet. Res. 29, 275-88. Salinas, J., Souriau, A., De Sa, C., Andersen, A. A., and Rodolakis, A., 1996. Serotype 2-268 269 specific antigens from ruminant strains of Chlamydia pecorum detected by monoclonal antibodies. Comp. Immunol. Microbiol. Infect. Dis. 19, 155-61. 270

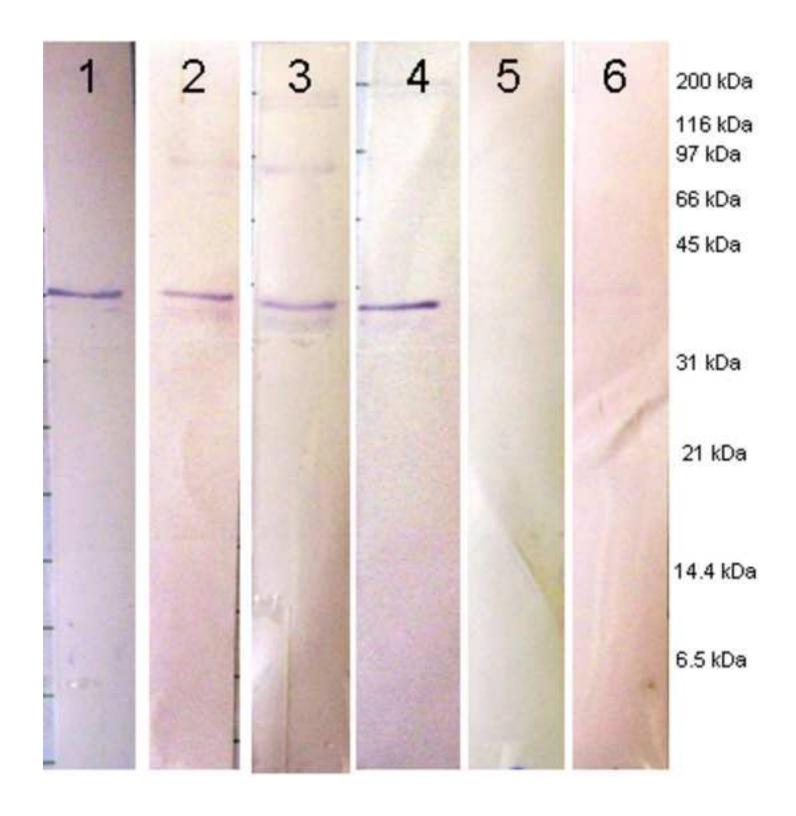
271	Towbin, H., Staehelin, T., and Gordon, J., 1979. Electrophoretic transfer of proteins from
272	polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc.
273	Natl. Acad. Sci. U S A. 76, 4350-4.
274	Tsai, P. Y., Hsu, M. C., Huang, C. T., and Li, S. Y., 2007. Human antibody and antigen
275	response to IncA antibody of Chlamydia trachomatis. Int. J. Immunopathol.
276	Pharmacol. 20, 156-61.
277	Vretou, E., Radouani, F., Psarrou, E., Kritikos, I., Xylouri, E., and Mangana, O., 2007.
278	Evaluation of two commercial assays for the detection of Chlamydophila abortus
279	antibodies. Vet. Microbiol. 123, 153-61.
280	Warren, K., Swan, R., Bodetti, T., Friend, T., Hill, S., and Timms, P., 2005. Ocular
281	chlamydiales infections of western barred bandicoots (Perameles bougainville) in
282	Western Australia. J. Zoo. Wildl Med. 36, 100-2.
283	Yang, J. M., Liu, H. X., Hao, Y. X., He, C., and Zhao, D. M., 2006. Development of a rapid
284	real-time PCR assay for detection and quantification of four familiar species of
285	Chlamydiaceae. J. Clin. Virol. 36, 79-81.
286	Yousef Mohamad, K., Rekiki, A., Myers, G., Bavoil, P. M., and Rodolakis, A., 2008a.
287	Identification and characterisation of coding tandem repeat variants in incA gene of
288	Chlamydophila pecorum. Vet. Res. 39, 56.
289	Yousef Mohamad, K., Roche, S. M., Myers, G., Bavoil, P. M., Laroucau, K., Magnino, S.,
290	Laurent, S., Rasschaert, D., and Rodolakis, A., 2008b. Preliminary phylogenetic
291	identification of virulent Chlamydophila pecorum strains. Infect. Genet. Evol. 8, 764-
292	71.
293	
294	
295	

Tables:


Table 1: Chlamydial strains used in this study


Strain	Geographic	Host	Pathology	Reference
	origin			
C. pecorum M14	Morocco	Goat	Abortion	(Rekiki et al., 2004)
C. pecorum AB10	France	Sheep	Abortion	(Rodolakis et al., 1989)
C. pecorum LW679	USA	Sheep	Arthritis	(Norton and Storz, 1967)
C. pecorum iB5	France	Sheep	No clinical sign (Fecal carriage)	(Rodolakis et al., 1989)
C. abortus AB7	France	Sheep	Abortion	(Faye et al.,
				1972)


Table 2: Signal intensity of the antigenic reaction of the 16 recombinants with the ovine anti-*C. pecorum* M14 serum sample.


Signal intensity	Clone
Strong (+++)	B1, B3, A10
Medium (++)	B2, A7, B14, B15, B17, A4
Weak (+)	A2, A1, B5, B7, B18, B19, B11

329	Figure captions:
330	Fig. 1: Western Blot analysis of 5 clones using ovine anti-C. pecorum serum sample. Lane 1,
331	clone B3 (33 kDa); lane 2, negative control; lane 3, clone A10 (33 kDa); lane 4, clone B15
332	(32 kDa); lane 5, clone B11 (30 and 18 kDa).
333	
334	Fig. 2: Western Blot analysis of 6 clones using MAb PD3. Lane 1, clone B3; lane 2, clone B7;
335	lane 3, clone B15; lane 4, clone B17; lane 5, clone B2; lane 6, clone A10. Three clones, B3,
336	B15 and A10, reacted with the Mab PD3.
337	
338	Fig. 3: Western Blot analysis of rIncA using MAb PD3. Lane 1, E. coli TG1 sample not
339	induced by IPTG; lane 2, E. coli TG1 sample induced by IPTG (35 kDa); lane 3, clone B15
340	(33 kDa).
341	
342	Fig. 4: Western Blot analysis of rIncA (35 kDa). Lane 1, ovine anti-C. pecorum M14 serum
343	sample (positive control); lane 2, 3, 4, 5 and 6, bovine serum samples collected from a healthy
344	herd.

