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Theoretical study of NMR relaxation due to rattling phonons

Thomas Dahm ∗,1 and Kazuo Ueda
Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Abstract

We calculate the NMR relaxation rate due to quadrupolar coupling of the nucleus to a local, strongly anharmonic
phonon mode. As a model potential for a “rattling” motion we consider a square-well potential. We calculate the free
phonon Green’s function analytically and derive the low and high temperature limits of the NMR relaxation rate.
It is shown that the temperature dependence of the NMR relaxation rate possesses a peak in contrast to harmonic
phonons but in qualitative agreement with a recent NMR study on KOs2O6. We discuss the influence of phonon
renormalization due to electron-phonon interaction.

Key words: NMR relaxation, anharmonic phonons, rattling, pyrochlore oxides
PACS: 76.60.-k, 63.20.Ry, 74.70.Dd

The new pyrochlore oxide superconductor
KOs2O6 shows unusual behavior both in the nor-
mal as well as in the superconducting state. Den-
sity functional calculations have shown that the
vibrations of the potassium ion are highly anhar-
monic, allowing large excursions from its equilib-
rium position within the surrounding Os-O cage
[1], consistent with recent X-ray studies [2]. Such
a situation, in which a small ion can move anhar-
monically within an oversized cage of surrounding
atoms has been called “rattling” and also exists in
other compounds [3–5]. The anharmonic dynamics
of the potassium ion in KOs2O6 is currently being
discussed as a possible origin for the anomalies seen
in various experimental quantities, like e.g. specific
heat [6], resistivity [7], thermal conductivity [8],
and NMR relaxation [9].

Here we focus on recent NMR studies of KOs2O6.
In particular, the nuclear spin-lattice relaxation rate
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1 On leave of absence from Institut für Theoretische Physik,
Universität Tübingen, Germany

1/T1T at the potassium site can directly probe the
unusual potassium dynamics through quadrupolar
coupling of the K nucleus to the electric field gradi-
ent, as has been shown recently [9]. The temperature
dependence of the NMR relaxation rate 1/T1T was
found to be highly anomalous, increasing at low tem-
peratures, reaching a peak value around ∼ 14 K and
decreasing again at higher temperatures. Such a be-
havior is inconsistent with the 1/T1 ∼ T 2 behavior
expected from harmonic phonons at high tempera-
tures due to the two-phonon Raman process [10].

In a previous work we succeeded in describing
this anomalous temperature dependence consider-
ing a strong anharmonicity of the vibration of the
potassium ion [11]. We added a fourth order term
to the harmonic potential and studied its influence
within a self-consistent quasi-harmonic approxima-
tion. Within this model the effective phonon fre-
quency becomes a strongly increasing function of
temperature, modifying the higher temperature be-
havior of both NMR relaxation rate and resistivity
[11], consistent with the experimental observations.

In the present work we are studying a square-
well potential as a model for the potassium dynam-

Preprint submitted to Elsevier Science 19 June 2008



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

ics. This potential may seem less realistic and it
also does not allow to “tune” the amount of anhar-
monicity. However, it can be regarded as the most
extreme case of “rattling” and, more importantly,
the square-well potential allows us to calculate the
phonon spectral function analytically, without hav-
ing to resort to the quasi-harmonic approximation.
We wish to demonstrate that an anomalous temper-
ature dependence of the NMR relaxation rate like
the one found in Ref. [11] results, reinforcing our
previous conclusion.

As the simplest possible model we consider the
one-dimensional square-well potential with in-
finitely high walls. As is well known, the energy
levels in this case are given by

En =
�

2π2

2mL2
n2 with n = 1, 2, · · · (1)

Here, L is the size of the well and m the mass of the
atom. It is an easy exercise to analytically calculate
all the matrix elements of the positional operator x,
giving

〈n|x|m〉 =
2L

π2

[
1

(m + n)2
− 1

(m − n)2

]
, (2)

if m + n odd and 0 otherwise. The free, non-
interacting phonon Green’s function D0(ω) can be
calculated quite generally from the expression [12]

D0(ω) =
1
Z

∑
m,n

(
e−βEm − e−βEn

) |〈n|x|m〉|2
(ω − En + Em) |〈1|x|2〉|2 (3)

Here, Z =
∑

n e−βEn is the partition function and
β = 1/T the inverse temperature and we have
normalized D0(ω) to the lowest energy excitation
〈1|x|2〉.

In the superconducting state the NMR relaxation
rate at the potassium site exhibits a sudden de-
crease. As has been pointed out in Ref. [9] this sug-
gest that the rattling phonon must be strongly cou-
pled to the conduction electrons. Following Ref. [11]
we therefore introduce a finite phonon self energy
Π(ω) due to coupling to the conduction electrons.
Then, the interacting phonon Green’s function D(ω)
can be calculated from Dyson’s equation

D(ω) =
1

D−1
0 (ω) − Π(ω)

(4)

The phonon spectral function A(ω) is obtained from

A(ω) = − 1
π

Im D(ω + i0+) (5)

Fig. 1. Phonon spectral function A(ω) for the square well
potential at three different temperatures T = 0.3E1 (solid
line), T = 1.0E1 (dashed line), and T = 3.0E1 (dotted
line). With increasing temperature, spectral weight is shifted
gradually away from the main peak at 3E1 to the higher
energy peaks.

Because the electronic energy scale is much larger
than the phononic energy scale, we can make a low
energy expansion of the phonon self energy and write

Π(ω) ≈ −Π1 − iαω (6)

where Π1 and α are positive real constants describ-
ing the interaction of the phonon with the conduc-
tion electrons. Here, Π1 is the renormalization of
the phonon frequency and α determines the phonon
damping rate.

As can be seen from Eq. (3) the non-interacting
phonon Green’s function consists of a sum of poles
at the transition energies En −Em. For a harmonic
oscillator these poles all fall on top of each other,
resulting in a single, temperature independent pole.
However, for the present square-well potential the
allowed transition energies are different and the cor-
responding spectral function consists of a series of
peaks at the positions δn = �

2π2

2mL2 (2n + 1). The rel-
ative weight of these peaks is temperature depen-
dent. With increasing temperature spectral weight
is gradually transfered to higher energies, because
higher energy transfers become possible. In Fig. 1 we
show the energy dependence of the spectral function
A(ω) calculated from Eqs. (1)-(5) at three different
temperatures T = 0.3E1 (solid line), T = 1.0E1

(dashed line), and T = 3.0E1 (dotted line). Here,
E1 = �

2π2

2mL2 is the ground state energy of the square
well potential. For illustration, no phonon frequency
renormalization Π1 = 0 and a small phonon damp-
ing of α = 0.1 has been chosen. The influence of
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these two parameters on the NMR relaxation rate
will be discussed below. Fig. 1 illustrates how the
spectral weight is shifted away from the lowest en-
ergy peak at 3E1 to the higher energy peaks, when
temperature is increasing.

Within the quasi-harmonic approximation of
Ref. [11] this gradual transfer of spectral weight to
higher energies appears as a temperature increase
of the effective phonon frequency. We wish to em-
phasize that the peak positions do not change as a
function of temperature. Only their intensities do.
The effective phonon frequency of Ref. [11] there-
fore corresponds to an effective average frequency
and should not be associated with an energy level
distance. For example, a neutron scattering experi-
ment is expected to observe a temperature depen-
dent intensity of a series of phonon peaks and will
not be able to directly observe the effective average
frequency.

Once the phonon spectral function is known, the
NMR relaxation rate 1/T1 from quadrupolar inter-
action of the potassium nucleus to the local elec-
tric field gradient can be calculated. In Ref. [11] we
have shown that the two-phonon Raman process is
dominating over the direct process, because of the
small number of phonon states available at the Lar-
mor frequency [10]. Therefore, here we will focus on
the two-phonon Raman process. In this case 1/T1 is
given by

1
T1

∝
∞∫

−∞
dω A2(ω) [n(ω) + 1] n(ω) (7)

neglecting higher order vertex corrections due to
electron-phonon coupling. Here, n(ω) is the Bose
distribution function. In Fig. 2 we show a numeri-
cal evaluation of Eq. (7) using the spectral function
from Eq. (5). Again, Π1 = 0 and α = 0.1 has been
chosen. It is immediately apparent that the NMR
relaxation rate 1/T1T possesses a peak as a function
of temperature near T = 5E1, in contrast to har-
monic phonons. The behavior is qualitatively sim-
ilar to the experimental data from Ref. [9]. At low
temperatures 1/T1T varies like T 2 due to the lin-
ear behavior of the spectral function at low energies
seen in Fig. 1. At high temperatures we can show
that 1/T1T varies like 1/

√
T (see below). This is in

contrast to harmonic phonons, where 1/T1T ∼ T at
high temperatures, but it is also different from the
fourth order potential result where 1/T1T ∼ const
was found [11]. Apparently the high temperature be-

Fig. 2. Temperature dependence of the NMR relaxation
rate 1/T1T from the two-phonon Raman process for the
square-well potential.

havior depends somewhat on the type of potential
chosen.

In order to derive the high temperature limiting
behavior we assume that the damping parameter
α is small enough such that the poles appearing
in Eq. (3) remain well separated. Generally we can
write D0(ω) as a series of poles:

D0(ω) =
∑

n

an (T )
ω − δn

(8)

where an (T ) are the temperature dependent weights
of the poles. Because the matrix elements |〈n|x|m〉|2
quickly decrease with increasing distance n − m, to
a good approximation we can only keep the nearest
neighbor terms m = n ± 1. Then we have

an (T ) =
e−βEn±1 − e−βEn

Z (T )
(9)

The partition function Z(T ) =
∑

n e−βE1n2
varies

like
√

T at high temperatures because the number
of terms contributing significantly to the sum in-
creases as

√
T . If the poles are well separated, the

full phonon Green’s function becomes

D(ω) ≈
∑

n

an (T )
ω − δn − an (T )Π (ω)

(10)

and the spectral function can be written in the form

A(ω) ≈ 1
π

∑
n

an (T ) Γn,eff

[ω − δn + an (T )Π1]
2 + Γ2

n,eff

(11)

with Γn,eff = α an (T ) (δn − an (T )Π1). Using
Eq. (11) and evaluating each pole separately, we
find from Eq. (7)

3



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

1
T1

≈ 1
2π

∑
n

an (T )
α Ωn

[n(Ωn) + 1] n(Ωn) (12)

where Ωn = δn − an (T )Π1 are the renormalized
phonon frequencies. Apparently, 1/T1 scales like 1/α
for all temperatures and small values of α. This
means that the parameter α has no large influence
on the temperature dependence of the NMR relax-
ation rate, but only on its absolute values.

In the high temperature limit we find from Eq. (9)

an (T ) ≈ β (En − En±1)
Z (T )

∼ T−3/2 (13)

Using n(Ωn) ∼ T/Ωn we finally arrive at

1
T1T

∝ 1
α
√

T
. (14)

We can estimate an absolute value of the expected
peak position of the NMR relaxation rate by choos-
ing the potassium mass for m in Eq. (1) and a size of
the well of L ≈ 1 Å, as suggested by both bandstruc-
ture calculations [1] and X-ray studies [2]. Then we
find E1 ≈ 6.1 K, which would suggest the NMR peak
position to appear around 5E1 ≈ 30 K. However,
the peak in the experimental data appears near 14 K
and also the peak is somewhat more sharp than the
one in Fig. 2. A possible explanation for these dif-
ferences could be the influence of a sizeable phonon
renormalization due to electron-phonon interaction,
as given by the parameter Π1 in Eq. (6). To illus-
trate the influence of the parameter Π1, in Fig. 3
we show the temperature dependence of 1/T1T for
four different values of Π1, keeping α = 0.1 fixed.
With increasing Π1 the peak becomes more sharp
and the peak position moves to lower temperatures
easily softening the peak position by more than a
factor of 2. Thus, a better agreement with the NMR
data on KOs2O6 could be obtained for a value of
Π1 ≈ 0.5E1.

To summarize we have calculated the NMR re-
laxation rate due to quadrupolar coupling to a lo-
cal, strongly anharmonic phonon mode considering
the two-phonon Raman process. We have calculated
the free phonon Green’s function analytically for a
square-well potential. Including phonon renormal-
ization due to electron-phonon interaction we were
able to show that the temperature dependence of
the NMR relaxation rate 1/T1T possesses a peak as
a function of temperature, in stark contrast to har-
monic phonons. The position and height of this peak
depends on the strength of the phonon renormaliza-
tion. We also derived the high and low temperature

Fig. 3. Temperature dependence of the NMR relaxation rate
1/T1T from the two-phonon Raman process for different
values of the real part of the phonon self-energy: Π1 = E1

(solid line), Π1 = 0.8E1 (dashed line), Π1 = 0.5E1 (dotted
line), and Π1 = 0 (dashed-dotted line).

limiting behaviors. These results reinforce our pre-
vious approximate treatment of a fourth order po-
tential.

We would like to thank Z. Hiroi, K. Ishida, Y. Mat-
suda, T. Shibauchi, and M. Takigawa for valuable
discussions.
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