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We propose a solution methodology for boundary problems of parabolic and hyperbolic thermal conduction on anisotropic layers in 3 R . We study the wave nature of heat transfer with pulse thermal effects in bounded bodies with cavity. We compare the solutions of the parabolic and hyperbolic equations of thermal conduction and we show that the assumption on the wave nature of energy transfer is justified under the conditions for high-speed processes.

Introduction. In recent years there has been a growing interest in the study of different kinds of local non-equilibrium processes of transfer phenomena (energy, mass, pulse). On the one hand this is due to a natural trend of the science development: studies evolve from equilibrium systems to local-non-equilibrium systems. On the other hand, it is due other several factors such as the intensification of technological processes, the use of materials with complex structure (polymers, liquid chips, capillary-porous and other dispersal systems), the wide adoption of laser technology, the possibility to reach super-high and ultra-low temperatures and pressures. Numerous questions arise, which require the description of the processes of thermal conduction in solid bodies under the action of sharp thermal effects. In particular similar studies are necessary for the investigation of the synthesis and the properties of heat-resistant polymers under conditions of radiation, irradiation or sharp temperature drop. In such cases, classical equilibrium thermodynamics do not provide adequate models for the description of temperature fall; this necessitates the use of non-classical, local-nonequilibrium models.

* Corresponding Author The answer to the question of the infinite velocity of the heat propagation, treated by the classical Fourier model, was initiated in the mid of the 19 th century. To deal with the problem, researchers as in [START_REF] Likov | Theory of thermal conductivity[END_REF] made use of the hypothesis of the relaxation of the heat flux. Within this framework, heat propagation is characterized by a propagation of thermal waves of finite velocity. In this case, it turns out that in some problems with a parabolic operator of thermal conduction, the relaxation time takes very small values. Ozisik, and Tzou, in their review paper [START_REF] Ozisik | On the wave theory in heat conduction[END_REF], show that the velocity of thermal waves in metals is of the order of s m / 10 5

. Therefore, due to the high values of the velocities of the thermal waves, these should be considered only for strongly unsteady processes, such as the process of impulse laser heating [START_REF] Li | The thermal wave phenomena and analysis in the pulse-laser processing for the reduction of core loss in silicon stress[END_REF]. This drives to the conclusion that the hypothesis of the relaxation of the heat flux is not met.

However, the interest of researchers in the wave nature of heat has not ceased till today. As the authors in [START_REF] Chachkov | Wave phenomena of thermal conduction. A systemic approach[END_REF] notice, the theory of thermal conduction undergoes the same dualism as in optics. On the one hand, heat propagation is due to a flow of interacting particles (atoms, molecules); on the other hand, this is a wave process. In the first case, it is described by the parabolic operator of the thermal conduction, and such parameters of this operator as heat capacity and thermal conductivity are the thermo-physical constants of the environment, which determine the quantitative characteristics of the process. In the second case, such quantitative characteristics are the velocity of thermal waves and their dispersion.

A condition for the wave nature of thermal conduction is the disruption of the local equilibrium of the process [START_REF] Sobolev | The process of transfer and traveling waves in local non-equilibrium systems[END_REF]. The approximation of the local thermodynamic equilibrium states that in each small element of the environment exists a state of local equilibrium, for which local entropy is the same function of macroscopic parameters, as for the equilibrium of the system.

Local thermodynamic equilibrium can be established in the system, if the rate of change of its micro-parameters due to external interactions, i.e., the rate of destruction of the equilibrium, is much lower than the recovery rate of the equilibrium. Specifically, in this sense it is considered the instant propagation of heat, which can be described by a Fourier model where the rate of energy (heat) transfer is considerably bigger than the rate the process approaches the equilibrium.

The approximation of the local thermodynamic equilibrium is correct for the moments of time 0 t , which considerably exceed the characteristic relaxation time of the system to the local equilibrium ( )

r t τ >> 0 .
In high-speed processes, when the last inequality is not satisfied, the classical local-equilibrium theory of the processes of transfer is not valid and the use of localnonequilibrium methods of describing such systems is needed.
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The generalization of the Fourier equation for thermal conduction was first undertaken in the works [START_REF] Vernotte | Les Paradoxes de la Theorie Coninue de l'Equation de la Chaleur[END_REF][START_REF] Likov | Thermal conductivity and diffusion[END_REF]. Here, the Fourier hypothesis is refined as follows

t q gradT q r T ∂ ∂ - - = τ λ , (1) 
where r τ is the relaxation time of the heat flux.

For practical purposes the new thermo-physical constant in (1) was identified with the Maxwellian relaxation time of viscous stresses. Under normal conditions, this time is of a small magnitude [START_REF] Podstrigach | General Thermo-Mechanics[END_REF], which impedes the wide acceptance of formula [START_REF] Likov | Theory of thermal conductivity[END_REF] in the theory of thermal conduction. Using the representation for the length of the free-range time between successive collisions of molecules and introducing the hypothesis of finiteness for the duration of the impact of molecules, this formula was obtained by Cattaneo ([9], proceeding from molecular-kinetic ideas. The substitution of the relation (1) into the law of conservation of energy leads to following hyperbolic-type equation for the thermal conduction:

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ - Δ t f f t T t T c T r r T τ τ ρ λ 2 2 .
(

) 2 
As it is indicated above, it is of great importance the estimation of the parameter r τ , which is connected with the velocity of thermal wave with the relation ( )

r T T c V ρτ λ =
. Lykov I [START_REF] Likov | Thermal conductivity and diffusion[END_REF] showed that the velocity of propagation of thermal disturbances can be obtained from the solution of the nonlinear parabolic equation of thermal conduction. Recently, there are works dedicated to the computation of the velocities of thermal waves and relaxation times for different materials. The method for computing the velocity of thermal waves on the basis of data of indirect measurements (by means of measurement of the coefficient of absorption of acoustic waves) [START_REF] Michailov | The bases of molecular acoustics[END_REF] gives a good agreement of theoretical data with the experimental. This shows that the introduction of the second derivative into the equation ( 2) is necessary. In the work of Bubnov et al. in [START_REF] Chachkov | Wave phenomena of thermal conduction. A systemic approach[END_REF] is given the general structural scheme for the identification of the relaxation functions of heat flux and internal energy, as well as the structural scheme for the identification of the relaxation time of heat flux. This was constructed on the basis of the solution of the problem of heat transfer through an infinite plate, the surface of which radiates heat according to the Stefan-Boltzmann law. It was shown that the relaxation processes are manifested with frequencies of modulation of the same order with the magnitude, reciprocal to the relaxation time ( )

1 - r τ ω ~.
Regarding the experimental studies, values of the relaxation time or velocity of the propagation of thermal waves can be found in the literature for processes at low temperatures
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A N U S C R I P T (liquid helium) [START_REF] Lewandowska | Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature[END_REF]. At high and room temperatures, only theoretical works and assumptions are, in essence, known, whereas experimental works are very rarely found. For example, Kaminski in [START_REF] Kaminski | Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[END_REF] presents a method for the measurement of relaxation times at room temperature for some materials, such as sand, NaHCO 3 and glass. The experimental values r τ for such materials lay between the limits of 10-50 ms, which are considerably greater than the hypothetical values for the metals ( ) [START_REF] Louis | Propagation and reflection of thermal waves in a finite medium due to axisymmetric surface sources[END_REF][START_REF] Gembarovic | Determination of thermal parameters of relaxation materials[END_REF]. In [START_REF] Mitra | Experimental evidence of hyperbolic heat conduction in processed meat[END_REF] a strong experimental confirmation of the wave nature of heat propagation in materials with heterogeneous internal structure is presented. In this work the authors clearly indicate the non-classical nature of the thermal conduction. Experiments confirm the fact that thermal wave requires a finite time for the localization at a fixed point of the pattern. However, Hernig and Beckert in [START_REF] Hernig | Experimental evidence about the controversy concerning Fourier heat conduction in materials with a nonhomogeneous inner structure[END_REF] refute experimentally the results of Mitra.

c 11 10 - [
Recent publications by Tzou and Chen [START_REF] Tzou | Thermal lagging in random media[END_REF] show that the problem of non-classical thermal conduction still attracts both experimental and theoretical research interest. In their work they proved that the temporal constants which are linked with the relaxation effects, are of the order of micro-and nanoseconds.

In this paper we propose a solution method for three-dimensional problems of hyperbolic thermal conduction for anisotropic and piecewise-discontinuous bodies. We study the relaxation effects of heat flux, which appear in the case of essentially non-equilibrium processes (model of pulse laser heating). Numerical examples are also provided that confirm certain properties of waves such as the presence of wave front and the reflection from heat-insulated border. The proposed algorithm allows the solution of similar problems, as well as within the framework of the classical model of Fourier thermal conductivity. We also compare classical and hyperbolic models of thermal conduction study the conditions in order to study the conditions under which the wave nature of heat transfer is revealed.

1. Uniform solutions of the problem of hyperbolic thermal conduction on anisotropic layers in 3 R .

In a Cartesian coordinate system

3 2 1 x x Ox
, let us examine an anisotropic layer

h x x x ≤ ∞ < < ∞ - 3 2 1 , ,
, which has at each point a plane of thermal symmetry, to which the axis temperature at an arbitrary point of the layer ( )

3 2 1 x x x x , , =
is determined by the hyperbolic equation of thermal conduction [START_REF] Podstrigach | General Thermo-Mechanics[END_REF] and reads ( )

m m r l m l m ml x t x T t t c a ∂ ∂ = ∂ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ - ∂ ∂ ∑ = , , , 0 2 2 3 1 τ ρ (3) 
under the boundary conditions

0 3 T T h x = ± = , ( 4 
) ( ) ( ) ( ) σ ξ ξ ξ ξ τ ξ σ ∈ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∑ = 3 2 1 2 1 x t t q t q T a n r l m l ml m , , , , , , (5) 
and the initial conditions

0 0 0 0 = ∂ ∂ = = = t t t T T T , . (6) 
In the relations ( 3)-( 6) the following designations are adopted: ml a are the components of the tensor of thermal conduction ( )

0 23 13 = = a a
; c is the specific thermal (heat) capacity at constant volume; ρ is the density of the material; r τ is the relaxation time of heat flux;

( )

2 1 n n n , =
is the unit vector of the normal to the surface of cavity σ ; 0 T is the temperature of the body in the initial state.

Let us introduce the following dimensionless magnitudes ( ) ( ) 

Δ = Δ = = = = R k x X R k x X a a k a a k a a k 22 2 2
ρ τ τ ρ τ ξ c R a c R a t m R k R h H R x X r m m 2 33 0 2 33 22 3 3 2 1 ⋅ = ⋅ = = Δ = Ξ = = , , , ( ) ( ) ( ) ( ) 
0 2 12 22 11 22 0 33 0 0 > - = Δ - Δ ⋅ = Ψ - - = k k k k T T a R q T T T T c c , , θ , where 2 d R = , , ; ( ) ( ) ( ) ( ) ( ) 
( d is the cross-section diameter of cavity); c T is the temperature of the environment.

Now the initial-boundary problem ( 3)-( 6) takes the form

( ) ( ) m m l m l m ml X X X k k ∂ ∂ = ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ + ∂ ∂ Δ ∑ = , , , , τ θ τ τ τ τ θ 2 2 0 2 3 2 1 22 , ( 7 
)
0 3 = ± = H X θ , (8) 
( ) ( ) Σ ∈ Ξ Ξ = Ξ Ξ Ψ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ Σ = ∑ 3 2 1 0 2 1 1 X n k l m l m ml , , , , , τ τ τ θ , (9) 
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)
where Σ is the surface of cavity in dimensionless coordinates ( )

3 2 1 , , = m X m .
Applying the Laplace transform to equation [START_REF] Likov | Thermal conductivity and diffusion[END_REF] and to the boundary conditions ( 8), ( 9), under the assumption of uniform initial conditions (10)

( ) ( ) ( ) ( ) ∫ ∫ ∞ - ∞ - Ψ = = 0 0 τ τ τ τ θ τ τ d X e p X Q d X e p X U p p , , , , , ,
we obtain the following boundary-value problem relative to the images [ ] ( )

0 2 2 3 = + ∂ p X U , γ , p p k k l m l m ml - - ∂ ∂ Δ = ∑ = 2 0 2 1 , 22 2 τ γ , ( 11 
)
0 3 = ± = H X U , (12) 
( ) ( ) p Q p U n k l m l m ml , 1 0 2 1 , Ξ + - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ Σ = ∑ τ . ( 13 
)
In order to integrate equation ( 11), we use an operating method. The general solution takes the form

( ) ( ) ( ) ( ) 2 1 3 1 2 1 3 , sin , cos X X D X X X C X U γ γ γ - + = . ( 14 
)
where γ is the operator defined by [START_REF] Lewandowska | Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature[END_REF].

As uniform solutions of the problem we define the solutions of the homogeneous equation of thermal conduction [START_REF] Lewandowska | Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature[END_REF] for continuous (without openings) layers with uniform boundary conditions on its bases [START_REF] Kaminski | Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[END_REF].

The functions ( )

2 1 , X X C , ( ) 2 1 , X X D
are determined by the use of the boundary conditions [START_REF] Kaminski | Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[END_REF] and the distinction of the symmetrical and skew-symmetric components in the solution as ( ) ( )

3 1 2 cos , U X C X X γ =
From the boundary condition [START_REF] Kaminski | Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[END_REF] we get

( ) ( ) ( ) 2 2 1 2 0 1 , 0 2 ! k k k k H C X X k γ ∞ = - =

∑

where we seek for the non-trivial solution of the equation. If we introduce the function

( ) 1 2 , j X X ϕ so that 2 2 j j γ ϕ μ ϕ = 0 j j C ϕ ∞ = = ∑ A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 7 we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 2 1 2 0 0 1 1 , , c o s 2 ! 2 ! k k k k k k j j j k k H H X X X X H k k γ ϕ μ ϕ μ ϕ ∞ ∞ = = - - = = ∑ ∑
From the above relation we get ( )

cos 0; 2 1 2 H H j π μ μ = = + , ( ) ( ) 1 2 3 0 , cos ; 2 1 2 j j j j U X X X j H π ϕ μ μ ∞ = = = + ∑ where ( ) 1 2 
, j X X ϕ are the function that satisfy the equation ( )

2 2 0 j j γ μ ϕ - = .
By introducing the transformation of variables we derive the uniform (symmetrical)

solution reading [START_REF] Luk | Mathematical functions and their approximations[END_REF] ( )

∑ ∞ = * * * * + = Δ = - = = 0 2 22 2 2 22 12 1 1 3 2 1 2 1 2 j j j j H j X k X X k k X X X X X U U π μ μ , , , cos , . (15) 
The complex meta-harmonic functions

( ) * * 2 1 , X X U j
are determined from the equation ( )

2 2 0 2 2 2 2 2 1 2 2 2 2 0 j j j j p p X X U μ τ ν ν + + = ∂ ∂ + ∂ ∂ = ∇ = - ∇ * * * * , , . (16) j 
U in the form the generalized potential of the single layer reads:

( ) ( ) ( ) , 1 , 0 , 2 1 0 = Γ ∈ Ξ + Ξ = = ∫ Γ j i ds K g U j j j ζ ρ ν ζ ; 0 Re , , , 2 22 2 22 12 1 2 1 > Ξ Δ + Ξ - Ξ = + = - = * * * * * * j k i k k iX X z z ν ζ ζ ρ , (17) 
where ( )

z K m
is the MacDonald function of order m [START_REF] Luk | Mathematical functions and their approximations[END_REF], ( )

ζ j g
is the sought density, Γ is the contour of the cross section of cavity Σ , ds is an element of the arc of contour Γ .

The integral representation ( 17) is correct, since it satisfies equation ( 11) and the boundary condition on the bases of the layer [START_REF] Kaminski | Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure[END_REF], independently of the selection of the densities ( )

ζ j g ,
which are necessary to be defined by the boundary condition (13) [START_REF] Courant | Methods of Theoretical Physics: Partial Differential Equations[END_REF].

2. Anisotropic layers with cavity. Let us introduce the operators of the complex differential

* 2 * 1 * 2 * 1 * 2 * 1 * , 2 1 , 2 1 iX X z X i X z X i X z - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ = ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ - ∂ ∂ = ∂ ∂ * * . A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 8 
Using the above representations Eq. ( 13) is written in the following way ( ) ( )

p p Q z U z U 0 * 1 , τ β β + ⋅ Θ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ Σ * ; ( ) 22 12 * 2 1 2 * 1 , k k i n k k l l l l - Δ = + = ∑ = ν ν β . (18) 
Furthermore, assuming that the function ( ) p Q , Θ can be represented by the Fourier series

∑ ⋅ = 3 cos X Q Q j j µ
, and eliminating the thickness coordinate 3 X from [START_REF] Luk | Mathematical functions and their approximations[END_REF], we obtain

( )( ) ( ) ( ) ... , , . , , , , * 1 0 1 2 1 0 2 1 = Γ ∈ Ξ Ξ + ⋅ Ξ Ξ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ Γ * j p p Q U z U z j j j τ β β (19) 
With the aid of the integral representation [START_REF] Tzou | Thermal lagging in random media[END_REF] the enumerable set of functional equations ( 19) is reduced to the system of free integral equations of second order (Appendix I)

( ) ( ) ( ) ( ) { } ( ) ( ) ∫ Γ - = Δ + = Δ - ,.. 1 , 0 2 1 Re 0 0 0 1 0 0 j p Q ds e K g g j i j j j j π τ ϕ β ρ ν ζ π ν ζ α ; 0 0 0 α ρ ζ ζ i e = - * * , Γ ∈ 0 ζ , ( 20 
)
where 0 ϕ is the angle between the normal to the contour Γ at point 0 ζ and the axis 1 OX .

Thus, the temperature field in the plane of images is completely determined by the integral equations ( 20) and the representations ( 15), [START_REF] Tzou | Thermal lagging in random media[END_REF].

3. Application of the method of integral equations for the solution of the problem of the propagation of thermal waves in a semi-layer.

Let us examine the now isotropic semi-layer

h x x x ≤ ∞ < < ∞ - ∞ < ≤ 3 2 1 , , 0
with heatinsulated side wall, which contains transparent tunnel along the axis 3 OX cavity with impulsively heated surface. In this case, the problem of the propagation of thermal waves can be solved by the method of reflections [START_REF] Morse | Methods of Theoretical Physics[END_REF].

For isotropic medium, the integral representation ( 17) is written in the form

( ) ( ) ∫ Γ Γ ∈ Ξ + Ξ = - = = 2 1 0 , , i z r dS r K g U j j j ζ ζ ν ζ . ( 21 
)
The initial-boundary problem ( 3)-( 6) should necessarily be supplemented by the boundary conditions for the semi-layer

0 1 = x 0 0 2 1 = ∂ ∂ = x x T . ( 22 
) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 9 
The boundary condition [START_REF] Blistanov | Acoustic crystals[END_REF] would be automatically fulfilled, if representation ( 21) is modified in the following way:

( ) ( ) ( ) ( )

2 1 0 0 , , Ξ + Ξ - = - = + = * * * Γ * ∫ i z r dS r K r K g U j j j j ζ ζ ν ν ζ . ( 23 
)
Further, in a way analogous to Section 2, we obtain a solvable system of integral equations for the determination of the unknown densities ( )

ζ j g ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) , , , cos cos 1 0 2 1 0 0 0 0 1 0 0 0 1 0 = + = - + - -∫ * * j p Q dS r K r K g g j j j j j j π τ α ϕ ν α ϕ ν ζ π ν ζ * * * = - = - 0 0 0 0 0 0 , α α ζ ζ ζ ζ i i e r e r . ( 24 
)
4. Operation of concentrated thermal sources. Let us assume that in an isotropic layer along the segment

h x h x x ≤ ≤ - = = 3 2 1 , 0 , 0
the thermal sources are distributed with density ( )

t x , 3 ω
. In this case, the equation of thermal conductivity [START_REF] Lewandowska | Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature[END_REF], after the elimination of time

takes the form [ ] ( ) ( ) ( ) ( ) 2 1 0 2 2 3 , , 1 , X X p X p p X U δ τ γ ⋅ Ω ⋅ + - = + ∂ , (25) 
where ( )

2 1 , X X δ is the two-dimensional delta function of Dirac [21], ( ) p X , Ω
is the image, according to Laplace function ( ) t X , Ω .

Taking into account the structure of the uniform solution [START_REF] Mitra | Experimental evidence of hyperbolic heat conduction in processed meat[END_REF] and assuming that function Ω can be represented by a Fourier series of the form (15) on the thickness coordinate 3 X , we rewrite equation ( 16) in the following way ( )

( ) ( ) 2 2 2 2 1 2 2 2 1 0 2 2 , , 1 X X X X p U j j j ∂ ∂ + ∂ ∂ = ∇ ⋅ Ω ⋅ + - = - ∇ δ τ ν ; π μ μ τ ν H j p p j j j 2 1 2 , 2 2 0 2 + = + + = , ( 26 
)
where j Ω are the Fourier coefficients of the function Ω.

Integrating equation [START_REF] Skorobogatko | Use of chain fractions in computational mechanics[END_REF] in the space of generalized functions ( )

2 R D′ , we obtain ( ) ( ) 2 2 2 1 0 2 1 0 0 0 , , , 2 1 X X r p X X r K p U j j j + = Ω ⋅ + - = ν π τ . ( 27 
)
The substitution of the relation ( 27) in [START_REF] Mitra | Experimental evidence of hyperbolic heat conduction in processed meat[END_REF] gives the solution of the problem in the case of operation of concentrated thermal sources in the form 

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 10 ( ) ( ) ∑ ∞ = ⋅ Ω ⋅ + - = 0 3 2 1 0 0 0 2 1 j j j j s X p X X r K p U μ ν π τ cos , , . (28) 5. 
⎩ ⎨ ⎧ = ≥ < < = Ψ ⋅ Ψ = Ψ , , , , , , cos 0 0 0 1 2 0 0 01 3 01 1 τ τ τ τ π τ l l H X or ( ) ( ) ( ) ( ) τ τ τ π τ 6 2 02 3 02 2 - - - = Ψ ⋅ Ψ = Ψ exp exp , cos H X .
Integral equations [START_REF] Morse | Methods of Theoretical Physics[END_REF] were solved numerically (by the method of mechanical quadratures) with the subsequent rotation of the Laplace transform (Appendix II). is caused by the presence of processes of relaxation and by the form of function of thermal effect. However, in the case, when the pulse action time is incommensurable with the relaxation time of the system to the state of the equilibrium (figure 2), the solutions of the hyperbolic and the parabolic equations of thermal conductivity coincide, i.e., the wave nature of heat transfer is not observed.

0 0 2 , , = X with 1 = H , 1 
22 11 = = k k , 0 12 = k .
Graphs in figure 3 describe the behavior of thermal wave when the observation point is moved away from the source of heating ρ is the distance from the center of the cut of cavity to the observation point). It is possible to conclude that the functions have clearly expressed wave front and exponentially damp to the infinite. In figure 4 we see that thermal disturbance reaches It is obvious that the curve, which corresponds to the solution of the hyperbolic equation, is located higher than the curve, which corresponds to the temperature field without relaxation. This is connected with the fact that the energy (heat) in the hyperbolic model is localized in the area of action of the heat source, while the classical model presents the equilibrium, diffusion of energy transfer.

In order to study the wave properties of the heat propagation let us consider a limited body -a semi-layer with heat-insulated wall (figure 7). Now the temperature field in the plane of images, according to Laplace, is determined by the system of integral equations [START_REF] Babolian | A new computational method for Laplace transforms by decomposition method[END_REF] and by equation [START_REF] Filshtinskii | Interaction of stress waves with curvilinear tunnel cracks of longitudinal shear in a half-space[END_REF]. Figure 8 shows the response of the temperature due to a thermal pulse, which acts on the surface of cavity. (ОА) is the distance from the observation point to the wall of the semilayer. In our calculations we used the following values for the parameters:

1 = H ; 1 = BC AB ; 2 = BC AO ; 1 0 = τ ; 1 22 11 = = k k ; 0 12 = k
. The point 1 A on the graph corresponds to the moment of time, when the thermal signal comes from the surface of cavity into the observation point, the point 2 A to the moment of the time, when the reflected from the wall wave comes to the point A .

When concentrated thermal sources with density surface. Figure 10 and 11 depict the results for the 2-dihydrogen phosphate of ammonium while figures 12 and 13 depict the for the 1-molybdate of lead PbMoO 4. In figures 11 and 13 the distribution of the temperature has been calculated on the basis of the hyperbolic model.

Conclusions

In this work we derived the uniform solutions for parabolic and hyperbolic equations of thermal conduction on layers in the form of Fourier series on thickness coordinate. The Fourier coefficients of the solutions are expressed in closed form in terms of cylindrical Hankel functions.

On the basis of the uniform solutions we constructed the integral representations of the solutions of the problem of thermal conduction on layers, which contain transparent tunnel cavity. The corresponding boundary-value problem is reduced to a system of one-dimensional integral equations of second order, which is realized numerically with the aid of the method of mechanical quadratures.

Within this framework, we compared the hyperbolic and the parabolic model of thermal conduction. It is shown that the influence of the finite velocity of propagation of heat can be negligibly small; however, it can be significant bigger with very short appearance periods of of the processes (comparable to the relaxation time of the heat flux). The unknown densities ( )

ζ j g
, appearing in [START_REF] Tzou | Thermal lagging in random media[END_REF], are determined by the use of the boundary condition [START_REF] Courant | Methods of Theoretical Physics: Partial Differential Equations[END_REF].

The relations [START_REF] Filshtinskii | Interaction of stress waves with curvilinear tunnel cracks of longitudinal shear in a half-space[END_REF] hold ( )

( ) ( ) φ φ ρ νρ ν νρ i m im m m m e z K e K z = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - = ∂ ∂ - , 2 0 ; ( ) ( ) ( ) , , , 2 1 2 0 
= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - = ∂ ∂ m K e K z
( ) ∫ Γ * = ∂ ∂ dS K e g U z j i j j j ρ ν ζ ν α 1 2 . (I.1) MacDonald function ( ) z K 1
allows the extraction of the singular part 

( ) ( ) z K z z K r + = 1 1 , where ( ) z 
Ξ Δ + Ξ - Ξ = → * * k i k k z ζ
, we obtain the following formulae

( ) ( ) ( ) ( ) ∫ Γ - * ± → * + ± = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ dS K e g a g i z j i j j j z 0 1 0 0 0 0 2 2 ρ ν ζ ν ϕ ζ π α ζ ; ( ) ( ) ( ) ( ) ∫ Γ * ± → * + = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ dS K e g a g i z j i j j j z 0 1 0 0 0 0 2 2 ρ ν ζ ν ϕ ζ π α ζ ∓ , (I.2)
where ( ) ( )

0 0 22 12 0 0 0 0 0 ζ ϕ ϕ ϕ ϕ ϕ ρ ζ ζ ζ ζ ρ α = - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - Δ = = - - = * * * * * , sin cos , , k k i a e i .
The current work examines the exterior problem (layer with cavity); therefore in the relations given above it is necessary to leave the lower sign. It should be noted that this method allows the easy derivation of the solution for the internal problem (finite cylinder). Taking into account the formula ( ) ( )

ϕ ϕ β * Δ - = a i
, and substituting the limiting values (I.2) in the boundary equality [START_REF] Courant | Methods of Theoretical Physics: Partial Differential Equations[END_REF] we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 
ζ ν π ϕ ζ ν ρ ϕ ζ ν π ϕ ζ ν ρ ϕ ν π ζ ζ ν ρ ϕ ϕ τ π ζ ν ζ ν ρ β ϕ - * * Γ * Γ * - * * Γ - Γ ⎛ ⎞ -Δ - + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ Δ + = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = -Δ + ⋅ Δ - = + = -Δ + = - ∫ ∫ ∫ ∫
Thus, the integral equations take the form

( ) ( ) ( ) ( ) { } ( ) ∫ Γ - Δ + = Δ - π τ ϕ β ρ ν ζ π ν ζ α 2 1 0 0 0 1 0 0 p Q ds e K g g j i j j j j
Re .

A C C E P T E D M

A N U S C R I P T

The algorithm of the inverse Laplace transformation, used in this work, is based on the resolution of the image in Fourier series and the approximation with the aid of continuous fractions [START_REF] Babolian | A new computational method for Laplace transforms by decomposition method[END_REF].

It is known that the most important means for computing the original on the image is the complex integral [START_REF] Duth | Manual of Laplace and Z-transforms[END_REF] ( ) ( ) ( )

0 2 1 1 > Φ = = ∫ ∞ + ∞ - - t dp p e i f L t f i i pt , ] [ γ γ π (II.1)
where γ is the abscissa in the half-plane of the absolute convergence of Laplace integral

] [ f L 1 - . Substituting ω γ i p + =
, we write the relations (II.1) in the form

( ) ( ) { } ∫ ∞ Φ = 0 1 ω π ω γ d e p e t f t i t Re . (II.2)
For the integral (II.2) we apply the trapezoid rule with step l π in the interval ( ) l 2 0, , after which we get the following approximating formula ( ) ( )

( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + Φ + Φ ≈ ∑ ∞ =1 2 1 k l t ik t e l ik e l t f π γ π γ γ Re Re . (II.3)
The series in the right side of (II. (

)

+ + + = 1 1 1 2 1 0 z d z d d z v .
Let us introduce the notation

( ) ( ) ( ) , , , 1 0 0 1 1 0 = = = + i a a q e i i i i (II.4)
Then the relations [START_REF] Skorobogatko | Use of chain fractions in computational mechanics[END_REF] are valid

( ) ( ) ( ) , 1 1 1 + 
+ -+ = + i k i k i k i k q e q e
(II.4)

( ) ( ) ( ) ( ) ( ) , , ; , , 2 1 1 0 1 1 1 = = ⋅ = ⋅ + + + k i e q e q i k i k i k i k (II.5)
The coefficients k d are determined by the formulae 

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 16 ( ) ( ) ( ) ⎪ ⎩ ⎪ ⎨ ⎧ = - = - = = - , , , , 2 1 0 2 0 1 2 0 0 k e d q d a d k k k k (II.6) Let us assume that ( ) ( ) l t ik k k k k e l ik z a z g π π γ γ ∑ ∑ ∞ = ∞ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + Φ + Φ = = 1 0 2 , (II.7) where ( ) ( ) , , , , 2 1 2 1 
0 = = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + Φ = Φ = k e z l

3

  Ox is normal. The layer contains transparent tunnel cavity (along the axis 3 Ox ) of sufficiently random cross section. A temperature 0 T is kept constant on the boundaries of the layer, while thermal heating with the density of flow ( ) t q , ξ acts on the surface σ of the cavity. The A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 5

Figures 1 , 2 , 3 , 4

 1234 Figures 1, 2, 3, 4 depict the change of the magnitude θ depending on the dimensionless time τ at the point of layer

  Figs 1, 2 are constructed for the case, when a change in the heat flux is given by the function 1 Ψ , while Figs 3, 4, when is given by function 2 Ψ .During the impulse thermal effect the temperature has a traveling wave nature, which extends from the medium of thermal sources with certain velocity in the case of solving the hyperbolic equation, and slow, diffusion process, in the case of Fourier model. This is illustrated by the curves in figure1, which are constructed for the value of relaxation time 0

Figures 5 , 6

 56 Figures 5, 6 depict the profiles of the temperature distribution along the contour of the median cut of the cavity for two different materials: 1-molybdate of lead PbMoO 4 ( ) 0 , 2 , 5 , 1 12 22 11 = = = k k k , 2-dihydrogen phosphate of ammonium ( ) 52 , 2 , 244 , 1 , 1 22 12 11 = = = k k k [22] when the value of dimensionless time 1 = τ . Continuous curves correspond to the hyperbolic model of thermal conductivity (taking into account the relaxation of the heat flux), and dotted lines to the parabolic one (without taking into account relaxation).

3 ,

 3 passing through the point O , then it is necessary to add to the solution, represented in Fig.8, the solution s U , obtained in Section 4. Figure9shows the interaction at time 2 = τ , of the thermal signals caused by the heating of the cavity and by the concentrated source of heat, (point 3 A ) .

Figures 10 -

 10 Figures 10 -13 show the 3-D distribution of the temperature on the 0 3 = x

φ

  Taking into account these formulas and the representation (17) we find ( )

  K r has no singularities on the plane of complex variable z . Therefore, for the limiting

3 )

 3 is computed by means of approximation by continuous fractions.Let ( ) z g be an analytic function, which can be represented by the power series

  Figures

Figure 7 . 1 A 2 Fig. 8 .

 7128 Figure 7.

  Fig. 11

  Fig. 12

  Fig. 13

Fig. 1 . 1 Ψ

 11 Fig. 1. Change of the dimensionless temperature on time, in the case of operating the square pulse ( 1 Ψ ).

Fig. 2 . 1 Ψ

 21 Fig. 2. Change of the dimensionless temperature on time, in the case of operating the rectangular pulse ( 1 Ψ ).

Fig. 3 . 2 Ψ

 32 Fig. 3. Change of the dimensionless temperature on time in the case of operating of exponential pulse ( 2 Ψ ).

Fig. 4 .

 4 Fig. 4. Change of the dimensionless temperature on time in the case of operating of exponential pulse ( 2 Ψ ).

Fig. 5 .Fig. 6 .

 56 Fig. 5. Temperature distribution along the elliptical cross section of cavity in orthotropic material.

Fig. 7

 7 Fig. 7 Schematic of a semil-layer with thermal -insulation.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Response of the temperature function to the operation of thermal pulse in the semi-layer.

Fig. 10 . 3 -

 103 Fig. 10. 3-D temperature distribution on plane in a layer with elliptical hole (anisotropic material, Fourier heat conduction).

Fig. 11 . 3 -

 113 Fig. 11. 3-D temperature distribution on plane in a layer with elliptical hole (anisotropic material, hyperbolic heat conduction).

Fig. 12 . 3 -

 123 Fig. 12. 3-D temperature distribution on plane in a layer with elliptical hole (orthotropic material, Fourier heat conduction).

Fig. 13 . 3 -

 133 Fig. 13. 3-D temperature distribution on plane in a layer with elliptical hole (orthotropic material, hyperbolic heat conduction).

  

  Results of calculations and their discussion. For our illustrations we examine an

	anisotropic		layer		with			the		tunnel	cavity	of	elliptical	cross	section
	( Γ	:	ζ	=	cos	φ	+	i	⋅	5 , 0	sin	φ	,	0	≤	φ	<	π 2	)	. The thermal waves in the layer appear as a result of
	impulse heating of the surfaces of the cavity
						( )								( )				

Using formulas (II.4), (II.5), (II.6), we get the coefficients of the chain fraction that corresponds to the power series (II.7).

By ( )

M we denote the convergent fraction

The numerator and the denominator of the corresponding convergent fraction are connected with the coefficients k d with the following recurrent relations ( )

where

and the approximation of the function gives the following representation

Thus, the determination of the original function is reduced to the successive computation of convergent fractions ( ) ( )

. The criterion for the determination of the number M (order of approximation) is the following relation

where ε is given divergence.

This evaluation is not rigorous, but as Ahn et al. show [START_REF] Babolian | A new computational method for Laplace transforms by decomposition method[END_REF], it is exact in most cases and often is used in practice.