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Introduction

We consider the equation

(1.1) -∆ψ + V (x)ψ = Eψ, x ∈ R 2 , E > 0,
where V is a sufficiently regular M n (C)-valued function on R 2 (1.2) with sufficient decay at infinity, M n (C) is the set of the n × n complex matrices. This equation will also be considered on a domain D, where (1.3) D is an open bounded domain in R 2 with a C 2 boundary.

Equation (1.1) at fixed E can be considered as rather general multichannel Schrödinger (resp. acoustic) equation on D at a fixed energy (resp. frequency) related to E. It arises, in particular, as a 2D approximation to the following 3D equation (1.4) -∆ x,z ψ + v(x, z)ψ = Eψ, (x, z) ∈ Ω = D × L,

where L = [a, b], a, b ∈ R, v is a sufficiently regular complex-valued function on Ω and ψ| D×∂L = 0 (for example): see [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF]Sec. 2]. In this framework, the approximate 2D matrix-valued potential V is given by

(1.5) V ij (x) = λ i δ ij + L φi (z)v(x, z)φ j (z)dz, x ∈ D,
for 1 ≤ i, j ≤ n, where n ∈ N, {φ j } j∈N is the orthonormal basis of L 2 (L)

given by the eigenfunctions ofd 2 dz 2 such that φ j | ∂L = 0, -d 2 φ j dz 2 = λ j φ j , for j ∈ N , and δ ij = 1 if i = j and 0 otherwise.

In addition, equation (1.1) can be seen as a particular case of the 2D Schrödinger equation in an external Yang-Mills field.

For equation (1.1) on D we consider the Dirichlet-to-Neumann map Φ(E) such that (1.6) Φ(E)(ψ| ∂D ) = ∂ψ ∂ν ∂D for all sufficiently regular solution ψ of (1.1) on D = D ∪ ∂D, where ν is the outer normal of ∂D. Here we assume also that (1.7) E is not a Dirichlet eigenvalue for the operator -∆ + V in D.

This construction gives rise to the following inverse boundary value problem on D: Problem 1. Given Φ(E), find V on D.

On the other hand, for equation (1.1) on R 2 , under assumptions (1.2), we consider the scattering amplitude f defined as follows: we consider the continuous solutions ψ + (x, k) of (1.1), where k is a parameter, k ∈ R 2 , k 2 = E, such that

ψ + (x, k) = e ikx I -iπ √ 2πe -i π 4 f k, |k| x |x| e i|k||x| |k||x| (1.8) + o 1 |x| , as |x| → ∞,
for some a priori unknown M n (C)-valued function f , where I is the identity matrix. The function f on M E = {(k, l) ∈ R 2 × R 2 : k 2 = l 2 = E} arising in (1.8) is the scattering amplitude for the potential V in the framework of equation (1.1). This construction gives rise to the following inverse scattering problem on R 2 : Problem 2. Given f on M E , find V on R 2 . Problems 1 and 2 can be considered as multi-channel fixed-energy analogues in dimension d = 2 of inverse problems formulated in [START_REF] Gel'fand | Some problems of functional analysis and algebra[END_REF] in dimension d ≥ 2. Note that Problems 1 and 2 are not overdetermined, in the sense that we consider the reconstruction of a M n (C)-valued function V of two variables from M n (C)-valued inverse problem data dependent on two variables. In addition, the history of inverse problems for the two-dimensional Schrödinger equation at fixed energy goes back to [START_REF] Dubrovin | The Schrödinger equation in a periodic field and Riemann surfaces[END_REF] (see also [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, (Russian)[END_REF] and reference therein). Note also that Problem 1 can be considered as a model problem for the monochromatic ocean tomography (e.g. see [START_REF] Baykov | Mode Tomography of Moving Ocean[END_REF] for similar problems arising in this tomography).

As regards efficient algorithms for solving Problems 1 and 2 for the scalar case, i.e. for n = 1, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF][START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]. In addition, as concerns numerical implementations of these algorithms for Problem 2 for n = 1, see [START_REF] Bogatyrev | Numerical realization of algorithm for exact solution of two-dimensional monochromatic inverse problem of acoustical scattering[END_REF][START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF], and references therein.

Nevertheless, the fixed-energy global uniqueness for Problem 1 (and for Problem 2 with compactly supported V ) for n = 1 was completely proved only recently in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF]. The reconstruction scheme of [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] is not optimal with respect to its stability properties, and, therefore, is not efficient numerically in comparison with the aforementioned 2D reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF][START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], but it is very efficient for proving some global mathematical results. In particular: a related global logarithmic stability estimate for Problem 1 for n = 1 was proved in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]; global uniqueness and reconstruction results for Problem 1 for n ≥ 2 were obtained in [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF]; a global logarithmic stability estimate for Problem 1 for n ≥ 2 was proved in [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]. In addition, Problem 2 with compactly supported V can be reduced, for n ≥ 2, to Problem 1, as in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for n = 1. This implies, at least, global uniqueness for Problem 2 (in the compactly supported case). On the other hand, the uniqueness for Problem 2 fails already for scalar (n = 1) real-valued spherically-symmetric potentials V of the Schwartz class on R 2 (see [START_REF] Grinevich | Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials[END_REF]).

The main purpose of the present work consists in generalizing the aforementioned reconstruction approach of [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] to the case of Problems 1 and 2 for n ≥ 2. As well as for n = 1 this functional analytic approach gives an efficient non-linear approximation V appr (x, E) to the unknown V (x) of Problems 1 and 2. The reconstruction of V appr (x, E) from Φ(E) for Problem 1 and from f on M E for Problem 2 is realized with some Lipschitz stability and is based on solving linear integral equations; see Algorithms 1 and 2 of Section 3, Theorems 6.1, 6.2 and Remarks 6.4, 6.5 of Section 6. Among these linear integral equations, the most important ones arise from a non-local Riemann-Hilbert problem. For the scalar case, Riemann-Hilbert problems of such a type go back to [START_REF] Manakov | The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev-Petviashvili equation[END_REF]. Another important part of these equations is used for transforming Φ(E) for Problem 1 and f on M E for Problem 2 into M n (C)-valued Faddeev function analogues h ± on M E , involved in the formulation of the above-mentioned Riemann-Hilbert problem. In addition,

V appr (•, E) -V = ε(E)
rapidly decays as E → +∞, where • denotes an appropriate norm. In particular,

ε(E) = O(E -∞ ) as E → +∞ if • is specified as • L ∞ (D) and V ∈ C ∞ (R 2 , M n (C)), supp V ⊂ D, for Problem 1 and if • is specified as • L ∞ (R 2 ) and V ∈ S(R 2 , M n (C))
, for Problem 2, where S denotes the Schwartz class. In addition, no reconstruction algorithms for Problems 1 and 2 -comparable, with respect to their stability, with Algorithms 1 and 2 and with an approximation error decaying more rapidly than O(E -1

2 ) as E → ∞ -are available in the preceding literature, even for

V ∈ C ∞ (R 2 , M n (C)), suppV ⊂ D ⊂ R 2 , when n ≥ 2 (in general).
In spite of the fact that some excellent properties of Algorithms 1 and 2 are proved assuming that V is sufficiently smooth and that E is sufficiently great in comparison with (some norm of) V , we expect that these algorithms will work rather well even for V with discontinuities and for the case when E is not very big in comparison with V . This expectation is based on numerical results for Algorithm 2 for the case n = 1; see [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF] and references therein. Numerical implementations of Algorithm 1 for n ≥ 1 and Algorithm 2 for n ≥ 2 are in preparation.

Let us emphasize that in the present work we also develop studies of [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF] on the 2D multi-channel approach to 3D monochromatic inverse problems for equation (1.4). In this connection, the principal advantage of the 2D multichannel Algorithm 1 (see section 3) in comparison with the 3D algorithm of [START_REF] Novikov | The ∂ approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] is that Algorithm 1 deals with non-overdetermined data and is only based on linear integral equations. High energy error estimates for both cases are similar. However, properties of Algorithm 1 of the present work are not estimated yet with respect to the approximation level n in the framework of 3D applications.

Finally, note that multi-channel inverse problems and their applications to inverse problems in greater dimensions were initially considered for the one-dimensional multi-channel case, see [START_REF] Agranovich | The inverse problem of scattering theory, Translated from the Russian by[END_REF], [START_REF] Zakhariev | Direct and inverse problems[END_REF]. As one of the most recent result in this direction see [START_REF] Klibanov | Uniqueness of an inverse problem with single measurement data generated by a plane wave in partial finite differences[END_REF].
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Faddeev functions

In this section we recall some preliminary definitions. Under assumptions (1.2), we consider the Faddeev functions G(x, k) = e ikx g(x, k), ψ(x, k), h(k, l) and related function R(x, y, k) (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF][START_REF] Faddeev | The inverse problem in the quantum theory of scattering. II[END_REF][START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF][START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for n = 1):

g(x, k) = - 1 2π 2 R 2 e iξx ξ 2 + 2kξ dξ, (2.1) ψ(x, k) = e ikx I + R 2 G(x -y, k)V (y)ψ(y, k)dy, (2.2) h(k, l) = 1 2π 2 R 2 e -ilx V (x)ψ(x, k)dx, (2.3) R(x, y, k) = G(x -y, k) + R 2 G(x -ξ, k)V (ξ)R(ξ, y, k)dξ (2.4) where x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ R 2 , k = (k 1 , k 2 ) ∈ C 2 \R 2 , l = (l 1 , l 2 ) ∈ C 2 , Imk = Iml =
0 and I is the identity matrix. We recall that

(∆ + k 2 )G(x, k) = δ(x), (2.5) for x ∈ R 2 , k ∈ C 2 \ R 2 ,
where δ is the Dirac delta. In addition: formula (2.2) at fixed k is considered as an equation for

(2.6) ψ(x, k) = e ikx µ(x, k),
where µ is sought in L ∞ (R 2 , M n (C)); formula (2.4) at fixed k and y is considered as an equation for

(2.7) R(x, y, k) = e ik(x-y) r(x, y, k),
where r is sought in L 2 loc (R 2 , M n (C)), with the property that |r(x, y, k)| → 0 as |x| → ∞. As a corollary of (2.1), (2.2) and (2.5), ψ satisfies (1.1) for

E = k 2 = k 2 1 + k 2 2 and
(2.8)

(∆ + k 2 -V (x))R(x, y, k) = δ(x -y), for x, y, ∈ R 2 , k ∈ C \ R 2 . In addition, h in (2.
3) is a generalised scattering amplitude in the complex domain for the potential V .

For

γ ∈ S 1 = {γ ∈ R 2 : |γ| = 1}, we consider G γ (x, k) = G(x, k + i0γ), (2.9) R γ (x, y, k) = R(x, y, k + i0γ), (2.10) ψ γ (x, k) = e ikx µ γ (x, k), µ γ (x, k) = µ(x, k + i0γ), (2.11) h γ (k, l) = h(k + i0γ, l + i0γ), (2.12) where x, y ∈ R 2 , k ∈ R 2 , l ∈ R 2 .
In addition, the functions

G + (x, k) = G k/|k| (x, k) = - i 4 H 1 0 (|x||k|), (2.13) R + (x, y, k) = R k/|k| (x, y, k) (2.14) ψ + (x, k) = e ikx µ + (x, k), µ + (x, k) = µ k/|k| (x, k), (2.15) f (k, l) = h k/|k| (k, l), (2.16) for x, y, k, l ∈ R 2 , |k| = |l|,
are functions from the classical scattering theory; in particular, f is the scattering amplitude of (1.8) and H 1 0 is the Hankel function of the first type. We also define

h ± (k, l) = h ± k⊥ (k, l), (2.17) µ ± (x, k) = µ ± k⊥ (x, k), ψ ± (x, k) = ψ ± k⊥ (x, k), (2.18) R ± (x, y, k) = R ± k⊥ (x, y, k), (2.19) where k, l, x, y ∈ R 2 , |k| = |l|, k⊥ = |k| -1 (-k 2 , k 1 ) for k = (k 1 , k 2 ). Note that µ + = µ + , ψ + = ψ + and R + = R + in general.
We shall consider, in particular, the following restriction of the function h:

(2.20) b(k) = h(k, -k), for k ∈ C 2 , k 2 = E > 0.
We now introduce the notations

z = x 1 + ix 2 , z = x 1 -ix 2 , ∂ ∂z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 , (2.21) λ = E -1/2 (k 1 + ik 2 ), λ ′ = E -1/2 (l 1 + il 2 )
,

where x = (x 1 , x 2 ) ∈ R 2 , k = (k 1 , k 2 ), l = (l 1 , l 2 ) ∈ C 2 , k 2 = l 2 = E ∈ R + .
In the new notations

k 1 = 1 2 E 1/2 (λ + λ -1 ), k 2 = i 2 E 1/2 (λ -1 -λ), (2.22a) l 1 = 1 2 E 1/2 (λ ′ + λ ′ -1 ), l 2 = i 2 E 1/2 (λ ′ -1 -λ ′ ), (2.22b) exp(ikx) = exp[ i 2 E 1/2 (λz + λ -1 z)], (2.22c)
where λ, λ ′ ∈ C \ {0}, z ∈ C and the Schrödinger equation (1.1) takes the form

(2.23) -4 ∂ 2 ∂z∂ z ψ + V (z)ψ = Eψ, z ∈ C.
In addition, the functions f from (1.8) and (2.16), h ± from (2.17), µ + , ψ + from (2.15), µ ± , ψ ± from (2.18), ψ from (2.2), µ from (2.6) and b from (2.20) take the form

f = f (λ, λ ′ , E), h ± = h ± (λ, λ ′ , E), µ + = µ + (z, λ, E), ψ + = ψ + (z, λ, E), (2.24) µ ± = µ ± (z, λ, E), ψ ± = ψ ± (z, λ, E), where λ, λ ′ ∈ T, z ∈ C, E ∈ R + , (2.25) µ = µ(z, λ, E), ψ = ψ(z, λ, E), b = b(λ, E), where λ ∈ C \ T, z ∈ C, E ∈ R + . Here (2.26) T = {ζ : ζ ∈ C, |ζ| = 1}.
Under assumption (1.2), for E sufficiently large the function µ(z, λ, E) has the following properties (see [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for n = 1 and Section 4 for n ≥ 2):

µ(z, λ, E) is continuous in λ ∈ C \ T ; (2.27) µ(z, λ(1 ∓ 0), E) = µ ± (z, λ, E) for λ ∈ T ; (2.28) µ ± (z, λ, E) = µ + (z, λ, E) (2.29) + πi T µ + (z, λ ′′ , E)χ + ±i λ λ ′′ - λ ′′ λ h ± (λ, λ ′′ , z, E)|dλ ′′ |,
for λ ∈ T , where

χ + (s) = 0 for s < 0, χ + (s) = 1 for s ≥ 0, (2.30) h ± (λ, λ ′ , z, E) = exp - i 2 E 1/2 λz + z λ -λ ′ z - z λ ′ h ± (λ, λ ′ , E); (2.31) ∂ ∂ λ µ(z, λ, E) = µ z, - 1 λ , E r(λ, z, E), (2.32) for λ ∈ C \ T , where (2.33) r(λ, z, E) = exp - i 2 E 1/2 λz + z λ + λz + z λ π λ sign(λ λ -1)b(λ, E),
where b is defined by means of (2.20) and (2.22a);

µ(z, λ, E) = I + µ -1 (z, E) λ + o 1 λ , λ → ∞, (2.34) V (z) = 2iE 1/2 ∂ ∂z µ -1 (z, E). (2.35)
The following formula is valid (see [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for n = 1 and Section 4 for n ≥ 2):

V (z) = 2iE 1/2 ∂ ∂z    1 π D - µ(z, - 1 ζ , E)r(ζ, z, E)dReζ dImζ (2.36) + 1 2πi T µ -(z, ζ, E)iζ|dζ|   , for z ∈ C, E sufficiently large and D -= {ζ : ζ ∈ C, |ζ| > 1}.

Reconstruction algorithms

We present here Algorithms 1 and 2, which yield approximate but sufficiently stable solutions to Problems 1 and 2, respectively. These algorithms have a final common part: the reconstruction of the approximate potential V appr starting from h ± of (2.17). Thus, for the sake of clarity, we first give the different initial parts of the algorithms-that is, the reconstruction of h ± starting from Φ(E) for Algorithm 1 and from f for Algorithm 2-and then the final common part.

Note that in both algorithms we consider in particular the functions ψ ± , h ± , µ -of (2.17), (2.18) and µ + of (2.15). In addition, in Algorithm 1, in the definitions of these functions we assume that V ≡ 0 on R 2 \ D.

Algorithm 1 (Φ(E) -→ h ± ). Given Φ(E), for E sufficiently large, we first reconstruct ψ ± (x, k)| ∂D , k ∈ R 2 , k 2 = E, with the help of the following Fredholm linear integral equation (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for n = 1 and Section 4 for n ≥ 2):

(3.1) ψ ± (x, k)| ∂D = e ikx I + ∂D A ± (x, y, k)ψ ± (y, k)dy, k ∈ R 2 , k 2 = E, where A ± (x, y, k) = ∂D G ± (x -ξ, k) (Φ -Φ 0 ) (ξ, y, E)dξ, x, y ∈ ∂D, (3.2) G ± (x, k) = G + (x, k) - 1 4πi S 1 e i|k|θx χ + (±θk ⊥ )dθ, (3.3) I is the identity matrix, (Φ -Φ 0 )(x, y, E) is the Schwartz kernel of the oper- ator Φ(E) -Φ 0 (E), Φ 0 (E) is the Dirichlet-to-Neumann operator associated to the zero potential in D at fixed energy E, G + (x, k) is defined in (2.13), k ⊥ = (-k 2 , k 1 ) for k = (k 1 , k 2 )
, dy, dξ denote the standard Euclidean measure on the boundary ∂D and dθ denotes the standard Euclidean measure on S 1 .

Then, in order to obtain h ± , it is sufficient to use the following formula (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for n = 1 and Section 4 for n ≥ 2):

(3.4) h ± (k, l) = 1 (2π) 2 ∂D ∂D e -ilx (Φ -Φ 0 )(x, y, E)ψ ± (y, k)dydx, (k, l) ∈ M E . Algorithm 2 (f -→ h ± ).
Starting from f on M E (for E sufficiently large), one directly recovers h ± solving the following integral equation (see [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for n = 1 and Section 4 for n ≥ 2):

h ± (λ, λ ′ , E) -πi T f (λ ′′ , λ ′ , E)χ + ±i λ λ ′′ - λ ′′ λ h ± (λ, λ ′′ , E)|dλ ′′ | (3.5) = f (λ, λ ′ , E), (λ, λ ′ ) ∈ T × T.
Algorithms 1 and 2 (h ± -→ V appr ). We begin with the construction of μ+ , an approximation to µ + of (2.15); this is done by solving the following integral equation arising from the non-local Riemann-Hilbert problem (2.27)-(2.34) for µ in the approximation that b ≡ 0 at fixed E (see [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for n = 1 and Section 4 for n ≥ 2):

μ+ (z, λ, E) + T μ+ (z, λ ′ , E)B(λ, λ ′ , z, E)|dλ ′ | = I, λ ∈ T, z ∈ C, (3.6)
where E is sufficiently large and

B(λ, λ ′ , z, E) = 1 2 T h -(ζ, λ ′ , z, E)χ + -i ζ λ ′ - λ ′ ζ dζ ζ -λ(1 -0) (3.7) - 1 2 T h + (ζ, λ ′ , z, E)χ + i ζ λ ′ - λ ′ ζ dζ ζ -λ(1 + 0) ,
where χ + , h ± are defined in (2.30), (2.31). Then one can obtain an approximation μ-to µ -via (2.29), used as follows:

μ-(z, λ, E) = μ+ (z, λ, E) (3.8) + πi T μ+ (z, λ ′′ , E)χ + -i λ λ ′′ - λ ′′ λ h -(λ, λ ′′ , z, E)|dλ ′′ |, for λ ∈ T , z ∈ C.
Finally, the approximate potential V appr (•, E) can be obtained using the following formula (see [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF][START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for n = 1 and Section 4 for n ≥ 2):

V appr (z, E) = 2iE 1/2 ∂ ∂z 1 2πi T μ-(z, ζ, E)iζ|dζ| . (3.9)
The approximate potential V appr depends in a non-linear way on Φ(E) in Algorithm 1 and on f on M E in Algorithm 2, in spite of the fact that both algorithms are based on solving linear integral equation. In the linear approximation near zero potential, the following formulas hold:

h ± (k, l) ≈ 1 (2π) 2 ∂D ∂D e i(-lx+ky) (Φ -Φ 0 )(x, y, E)dx dy, (k, l) ∈ M E , (3.10) 
for linearised Algorithm 1;

h ± (λ, λ ′ , E) ≈ f (λ, λ ′ , E), λ, λ ′ ∈ T, (3.11)
for linearised Algorithm 2;

V appr (z, E) ≈ 1 π E 1/2 T w(z, λ, E)iλ|dλ|, (3.12) 
where z ∈ D for linearised Algorithm 1 and z ∈ C for linearised Algorithm 2, and

w(z, λ, E) = ∂ ∂z πi T exp - i 2 E 1/2 λz + z λ -λ ′ z - z λ ′ (3.13) × sign -i λ λ ′ - λ ′ λ h ± (λ, λ ′ , E)|dλ ′ | , for z ∈ C, λ ∈ T , E > 0.
3.1. Algorithm 1 with a non-zero background potential Λ. Consider a potential V defined as in (1.5), where the diagonal matrix Λ, defined as

Λ ij = λ i δ ij
, is supposed to be a known background potential. In this case Algorithm 1 admits the following effectivisations.

Let V 1 ≡ Λ on D, V 1 ≡ 0 on R 2 \ D.
The following parts A and B provide two different approaches to the reconstruction of ψ ± (x, k)| ∂D from Φ(E) and of h ± (k, l) from ψ ± (x, k)| ∂D ; the reconstruction of V appr from h ± is given after in steps C and D.

A. Φ(E) -→ h ± . Starting from Φ(E), for E sufficiently large, we first reconstruct ψ ± (x, k)| ∂D , k ∈ R 2 , k 2 = E, with the help of the following Fredholm linear integral equation (see Section 4):

(3.14) (Id + (Id -A 1 ± ) -1 δA ± )ψ ± (x, k)| ∂D = ψ 1 ± (x, k)| ∂D ,
where In order to obtain h ± we use the following formula (see Section 4):

A 1 ± u(x) = ∂D A 1 ± (x, y, k)u(y)dy, x ∈ ∂D, (3.15) A 1 ± (x, y, k) = ∂D G ± (x -ξ, k) (Φ 1 -Φ 0 ) (ξ, y, E)dξ, x, y ∈ ∂D, (3.16) δA ± u(x) = ∂D×∂D G ± (x -ξ, k)(Φ 1 -Φ)(ξ, y, E)u(y)dy dξ, x ∈ ∂D, (3.17) ψ 1 ± (x, k)| ∂D = (Id -A 1 ± ) -1 (e ikx I) are the functions ψ ± (x, k)| ∂D for V = V 1 , (Φ 1 -Φ 0 )(x, y, E) is the Schwartz kernel of the operator Φ 1 (E) -Φ 0 (E), (Φ 1 -Φ)(x, y, E) is the Schwartz kernel of the operator Φ 1 (E)-Φ(E), Φ 0 (E)
h ± (k, l) = h 1 ± (k, l) + 1 (2π) 2 ∂D ∂D e -ilx (Φ -Φ 1 )(x, y, E)ψ ± (y, k)dydx (3.18) 
+ 1 (2π) 2 ∂D ∂D e -ilx (Φ 1 -Φ 0 )(x, y, E)δψ ± (y, k)dydx,
for (k, l) ∈ M E , where h 1 ± (k, l) is defined as in (2.3), (2.17

) with V = V 1 , δψ ± (x, k) = ψ ± (x, k) -ψ 1 ± (x, k) and ψ 1 ± (x, k) is defined as ψ ± (x, k) in (2.2), (2.11), (2.18) with V = V 1 .
B. Φ(E) -→ h ± . As above, starting from Φ(E), for E sufficiently large, we first reconstruct ψ ± (x, k)| ∂D , k ∈ R 2 , k 2 = E, with the help of the following Fredholm linear integral equation (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for n = 1 and Section 4 for n ≥ 2): 

(3.19) ψ ± (x, k)| ∂D = ψ 1 ± (x, k)| ∂D + ∂D A ± (x, y, k)ψ ± (y, k)dy, for k ∈ R 2 , k 2 = E, where A ± (x, y, k) = ∂D R 1 ± (x, ξ, k) (Φ -Φ 1 ) (ξ, y, E)dξ, x, y ∈ ∂D, (3.20) ψ 1 ± , R 1 ± are defined as ψ ± , R ± of (2.
V = V 1 , (Φ -Φ 1 )(x, y, E) is the Schwartz kernel of the operator Φ(E) -Φ 1 (E), Φ 1 (E) is the Dirichlet-to-Neumann operator associated to the potential V 1 in D at fixed energy E.
In order to obtain h ± we use the following formula (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for n = 1 and Section 4 for n ≥ 2):

(3.21) h ± (k, l) = h 1 ± (k, l)+ 1 (2π) 2 ∂D ∂D ψ 1 ∓ (x, -k, -l)(Φ-Φ 1 )(x, y, E)ψ ± (y, k)dydx, for (k, l) ∈ M E , where h 1 ± (k, l) is defined as in (2.3), (2.17) with V = V 1 , ψ 1 ∓ (x, k, l
) is defined as the solution of the following linear integral equation (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for n = 1 and Section 4 for n ≥ 2)

(3.22) ψ 1 ∓ (x, k, l) = e ilx I + R 2 G ∓ (x -y, k)V 1 (y) ψ 1 ∓ (y, k, l)dy, where x, k, l ∈ R 2 , k 2 = l 2 > 0 and G ∓ is defined in (3.

3).

C. h ± -→ μ+ . We construct an approximation μ+ to µ + of (2.15) via the following integral equation which generalises (3.6) (see Section 4):

(Id + (Id + B 1 ) -1 δB)μ + (z, λ, E) = µ 1,+ (z, λ, E), λ ∈ T, z ∈ C, (3.23) 
for E sufficiently large, where

B 1 u(λ) = T u(λ ′ )B 1 (λ, λ ′ , z, E)|dλ ′ |, (3.24) δBu(λ) = T u(λ ′ )[B(λ, λ ′ , z, E) -B 1 (λ, λ ′ , z, E)]|dλ ′ |, (3.25) for λ ∈ T, z ∈ C, B 1 (λ, λ ′ , z, E) is defined as B(λ, λ ′ , z, E) in (3.7) with h ± = h 1 ± , µ 1,+ is defined as µ + in (2.6), (2.15) with V = V 1 and u is a M n (C)-valued test function on T .
D. μ+ -→ V appr . The final part of the algorithm is the same as for Algorithm 1 with zero background potential. We construct an approximation μ-to µ -using formula (3.8) and then the approximate potential V appr (z, E) via formula (3.9).

In the linear approximation near the potential V 1 , the following formulas hold:

h ± (k, l) ≈ h 1 ± (k, l) (3.26a) + 1 (2π) 2 ∂D ∂D e -ilx (Φ -Φ 1 )(x, y, E)ψ 1 ± (y, k)dydx - 1 (2π) 2 ∂D ∂D e -ilx (Φ 1 -Φ 0 )(x, y, E)(Id -A 1 ± ) -1 δA ± ψ 1 ± (y, k)dy dx, h ± (k, l) ≈ h 1 ± (k, l) (3.26b) + 1 (2π) 2 ∂D ∂D ψ 1 ∓ (x, -k, -l)(Φ -Φ 1 )(x, y, E)ψ 1 ± (y, k)dydx, for (k, l) ∈ M E , μ+ (z, λ, E) ≈ µ 1,+ (z, λ, E) -(Id + B 1 ) -1 δBµ 1,+ (z, λ, E), (3.27) for λ ∈ T, z ∈ C, μ-(z, λ, E) ≈ µ 1 --(Id + B 1 ) -1 δBµ 1,+ (z, λ, E) (3.28) + πi T µ 1,+ (z, λ ′′ , E)χ + -i λ λ ′′ - λ ′′ λ (h --h 1 -)(λ, λ ′′ , z, E)|dλ ′′ |, V appr (z, E) ≈ V 1 - 1 π E 1/2 T ∂ ∂z (Id + B 1 ) -1 δBµ 1,+ (z, λ, E) iλ|dλ| (3.29) + iE 1/2 T T ∂ ∂z µ 1,+ (z, λ ′′ , E)χ + -i λ λ ′′ - λ ′′ λ × (h --h 1 -)(λ, λ ′′ , z, E) |dλ ′′ |iλ|dλ|,
for z ∈ D and E sufficiently large.

Derivation of some formulas and equations of Section 2 and 3 for the matrix case

The following formula and equations will be useful:

ψ γ (x, k) = ψ + (x, k) (4.1) + 2πi R 2 ψ + (x, l)δ(l 2 -k 2 )χ + ((l -k)γ)h γ (k, l)dl, h γ (k, l) = f (k, l) (4.2) + 2πi R 2 f (m, l)δ(m 2 -k 2 )χ + ((m -k)γ)h γ (k, m)dm, for γ ∈ S 1 , x, k, l ∈ R 2 , k 2 = E ∈ R + sufficiently large, ∂µ ∂ kj (x, k) = -2π R 2 ξ j e iξx µ(x, k + ξ)H(k, -ξ)δ(ξ 2 + 2kξ)dξ, (4.3) ∂H ∂ kj (k, p) = -2π R 2 ξ j H(k + ξ, p + ξ)H(k, -ξ)δ(ξ 2 + 2kξ)dξ, (4.4) for j = 1, 2, k ∈ C 2 \ R 2 , k 2 = E ∈ R + sufficiently large, x, p ∈ R 2
, where H(k, p) = h(k, kp), δ is the Dirac delta and the other functions were already defined in Section 2. Formula (4.1) and equations (4.2)-(4.4) are proved in [START_REF] Faddeev | The inverse problem in the quantum theory of scattering. II[END_REF][START_REF] Beals | Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential operators and applications[END_REF][START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF] for the scalar case: the proof can be straightforwardly generalized to the matrix case, where one only has to pay attention to the order of factors (which is indeed different from the formulation given in the quoted papers, but coherent with similar results obtained in [START_REF] Xiaosheng | Inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials in two dimensions at fixed energy[END_REF]). Now formula (2.29) follows directly from (4.1), (2.6) 

u(λ) = 1 2πi ∂D u(ζ) dζ ζ -λ - 1 π D ∂u(ζ) ∂ ζ dReζ dImζ ζ -λ , λ ∈ D,
for any sufficiently regular M n (C)-valued u in D, where ∂D is sufficiently regular. In addition, formula (3.9) is just formula (2.36) without the first term in the sum. Equation (3.6) is an approximation of the following (exact) equation for µ + :

(4.6) µ + (z, λ, E) + T µ + (z, λ ′ , E)B(λ, λ ′ , z, E)|dλ ′ | = I + ϕ(z, λ, E), for λ ∈ T, z ∈ C, where (4.7 
) ϕ(z, λ, E) = - 1 π C µ z, - 1 ζ , E r(ζ, z, E) dReζ dImζ ζ -λ .
The derivation of (4.6) can be found in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for the scalar case and its generalisation to the matrix case is straightforward (paying attention to the order of factors).

Formula (3.3) is a result of [START_REF] Faddeev | The inverse problem in the quantum theory of scattering. II[END_REF], while formulas (3.1), (3.2), (3.4) are results of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for the scalar case and can be proved for the matrix case following the scheme of [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF], where similar formulas appear. [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for the scalar case and can directly extended to the matrix case following the scheme of [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF] because, in particular, the general matrix version of Alessandrini's identity in [START_REF] Novikov | Global uniqueness and reconstruction for the multichannel Gel'fand-Calderón inverse problem in two dimensions[END_REF] works for our diagonal background potential Λ.

Finally, equation (3.23) follows from (4.6).

Function spaces and some estimates

We introduce some function spaces, which will be useful to prove the high-energy convergence of our algorithms. For m ∈ N, ε > 0 we consider

W m,1 (R 2 , M n (C)) = {u : ∂ k u ∈ L 1 (R 2 , M n (C)) for |k| ≤ m}, W m,1 ε (R 2 , M n (C)) = {u : κ ε ∂ k u ∈ L 1 (R 2 , M n (C)) for |k| ≤ m}, (κ ε u)(x) = (1 + |x| 2 ) ε/2 u(x), k ∈ (N ∪ 0) 2 , |k| = k 1 + k 2 , ∂ k = ∂ k 1 1 ∂ k 2 2 , ∂ j = ∂ ∂x j ; for α ∈]0, 1], s ∈ R we consider C α,s (R 2 , M n (C)) = {u : u α,s < ∞},
where

u α,s = κ s u α w α = sup p,ξ∈R 2 , |ξ|≤1 |w(p)| + |w(p + ξ) -w(p)| |ξ| α , (κ s u)(p) = (1 + |p| 2 ) s/2 u(p), |u(p)| = max 1≤i,j≤n |u ij (p)|;
in addition we consider H α,s (R 2 , M n (C)), defined as the closure of C ∞ 0 (R 2 , M n (C)) (the space of infinitely smooth functions with compact support) in • α,s . Let (5.1)

V (p) = 1 (2π) 2 R 2 e ipx V (x)dx, p ∈ R 2 .
If a matrix-valued potential V satisfies

V ∈ W m,1 ε (R 2 , M n (C)) for some ε > 0, m ∈ N, (5.2) then V ∈ H α,s (R 2 , M n (C)), α ∈]0, 1], s ∈ R + , (5.3) 
where α = min(1, ε), s = m. Let Σ(r) = (1 -r) -1 r. (5.4)
We have the following results: Proposition 5.1. Let the condition (5.3) be valid. Then

|f (k, l) -V (k -l)| ≤ Σ(r) V α,s (1 + |k -l| 2 ) -s/2 , (5.5a) |H γ (k, p) -V (p)| ≤ Σ(r) V α,s (1 + p 2 ) -s/2 , (5.5b) for r = |k| -σ c 1 (α, s, σ, n) V α,s < 1, k, l, p ∈ R 2 , γ ∈ S 1 , k 2 ≥ 1, |H(k, p) -V (p)| ≤ Σ(r) V α,s (1 + p 2 ) -s/2 , (5.5c) for r = |Rek| -σ c 1 (α, s, σ, n) V α,s < 1, k ∈ C 2 \ R 2 , p ∈ R 2 , R ∋ k 2 ≥ 1. In particular |f (k, l)| ≤ 2 V α,s (1 + |k -l| 2 ) -s/2 , k, l ∈ R 2 , (5.6a) |H γ (k, p)| ≤ 2 V α,s (1 + p 2 ) -s/2 , k, p ∈ R 2 , γ ∈ S 1 , (5.6b) |H(k, p)| ≤ 2 V α,s (1 + p 2 ) -s/2 , k ∈ C 2 \ R 2 , p ∈ R 2 , (5.6c) for k 2 ≥ E 1 = max(1, (2c 1 (α, s, σ, n) V α,s ) 2/σ ), where H γ (k, l) = h γ (k, k -l), 0 < α < 1, s > 0, 0 < σ < min(1, s).
Lemma 5.2. Under condition (5.3), we have the following estimates:

|µ γ (x, k) -I| + ∂µ γ (x, k) ∂x 1 + ∂µ γ (x, k) ∂x 2 ≤ |k| -σ c 2 (α, s, σ, n) V α,s , (5.7a 
)

for x = (x 1 , x 2 ) ∈ R 2 , k ∈ R 2 , γ ∈ S 1 , |µ(x, k) -I| + ∂µ(x, k) ∂x 1 + ∂µ(x, k) ∂x 2 ≤ |Rek| -σ c 2 (α, s, σ, n) V α,s , (5.7b 
)

for x = (x 1 , x 2 ) ∈ R 2 , k ∈ C 2 \ R 2 , k 2 ≥ E 1 (α, s, σ, n, V α,s
), where 0 < α < 1, s > 1, 0 < σ < min(1, s -1).

Proposition 5.1 and Lemma 5.2 for the scalar case (n = 1) were given in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] and their generalisation to the matrix case (n ≥ 2) is straightforward.

Lipschitz stability and rapid convergence of

Algorithms 1 and 2 for E → +∞

We present here main rigorous results concerning stability and convergence of our algorithms in the case of zero background potential for simplicity. In addition, we expect that, for potentials of the form (1.5), Algorithm 1 with non-zero background potential Λ (see subsection 3.1) will work even better than its version with zero background potential. Theorem 6.1 (Stability and convergence of Algorithm 1). Let V ∈ W m,1 (R 2 , M n (C)), m ≥ 3, supp V ⊂ D and let Φ(E) be the Dirichlet-to-Neumann operator of (1.6) at fixed energy E, where E ≥ E 2 (α, s, σ, n, V α,s ), 0 < α ≤ 1, s = m, 0 < σ < 1 and E is not a Dirichlet eigenvalue of -∆ + V and -∆ in D. Then V is reconstructed from Φ(E) with Lipschitz stability via Algorithm 1 up to O(E -(m-2)/2 ) in the uniform norm as E → +∞. Theorem 6.2 (Stability and convergence of Algorithm 2). Let V satisfy (5.2), for m ≥ 3, and let f be the scattering amplitude of (1.8) at fixed energy E ≥ E 2 (α, s, σ, n, V α,s ), where α = min(1, ε), s = m and 0 < σ < 1. Then V is reconstructed from f on M E with Lipschitz stability via Algorithms 2 up to O(E -(m-2)/2 ) in the uniform norm as E → +∞.

The constant E 2 of Theorems 6.1 and 6.2 is precisely stated in Remark 6.3. The Lipschitz stability of Theorems 6.1 and 6.2 is specified in the proofs of these theorems and is summarized in Remarks 6.4 and 6.5. The error term O(E -(m-2)/2 ) of Theorems 6.1 and 6.2 is made explicit in formula (6.9).

Similarly with the presentation of Algorithms 1 and 2 in section 3, we separate the proofs of Theorems 6.1 and 6.2 in several steps.

Proof of Theorem 6.1 (Φ(E) -→ h ± ). We have that equation (3.1) is a Fredholm linear integral equation of second kind for ψ ± | ∂D ∈ L 2 (∂D), which is uniquely solvable with precise data Φ -Φ 0 (the proof of the latter fact is the same as in the scalar case; see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). Therefore the reconstruction of ψ ± via (3.1) is Lipschitz stable, with respect to small errors in Φ -Φ 0 (in the L 2 norm of the Schwartz kernel), As a corollary, the reconstruction of h ± in L 2 (M E ) from Φ(E) -Φ 0 (E) via equation (3.1) and formula (3.4) is also Lipschitz stable.

Proof of Theorem 6.2 (f -→ h ± ). Estimates (5.6) and notations (2.21) give

|f (λ, λ ′ , E)| ≤ 2 V α,s (1 + E|λ -λ ′ | 2 ) -s/2 , λ, λ ′ ∈ T, (6.1a) f L 2 (T ×T ) ≤ c 3 n V α,s E -1/4 , (6.1b) for E ≥ E 1 , α = min(1, ε), s = m. Now, under the assumptions of Theorem 6.2, integral equation (3.5) is uniquely solvable for h ± (λ, •, E) ∈ L 2 (T ) for λ ∈ T , E ≥ E 1 (
this is a consequence of the unique solvability of integral equation (2.2) for E ≥ E 1 ). In addition, by estimate (6.1b), for E ≥ max(E 1 , (πc 3 n V α,s ) 4 ), equation (3.5) is uniquely solvable for h ± (λ, •, E) ∈ L 2 (T ), λ ∈ T , and for h ± (•, •, E) ∈ L 2 (T × T ) by the method of successive approximations. This implies the Lipschitz stability of the reconstruction of h ± on T × T from f on T × T , with respect to small errors in the L 2 norm.

Proof of Theorems 6.1 and 6.2 (h ± -→ V appr ). The proof follows as in the scalar case (that was treated in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]), except for the order of the terms in formulas and integral equations. Estimates (5.6), formula (2.16) and notations (2.21) give

|h ± (λ, λ ′ , E)| ≤ 2 V α,s (1 + E|λ -λ ′ | 2 ) -s/2 , λ, λ ′ ∈ T, (6.2a) h ± L 2 (T ×T ) ≤ c 3 n V α,s E -1/4 , (6.2b) for E ≥ E 1 , s = m and (6.3)
0 < α ≤ 1 for Theorem 6.1 and α = min(1, ε) for Theorem 6.2.

We define the integral operator B(z, E) as

(6.4) (B(z, E)u)(λ) = T u(λ ′ )B(λ, λ ′ , z, E)|dλ ′ |,
for λ ∈ T , where B(λ, λ ′ , z, E) is defined in (3.7) and u is a test matrix function. The following decomposition holds (6.5)

B(z, E) = C + Q -(z, E) -C -Q + (z, E),
where

(C ± u)(λ) = 1 2πi T u(ζ) ζ -λ(1 ∓ 0) dζ, (6.6) 
(Q ± u)(λ) = πi T u(λ ′ )χ + ±i λ λ ′ - λ ′ λ h ± (λ, λ ′ , z, E)|dλ ′ |, (6.7) 
z ∈ C, λ ∈ T , χ + , h ± are defined in (2.30) and (2.31) and u is a test matrix function. Thanks to (6.2), (6.5) and properties of the Cauchy projectors C ± (see [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for more details), B(z, E) satisfies the estimates (6.3). Now by estimate (6.8a), for E ≥ max(E 1 , (c 4 n V α,s ) 4 ), integral equation (3.6) is uniquely solvable for μ+ (z, •, E) ∈ L 2 (T ), at fixed z ∈ C, by the method of successive approximations. This implies the Lipschitz stability of the reconstruction of μ+ (z, •, E) on T , at fixed z ∈ C, from h ± on T × T with respect to small errors in the L 2 norm.

B(z, E)u L 2 (T ) ≤ c 4 n V α,s E -1/4 u L 2 (T ) , (6.8a) ∂ ∂z B(z, E)u L 2 (T ) ≤ c 4 n V α,s E -1/4 u L 2 (T ) , (6.8b) for z ∈ C, E ≥ E 1 , s = m, α as in
Proof of Theorems 6.1 and 6.2 (V appr -→ V ). Our high-energy convergence estimate is as follows: (6.9)

|V (z) -V appr (z, E)| ≤ c 5 n V α,s E -(s-2)/2 ,
where z ∈ C, E ≥ E 2 (α, s, σ, n, V α,s ), α as in (6.3), s = m, 0 < σ < 1 (see [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for complete details). This estimate follows from (2.29), (2.36), (3.6)-(3.9), (6.2b) and the following estimates (whose proofs for n = 1 can be found in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]):

2iE 1/2 ∂ ∂z D - µ(z, - 1 ζ , E)r(ζ, z, E)dReζ dImζ ≤ c 6 n V α,s E -(s-2)/2 , (6.10) 
µ + (z, •, E) -μ+ (z, •, E) L 2 (T,Mn(C)) ≤ c 7 n V α,s E -s/2 , (6.11) ∂µ + ∂z (z, •, E) - ∂ μ+ ∂z (z, •, E) L 2 (T,Mn(C)) ≤ c 7 n V α,s E -(s-1)/2 , (6.12) for z ∈ C, s = m ≥ 3, E ≥ E 2 (α, s, σ, n, V α,s
), α as in (6.3). Remark 6.3. The constant E 2 of Theorems 6.1 and 6.2 can be fixed as some constant such that E ≥ E 2 implies that

E ≥ E 1 , |µ(z, λ, E)| ≤ 2, ∂ ∂z µ(z, λ, E) ≤ 1, B(z, E) op L 2 (T ) ≤ 1 2 , ∂ ∂z B(z, E) op L 2 (T ) ≤ 1 2 ,
for z ∈ C, λ ∈ C, where µ and B are estimated in (5.7) and (6.8). Now, let Φ V,0 (x, y, E), x, y ∈ ∂D, denote the Schwartz kernel of the operator Φ(E) -Φ 0 (E) considered as precise data for Problem 1. Let Φ ′ V,0 denote Φ V,0 with some small errors (for the case of Problem 1) and f ′ denote f with some small errors (for the case of Problem 2). Let V ′ appr denote V appr reconstructed from Φ ′ V,0 via Algorithm 1 (for Problem 1) and from f ′ via Algorithm 2 (for Problem 2).

The Lipschitz stability of Theorems 6.1 and 6.2 is summarized in the following remarks: Remark 6.4. Let the assumptions of Theorem 6.1 hold and let (6.13)

δ = Φ ′ V,0 (•, •, E) -Φ V,0 (•, •, E) L 2 (∂D×∂D) ≤ δ 1 (V, E, D, n).
Then (6.14) ε = V ′ appr -V appr L ∞ (D) ≤ η 1 (V, E, D, n)δ.

Here δ 1 and η 1 are some positive constants summarizing the Lipschitz stability of Algorithm 1. In particular, δ 1 (V, E, D, n) ≥ δ 0 1 , (6.15) η 1 (V, E, D, n) ≤ η 0 1 E, (6.16) as Φ V,0 (•, •, E) L 2 (∂D×∂D) → 0, for some positive (sufficiently small) δ 0 1 and (sufficiently big) η 0 1 , where δ 0 1 and η 0 1 are independent of V and E for fixed D and n. Remark 6.5. Let the assumptions of Theorem 6.2 hold and let (6.17)

δ = f -f ′ L 2 (M E ) ≤ δ 2 (V, E, n).
Then (6.18)

ε = V appr -V ′ appr L ∞ (R 2 ) ≤ η 2 (V, E, n)δ.
Here δ 2 and η 2 are suitable constants summarizing the Lipschitz stability of Algorithms 2. In particular, δ 2 (V, E, n) ≥ δ 0 2 , (6.19) η 2 (V, E, n) ≤ η 0 2 E, (6.20) as f L 2 (M E ) → 0, for some positive (sufficiently small) δ 0 2 and (sufficiently big) η 0 2 , where δ 0 2 and η 0 2 are independent of V and E for fixed n.

Note that in Remark 6.5, the norm

• L 2 (M E ) is identified with • L 2 (T ×T ) .
The property that f L 2 (M E ) → 0, mentioned in Remark 6.5, is fulfilled, in particular, for E → +∞, as a consequence of estimate (6.1b). On the contrary, the property that Φ V,0 (•, •, E) L 2 (∂D×∂D) → 0, mentioned in Remark 6.4, is not fulfilled for E = E j , j → ∞, for any sequence {E j } j∈N of positive real numbers such that E j → +∞ as j → ∞, if V ≡ 0. In this connection, our high-energy conjecture is that (6.21) sup j∈N Φ V,0 (•, •, E j ) L 2 (∂D×∂D) < +∞, for some {E j } j∈N dependent on V , where E j → +∞ as j → ∞. Note that the E factor in the right side of (6.16) and of (6.20) is related with the choice of the L 2 norm for estimates of the inverse problem data. For example, for Algorithm 2, at least in the linear approximation 

  is the Dirichlet-to-Neumann operator associated to the zero potential in D at fixed energy E, Φ 1 (E) is the Dirichlet-to-Neumann operator associated to the potential V 1 in D at fixed energy E and u is a M n (C)-valued test function on ∂D.

Formulas ( 3 .

 3 14) and (3.18) follows from (3.1) and (3.4). Formulas (3.19)-(3.22) are results of

( 1 +

 1 (3.11)-(3.13), this factor disappear if• L 2 (M E ) is replaced by • L ∞ s (M E ) , s = m, where (6.22) u L ∞ s (M E ) = sup (λ,λ ′ )∈T ×T E|λλ ′ | 2 ) s/2 |u(λ, λ ′ )|.