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MONOCHROMATIC RECONSTRUCTION ALGORITHMS

FOR TWO-DIMENSIONAL MULTI-CHANNEL INVERSE

PROBLEMS

ROMAN G. NOVIKOV AND MATTEO SANTACESARIA

Abstract. We consider two inverse problems for the multi-channel

two-dimensional Schrödinger equation at fixed positive energy, i.e. the

equation −∆ψ+V (x)ψ = Eψ at fixed positive E, where V is a matrix-

valued potential. The first is the Gel’fand inverse problem on a bounded

domain D at fixed energy and the second is the inverse fixed-energy

scattering problem on the whole plane R
2. We present in this paper two

algorithms which give efficient approximate solutions to these problems:

in particular, in both cases we show that the potential V is reconstructed

with Lipschitz stability by these algorithms up to O(E−(m−2)/2) in the

uniform norm as E → +∞, under the assumptions that V is m-times

differentiable in L1, for m ≥ 3, and has sufficient boundary decay.

1. Introduction

We consider the equation

(1.1) −∆ψ + V (x)ψ = Eψ, x ∈ R
2, E > 0,

where

V is a sufficiently regular Mn(C)-valued function on R
2(1.2)

with sufficient decay at infinity,

Mn(C) is the set of the n× n complex matrices. This equation will also be

considered on a domain D, where

(1.3) D is an open bounded domain in R
2 with a C2 boundary.

Equation (1.1) at fixed E can be considered as rather general multi-

channel Schrödinger (resp. acoustic) equation on D at a fixed energy (resp.

frequency) related to E. It arises, in particular, as a 2D approximation to

the following 3D equation

(1.4) −∆x,zψ + v(x, z)ψ = Eψ, (x, z) ∈ Ω = D × L,
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where L = [a, b], a, b ∈ R, v is a sufficiently regular complex-valued function

on Ω and ψ|D×∂L = 0 (for example): see [23, Sec. 2]. In this framework, the

approximate 2D matrix-valued potential V is given by

(1.5) Vij(x) = λiδij +

∫

L
φ̄i(z)v(x, z)φj(z)dz, x ∈ D,

for 1 ≤ i, j ≤ n, where n ∈ N, {φj}j∈N is the orthonormal basis of L2(L)

given by the eigenfunctions of − d2

dz2
such that φj|∂L = 0, −d2φj

dz2
= λjφj , for

j ∈ N , and δij = 1 if i = j and 0 otherwise.

In addition, equation (1.1) can be seen as a particular case of the 2D

Schrödinger equation in an external Yang-Mills field.

For equation (1.1) on D we consider the Dirichlet-to-Neumann map Φ(E)

such that

(1.6) Φ(E)(ψ|∂D) =
∂ψ

∂ν

∣∣∣∣
∂D

for all sufficiently regular solution ψ of (1.1) on D̄ = D∪∂D, where ν is the

outer normal of ∂D. Here we assume also that

(1.7) E is not a Dirichlet eigenvalue for the operator −∆+ V in D.

This construction gives rise to the following inverse boundary value prob-

lem on D:

Problem 1. Given Φ(E), find V on D.

On the other hand, for equation (1.1) on R
2, under assumptions (1.2),

we consider the scattering amplitude f defined as follows: we consider the

continuous solutions ψ+(x, k) of (1.1), where k is a parameter, k ∈ R
2, k2 =

E, such that

ψ+(x, k) = eikxI − iπ
√
2πe−iπ

4 f

(
k, |k| x|x|

)
ei|k||x|√
|k||x|

(1.8)

+ o

(
1√
|x|

)
, as |x| → ∞,

for some a priori unknown Mn(C)-valued function f , where I is the identity

matrix. The function f on ME = {(k, l) ∈ R
2 × R

2 : k2 = l2 = E} arising

in (1.8) is the scattering amplitude for the potential V in the framework of

equation (1.1).

This construction gives rise to the following inverse scattering problem on

R
2:

Problem 2. Given f on ME, find V on R
2.
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Problems 1 and 2 can be considered as multi-channel fixed-energy ana-

logues in dimension d = 2 of inverse problems formulated in [10] in dimen-

sion d ≥ 2. Note that Problems 1 and 2 are not overdetermined, in the sense

that we consider the reconstruction of a Mn(C)-valued function V of two

variables from Mn(C)-valued inverse problem data dependent on two vari-

ables. In addition, the history of inverse problems for the two-dimensional

Schrödinger equation at fixed energy goes back to [7] (see also [17, 11] and

reference therein). Note also that Problem 1 can be considered as a model

problem for the monochromatic ocean tomography (e.g. see [2] for similar

problems arising in this tomography).

As regards efficient algorithms for solving Problems 1 and 2 for the scalar

case, i.e. for n = 1, see [16, 17, 18, 19]. In addition, as concerns numerical

implementations of these algorithms for Problem 2 for n = 1, see [4, 6], and

references therein.

Nevertheless, the fixed-energy global uniqueness for Problem 1 (and for

Problem 2 with compactly supported V ) for n = 1 was completely proved

only recently in [5]. The reconstruction scheme of [5] is not optimal with

respect to its stability properties, and, therefore, is not efficient numerically

in comparison with the aforementioned 2D reconstructions of [16, 17, 18, 19],

but it is very efficient for proving some global mathematical results. In

particular: a related global logarithmic stability estimate for Problem 1 for

n = 1 was proved in [22]; global uniqueness and reconstruction results for

Problem 1 for n ≥ 2 were obtained in [23]; a global logarithmic stability

estimate for Problem 1 for n ≥ 2 was proved in [24]. In addition, Problem

2 with compactly supported V can be reduced, for n ≥ 2, to Problem 1, as

in [16] for n = 1. This implies, at least, global uniqueness for Problem 2

(in the compactly supported case). On the other hand, the uniqueness for

Problem 2 fails already for scalar (n = 1) real-valued spherically-symmetric

potentials V of the Schwartz class on R
2 (see [12]).

The main purpose of the present work consists in generalizing the afore-

mentioned reconstruction approach of [18, 19] to the case of Problems 1 and

2 for n ≥ 2. As well as for n = 1 this functional analytic approach gives an

efficient non-linear approximation Vappr(x,E) to the unknown V (x) of Prob-

lems 1 and 2. The reconstruction of Vappr(x,E) from Φ(E) for Problem 1

and from f on ME for Problem 2 is realized with some Lipschitz stability and

is based on solving linear integral equations; see Algorithms 1 and 2 of Sec-

tion 3, Theorems 6.1, 6.2 and Remarks 6.4, 6.5 of Section 6. Among these

linear integral equations, the most important ones arise from a non-local

Riemann-Hilbert problem. For the scalar case, Riemann-Hilbert problems

of such a type go back to [15]. Another important part of these equations
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is used for transforming Φ(E) for Problem 1 and f on ME for Problem 2

into Mn(C)-valued Faddeev function analogues h± on ME , involved in the

formulation of the above-mentioned Riemann-Hilbert problem. In addition,

‖Vappr(·, E) − V ‖ = ε(E)

rapidly decays as E → +∞, where ‖ · ‖ denotes an appropriate norm. In

particular, ε(E) = O(E−∞) as E → +∞ if ‖ · ‖ is specified as ‖ · ‖L∞(D) and

V ∈ C∞(R2,Mn(C)), suppV ⊂ D, for Problem 1 and if ‖ · ‖ is specified as

‖ · ‖L∞(R2) and V ∈ S(R2,Mn(C)), for Problem 2, where S denotes the Sch-

wartz class. In addition, no reconstruction algorithms for Problems 1 and 2

— comparable, with respect to their stability, with Algorithms 1 and 2 and

with an approximation error decaying more rapidly than O(E− 1
2 ) as E → ∞

— are available in the preceding literature, even for V ∈ C∞(R2,Mn(C)),

suppV ⊂ D ⊂ R
2, when n ≥ 2 (in general).

In spite of the fact that some excellent properties of Algorithms 1 and 2 are

proved assuming that V is sufficiently smooth and that E is sufficiently great

in comparison with (some norm of) V , we expect that these algorithms will

work rather well even for V with discontinuities and for the case when E is

not very big in comparison with V . This expectation is based on numerical

results for Algorithm 2 for the case n = 1; see [6] and references therein.

Numerical implementations of Algorithm 1 for n ≥ 1 and Algorithm 2 for

n ≥ 2 are in preparation.

Let us emphasize that in the present work we also develop studies of [23]

on the 2D multi-channel approach to 3D monochromatic inverse problems for

equation (1.4). In this connection, the principal advantage of the 2D multi-

channel Algorithm 1 (see section 3) in comparison with the 3D algorithm

of [21] is that Algorithm 1 deals with non-overdetermined data and is only

based on linear integral equations. High energy error estimates for both cases

are similar. However, properties of Algorithm 1 of the present work are not

estimated yet with respect to the approximation level n in the framework of

3D applications.

Finally, note that multi-channel inverse problems and their applications

to inverse problems in greater dimensions were initially considered for the

one-dimensional multi-channel case, see [1], [26]. As one of the most recent

result in this direction see [14].

Acknowledgements. The first author was partially supported by the

Russian Federation Government grant No. 2010-220-01-077. We thank V.

A. Burov, O. D. Rumyantseva, S. N. Sergeev and A. S. Shurup for very useful

discussions.
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2. Faddeev functions

In this section we recall some preliminary definitions.

Under assumptions (1.2), we consider the Faddeev functions G(x, k) =

eikxg(x, k), ψ(x, k), h(k, l) and related function R(x, y, k) (see [8, 9, 16, 20]

for n = 1):

g(x, k) = −
(

1

2π

)2 ∫

R2

eiξx

ξ2 + 2kξ
dξ,(2.1)

ψ(x, k) = eikxI +

∫

R2

G(x− y, k)V (y)ψ(y, k)dy,(2.2)

h(k, l) =

(
1

2π

)2 ∫

R2

e−ilxV (x)ψ(x, k)dx,(2.3)

R(x, y, k) = G(x− y, k) +

∫

R2

G(x− ξ, k)V (ξ)R(ξ, y, k)dξ(2.4)

where x = (x1, x2), y = (y1, y2) ∈ R
2, k = (k1, k2) ∈ C

2\R2, l = (l1, l2) ∈ C
2,

Imk = Iml 6= 0 and I is the identity matrix. We recall that

(∆ + k2)G(x, k) = δ(x),(2.5)

for x ∈ R
2, k ∈ C

2 \ R
2, where δ is the Dirac delta. In addition: formula

(2.2) at fixed k is considered as an equation for

(2.6) ψ(x, k) = eikxµ(x, k),

where µ is sought in L∞(R2,Mn(C)); formula (2.4) at fixed k and y is con-

sidered as an equation for

(2.7) R(x, y, k) = eik(x−y)r(x, y, k),

where r is sought in L2
loc(R

2,Mn(C)), with the property that |r(x, y, k)| → 0

as |x| → ∞. As a corollary of (2.1), (2.2) and (2.5), ψ satisfies (1.1) for

E = k2 = k21 + k22 and

(2.8) (∆ + k2 − V (x))R(x, y, k) = δ(x − y),

for x, y,∈ R
2, k ∈ C \ R2. In addition, h in (2.3) is a generalised scattering

amplitude in the complex domain for the potential V .

For γ ∈ S1 = {γ ∈ R
2 : |γ| = 1}, we consider

Gγ(x, k) = G(x, k + i0γ),(2.9)

Rγ(x, y, k) = R(x, y, k + i0γ),(2.10)

ψγ(x, k) = eikxµγ(x, k), µγ(x, k) = µ(x, k + i0γ),(2.11)

hγ(k, l) = h(k + i0γ, l + i0γ),(2.12)
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where x, y ∈ R
2, k ∈ R

2, l ∈ R
2.

In addition, the functions

G+(x, k) = Gk/|k|(x, k) = − i

4
H1

0 (|x||k|),(2.13)

R+(x, y, k) = Rk/|k|(x, y, k)(2.14)

ψ+(x, k) = eikxµ+(x, k), µ+(x, k) = µk/|k|(x, k),(2.15)

f(k, l) = hk/|k|(k, l),(2.16)

for x, y, k, l ∈ R
2, |k| = |l|, are functions from the classical scattering theory;

in particular, f is the scattering amplitude of (1.8) and H1
0 is the Hankel

function of the first type. We also define

h±(k, l) = h±k̂⊥
(k, l),(2.17)

µ±(x, k) = µ±k̂⊥
(x, k), ψ±(x, k) = ψ±k̂⊥

(x, k),(2.18)

R±(x, y, k) = R±k̂⊥
(x, y, k),(2.19)

where k, l, x, y ∈ R
2, |k| = |l|, k̂⊥ = |k|−1(−k2, k1) for k = (k1, k2). Note

that µ+ 6= µ+, ψ+ 6= ψ+ and R+ 6= R+ in general. We shall consider, in

particular, the following restriction of the function h:

(2.20) b(k) = h(k,−k̄), for k ∈ C
2, k2 = E > 0.

We now introduce the notations

z = x1 + ix2, z̄ = x1 − ix2,

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,(2.21)

λ = E−1/2(k1 + ik2), λ′ = E−1/2(l1 + il2),

where x = (x1, x2) ∈ R
2, k = (k1, k2), l = (l1, l2) ∈ C

2, k2 = l2 = E ∈ R+.

In the new notations

k1 =
1

2
E1/2(λ+ λ−1), k2 =

i

2
E1/2(λ−1 − λ),(2.22a)

l1 =
1

2
E1/2(λ′ + λ′

−1
), l2 =

i

2
E1/2(λ′

−1 − λ′),(2.22b)

exp(ikx) = exp[
i

2
E1/2(λz̄ + λ−1z)],(2.22c)

where λ, λ′ ∈ C \ {0}, z ∈ C and the Schrödinger equation (1.1) takes the

form

(2.23) −4
∂2

∂z∂z̄
ψ + V (z)ψ = Eψ, z ∈ C.
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In addition, the functions f from (1.8) and (2.16), h± from (2.17), µ+, ψ+

from (2.15), µ±, ψ± from (2.18), ψ from (2.2), µ from (2.6) and b from (2.20)

take the form

f = f(λ, λ′, E), h± = h±(λ, λ
′, E),

µ+ = µ+(z, λ,E), ψ+ = ψ+(z, λ,E),(2.24)

µ± = µ±(z, λ,E), ψ± = ψ±(z, λ,E),

where λ, λ′ ∈ T, z ∈ C, E ∈ R+,

(2.25) µ = µ(z, λ,E), ψ = ψ(z, λ,E), b = b(λ,E),

where λ ∈ C \ T, z ∈ C, E ∈ R+. Here

(2.26) T = {ζ : ζ ∈ C, |ζ| = 1}.

Under assumption (1.2), for E sufficiently large the function µ(z, λ,E) has

the following properties (see [18, 19] for n = 1 and Section 4 for n ≥ 2):

µ(z, λ,E) is continuous in λ ∈ C \ T ;(2.27)

µ(z, λ(1 ∓ 0), E) = µ±(z, λ,E) for λ ∈ T ;(2.28)

µ±(z, λ,E) = µ+(z, λ,E)(2.29)

+ πi

∫

T
µ+(z, λ′′, E)χ+

(
±i
(
λ

λ′′
− λ′′

λ

))
h±(λ, λ

′′, z, E)|dλ′′|,

for λ ∈ T , where

χ+(s) = 0 for s < 0, χ+(s) = 1 for s ≥ 0,(2.30)

h±(λ, λ
′, z, E) = exp

[
− i

2
E1/2

(
λz̄ +

z

λ
− λ′z̄ − z

λ′

)]
h±(λ, λ

′, E);(2.31)

∂

∂λ̄
µ(z, λ,E) = µ

(
z,− 1

λ̄
, E

)
r(λ, z,E),(2.32)

for λ ∈ C \ T , where

(2.33)

r(λ, z,E) = exp

[
− i

2
E1/2

(
λz̄ +

z

λ
+ λ̄z +

z̄

λ̄

)] π
λ̄
sign(λλ̄− 1)b(λ,E),

where b is defined by means of (2.20) and (2.22a);

µ(z, λ,E) = I +
µ−1(z,E)

λ
+ o

(
1

λ

)
, λ→ ∞,(2.34)

V (z) = 2iE1/2 ∂

∂z
µ−1(z,E).(2.35)
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The following formula is valid (see [19] for n = 1 and Section 4 for n ≥ 2):

V (z) = 2iE1/2 ∂

∂z




1

π

∫

D−

µ(z,−1

ζ̄
, E)r(ζ, z, E)dReζ dImζ(2.36)

+
1

2πi

∫

T

µ−(z, ζ, E)iζ|dζ|


 ,

for z ∈ C, E sufficiently large and D− = {ζ : ζ ∈ C, |ζ| > 1}.

3. Reconstruction algorithms

We present here Algorithms 1 and 2, which yield approximate but suffi-

ciently stable solutions to Problems 1 and 2, respectively. These algorithms

have a final common part: the reconstruction of the approximate potential

Vappr starting from h± of (2.17). Thus, for the sake of clarity, we first give

the different initial parts of the algorithms—that is, the reconstruction of h±

starting from Φ(E) for Algorithm 1 and from f for Algorithm 2—and then

the final common part.

Note that in both algorithms we consider in particular the functions

ψ±, h±, µ− of (2.17), (2.18) and µ+ of (2.15). In addition, in Algorithm

1, in the definitions of these functions we assume that V ≡ 0 on R
2 \D.

Algorithm 1 (Φ(E) −→ h±). Given Φ(E), for E sufficiently large, we

first reconstruct ψ±(x, k)|∂D , k ∈ R
2, k2 = E, with the help of the following

Fredholm linear integral equation (see [16] for n = 1 and Section 4 for n ≥ 2):

(3.1) ψ±(x, k)|∂D = eikxI +

∫

∂D
A±(x, y, k)ψ±(y, k)dy, k ∈ R

2, k2 = E,

where

A±(x, y, k) =

∫

∂D
G±(x− ξ, k) (Φ− Φ0) (ξ, y,E)dξ, x, y ∈ ∂D,(3.2)

G±(x, k) = G+(x, k)− 1

4πi

∫

S1

ei|k|θxχ+(±θk⊥)dθ,(3.3)

I is the identity matrix, (Φ−Φ0)(x, y,E) is the Schwartz kernel of the oper-

ator Φ(E)−Φ0(E), Φ0(E) is the Dirichlet-to-Neumann operator associated

to the zero potential in D at fixed energy E, G+(x, k) is defined in (2.13),

k⊥ = (−k2, k1) for k = (k1, k2), dy, dξ denote the standard Euclidean mea-

sure on the boundary ∂D and dθ denotes the standard Euclidean measure

on S1.
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Then, in order to obtain h±, it is sufficient to use the following formula

(see [16] for n = 1 and Section 4 for n ≥ 2):

(3.4)

h±(k, l) =
1

(2π)2

∫

∂D

∫

∂D
e−ilx(Φ−Φ0)(x, y,E)ψ±(y, k)dydx, (k, l) ∈ ME.

Algorithm 2 (f −→ h±). Starting from f on ME (for E sufficiently large),

one directly recovers h± solving the following integral equation (see [17, 19]

for n = 1 and Section 4 for n ≥ 2):

h±(λ, λ
′, E)− πi

∫

T

f(λ′′, λ′, E)χ+

(
±i
(
λ

λ′′
− λ′′

λ

))
h±(λ, λ

′′, E)|dλ′′|

(3.5)

= f(λ, λ′, E), (λ, λ′) ∈ T × T.

Algorithms 1 and 2 (h± −→ Vappr). We begin with the construction of

µ̃+, an approximation to µ+ of (2.15); this is done by solving the following

integral equation arising from the non-local Riemann-Hilbert problem (2.27)-

(2.34) for µ in the approximation that b ≡ 0 at fixed E (see [19] for n = 1

and Section 4 for n ≥ 2):

µ̃+(z, λ,E) +

∫

T
µ̃+(z, λ′, E)B(λ, λ′, z, E)|dλ′| = I, λ ∈ T, z ∈ C,(3.6)

where E is sufficiently large and

B(λ, λ′, z, E) =
1

2

∫

T
h−(ζ, λ

′, z, E)χ+

(
−i
(
ζ

λ′
− λ′

ζ

))
dζ

ζ − λ(1− 0)

(3.7)

− 1

2

∫

T
h+(ζ, λ

′, z, E)χ+

(
i

(
ζ

λ′
− λ′

ζ

))
dζ

ζ − λ(1 + 0)
,

where χ+, h± are defined in (2.30), (2.31). Then one can obtain an approx-

imation µ̃− to µ− via (2.29), used as follows:

µ̃−(z, λ,E) = µ̃+(z, λ,E)(3.8)

+ πi

∫

T
µ̃+(z, λ′′, E)χ+

(
−i
(
λ

λ′′
− λ′′

λ

))
h−(λ, λ

′′, z, E)|dλ′′|,

for λ ∈ T , z ∈ C. Finally, the approximate potential Vappr(·, E) can be

obtained using the following formula (see [18, 19] for n = 1 and Section 4

for n ≥ 2):

Vappr(z,E) = 2iE1/2 ∂

∂z

(
1

2πi

∫

T
µ̃−(z, ζ, E)iζ|dζ|

)
.(3.9)
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The approximate potential Vappr depends in a non-linear way on Φ(E)

in Algorithm 1 and on f on ME in Algorithm 2, in spite of the fact that

both algorithms are based on solving linear integral equation. In the linear

approximation near zero potential, the following formulas hold:

h±(k, l) ≈
1

(2π)2

∫

∂D

∫

∂D
ei(−lx+ky)(Φ− Φ0)(x, y,E)dx dy, (k, l) ∈ ME ,

(3.10)

for linearised Algorithm 1;

h±(λ, λ
′, E) ≈ f(λ, λ′, E), λ, λ′ ∈ T,(3.11)

for linearised Algorithm 2;

Vappr(z,E) ≈ 1

π
E1/2

∫

T
w(z, λ,E)iλ|dλ|,(3.12)

where z ∈ D for linearised Algorithm 1 and z ∈ C for linearised Algorithm

2, and

w(z, λ,E) =
∂

∂z

(
πi

∫

T
exp

[
− i

2
E1/2

(
λz̄ +

z

λ
− λ′z̄ − z

λ′

)]
(3.13)

× sign

(
−i
(
λ

λ′
− λ′

λ

))
h±(λ, λ

′, E)|dλ′|
)
,

for z ∈ C, λ ∈ T , E > 0.

3.1. Algorithm 1 with a non-zero background potential Λ. Consider

a potential V defined as in (1.5), where the diagonal matrix Λ, defined as

Λij = λiδij , is supposed to be a known background potential. In this case

Algorithm 1 admits the following effectivisations.

Let V1 ≡ Λ on D̄, V1 ≡ 0 on R
2 \ D̄. The following parts A and B

provide two different approaches to the reconstruction of ψ±(x, k)|∂D from

Φ(E) and of h±(k, l) from ψ±(x, k)|∂D ; the reconstruction of Vappr from h±

is given after in steps C and D.

A. Φ(E) −→ h±. Starting from Φ(E), for E sufficiently large, we first

reconstruct ψ±(x, k)|∂D , k ∈ R
2, k2 = E, with the help of the following

Fredholm linear integral equation (see Section 4):

(3.14) (Id + (Id−A1
±)

−1δA±)ψ±(x, k)|∂D = ψ1
±(x, k)|∂D ,
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where

A1
±u(x) =

∫

∂D
A1

±(x, y, k)u(y)dy, x ∈ ∂D,(3.15)

A1
±(x, y, k) =

∫

∂D
G±(x− ξ, k) (Φ1 −Φ0) (ξ, y,E)dξ, x, y ∈ ∂D,(3.16)

δA±u(x) =

∫

∂D×∂D
G±(x− ξ, k)(Φ1 − Φ)(ξ, y,E)u(y)dy dξ, x ∈ ∂D,(3.17)

ψ1
±(x, k)|∂D = (Id−A1

±)
−1(eikxI) are the functions ψ±(x, k)|∂D for V = V1,

(Φ1 − Φ0)(x, y,E) is the Schwartz kernel of the operator Φ1(E) − Φ0(E),

(Φ1−Φ)(x, y,E) is the Schwartz kernel of the operator Φ1(E)−Φ(E), Φ0(E)

is the Dirichlet-to-Neumann operator associated to the zero potential in D

at fixed energy E, Φ1(E) is the Dirichlet-to-Neumann operator associated

to the potential V1 in D at fixed energy E and u is a Mn(C)-valued test

function on ∂D.

In order to obtain h± we use the following formula (see Section 4):

h±(k, l) = h1±(k, l) +
1

(2π)2

∫

∂D

∫

∂D
e−ilx(Φ− Φ1)(x, y,E)ψ±(y, k)dydx

(3.18)

+
1

(2π)2

∫

∂D

∫

∂D
e−ilx(Φ1 − Φ0)(x, y,E)δψ±(y, k)dydx,

for (k, l) ∈ ME , where h1±(k, l) is defined as in (2.3), (2.17) with V = V1,

δψ±(x, k) = ψ±(x, k)−ψ1
±(x, k) and ψ1

±(x, k) is defined as ψ±(x, k) in (2.2),

(2.11), (2.18) with V = V1.

B.Φ(E) −→ h±. As above, starting from Φ(E), forE sufficiently large, we

first reconstruct ψ±(x, k)|∂D , k ∈ R
2, k2 = E, with the help of the following

Fredholm linear integral equation (see [20] for n = 1 and Section 4 for n ≥ 2):

(3.19) ψ±(x, k)|∂D = ψ1
±(x, k)|∂D +

∫

∂D
A±(x, y, k)ψ±(y, k)dy,

for k ∈ R
2, k2 = E, where

A±(x, y, k) =

∫

∂D
R1

±(x, ξ, k) (Φ− Φ1) (ξ, y,E)dξ, x, y ∈ ∂D,(3.20)

ψ1
±, R1

± are defined as ψ±, R± of (2.2), (2.4), (2.10), (2.11), (2.18), (2.19)

with V = V1, (Φ − Φ1)(x, y,E) is the Schwartz kernel of the operator

Φ(E) − Φ1(E), Φ1(E) is the Dirichlet-to-Neumann operator associated to

the potential V1 in D at fixed energy E.
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In order to obtain h± we use the following formula (see [20] for n = 1 and

Section 4 for n ≥ 2):

(3.21)

h±(k, l) = h1±(k, l)+
1

(2π)2

∫

∂D

∫

∂D
ψ1
∓(x,−k,−l)(Φ−Φ1)(x, y,E)ψ±(y, k)dydx,

for (k, l) ∈ ME , where h1±(k, l) is defined as in (2.3), (2.17) with V = V1,

ψ1
∓(x, k, l) is defined as the solution of the following linear integral equation

(see [20] for n = 1 and Section 4 for n ≥ 2)

(3.22) ψ1
∓(x, k, l) = eilxI +

∫

R2

G∓(x− y, k)V1(y)ψ
1
∓(y, k, l)dy,

where x, k, l ∈ R2, k2 = l2 > 0 and G∓ is defined in (3.3).

C. h± −→ µ̃+. We construct an approximation µ̃+ to µ+ of (2.15) via

the following integral equation which generalises (3.6) (see Section 4):

(Id + (Id +B1)−1δB)µ̃+(z, λ,E) = µ1,+(z, λ,E), λ ∈ T, z ∈ C,(3.23)

for E sufficiently large, where

B1u(λ) =

∫

T
u(λ′)B1(λ, λ′, z, E)|dλ′|,(3.24)

δBu(λ) =

∫

T
u(λ′)[B(λ, λ′, z, E) −B1(λ, λ′, z, E)]|dλ′|,(3.25)

for λ ∈ T, z ∈ C, B1(λ, λ′, z, E) is defined as B(λ, λ′, z, E) in (3.7) with

h± = h1±, µ1,+ is defined as µ+ in (2.6), (2.15) with V = V1 and u is a

Mn(C)-valued test function on T .

D. µ̃+ −→ Vappr. The final part of the algorithm is the same as for

Algorithm 1 with zero background potential. We construct an approximation

µ̃− to µ− using formula (3.8) and then the approximate potential Vappr(z,E)

via formula (3.9).

In the linear approximation near the potential V1, the following formulas

hold:

h±(k, l) ≈ h1±(k, l)

(3.26a)

+
1

(2π)2

∫

∂D

∫

∂D
e−ilx(Φ −Φ1)(x, y,E)ψ1

±(y, k)dydx

− 1

(2π)2

∫

∂D

∫

∂D
e−ilx(Φ1 − Φ0)(x, y,E)(Id −A1

±)
−1δA±ψ

1
±(y, k)dy dx,

h±(k, l) ≈ h1±(k, l)

(3.26b)
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+
1

(2π)2

∫

∂D

∫

∂D
ψ1
∓(x,−k,−l)(Φ − Φ1)(x, y,E)ψ1

±(y, k)dydx,

for (k, l) ∈ ME ,

µ̃+(z, λ,E) ≈ µ1,+(z, λ,E) − (Id +B1)−1δBµ1,+(z, λ,E),(3.27)

for λ ∈ T, z ∈ C,

µ̃−(z, λ,E) ≈ µ1− − (Id +B1)−1δBµ1,+(z, λ,E)

(3.28)

+ πi

∫

T
µ1,+(z, λ′′, E)χ+

(
−i
(
λ

λ′′
− λ′′

λ

))
(h− − h1−)(λ, λ

′′, z, E)|dλ′′|,

Vappr(z,E) ≈ V1 −
1

π
E1/2

∫

T

∂

∂z

(
(Id +B1)−1δBµ1,+(z, λ,E)

)
iλ|dλ|

(3.29)

+ iE1/2

∫

T

∫

T

∂

∂z

[
µ1,+(z, λ′′, E)χ+

(
−i
(
λ

λ′′
− λ′′

λ

))

× (h− − h1−)(λ, λ
′′, z, E)

]
|dλ′′|iλ|dλ|,

for z ∈ D and E sufficiently large.

4. Derivation of some formulas and equations of

Section 2 and 3 for the matrix case

The following formula and equations will be useful:

ψγ(x, k) = ψ+(x, k)(4.1)

+ 2πi

∫

R2

ψ+(x, l)δ(l2 − k2)χ+((l − k)γ)hγ(k, l)dl,

hγ(k, l) = f(k, l)(4.2)

+ 2πi

∫

R2

f(m, l)δ(m2 − k2)χ+((m− k)γ)hγ(k,m)dm,

for γ ∈ S1, x, k, l ∈ R
2, k2 = E ∈ R+ sufficiently large,

∂µ

∂k̄j
(x, k) = −2π

∫

R2

ξje
iξxµ(x, k + ξ)H(k,−ξ)δ(ξ2 + 2kξ)dξ,(4.3)

∂H

∂k̄j
(k, p) = −2π

∫

R2

ξjH(k + ξ, p+ ξ)H(k,−ξ)δ(ξ2 + 2kξ)dξ,(4.4)

for j = 1, 2, k ∈ C
2 \ R2, k2 = E ∈ R+ sufficiently large, x, p ∈ R

2, where

H(k, p) = h(k, k − p), δ is the Dirac delta and the other functions were

already defined in Section 2. Formula (4.1) and equations (4.2)-(4.4) are

proved in [9, 3, 13] for the scalar case: the proof can be straightforwardly

generalized to the matrix case, where one only has to pay attention to the
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order of factors (which is indeed different from the formulation given in the

quoted papers, but coherent with similar results obtained in [25]).

Now formula (2.29) follows directly from (4.1), (2.6), (2.31) using notations

(2.21); equation (2.32) follows from (4.3) taking into account (2.20), (2.33)

and notations (2.21). In addition, equation (3.5) is a direct consequence of

(4.2) (with γ = ±k̂⊥) using notations (2.21).

Formula (2.36) follows from (2.35), (2.34), (2.32), (2.28), (2.27) (these can

be proved exactly as in the scalar case) and the Cauchy–Pompeiu formula

(4.5) u(λ) =
1

2πi

∫

∂D
u(ζ)

dζ

ζ − λ
− 1

π

∫

D

∂u(ζ)

∂ζ̄

dReζ dImζ

ζ − λ
, λ ∈ D,

for any sufficiently regular Mn(C)-valued u in D, where ∂D is sufficiently

regular. In addition, formula (3.9) is just formula (2.36) without the first

term in the sum.

Equation (3.6) is an approximation of the following (exact) equation for

µ+:

(4.6) µ+(z, λ,E) +

∫

T
µ+(z, λ′, E)B(λ, λ′, z, E)|dλ′| = I + ϕ(z, λ,E),

for λ ∈ T, z ∈ C, where

(4.7) ϕ(z, λ,E) = − 1

π

∫

C

µ

(
z,−1

ζ̄
, E

)
r(ζ, z, E)

dReζ dImζ

ζ − λ
.

The derivation of (4.6) can be found in [19] for the scalar case and its gener-

alisation to the matrix case is straightforward (paying attention to the order

of factors).

Formula (3.3) is a result of [9], while formulas (3.1), (3.2), (3.4) are results

of [16] for the scalar case and can be proved for the matrix case following

the scheme of [23], where similar formulas appear.

Formulas (3.14) and (3.18) follows from (3.1) and (3.4).

Formulas (3.19)-(3.22) are results of [20] for the scalar case and can di-

rectly extended to the matrix case following the scheme of [23] because, in

particular, the general matrix version of Alessandrini’s identity in [23] works

for our diagonal background potential Λ.

Finally, equation (3.23) follows from (4.6).
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5. Function spaces and some estimates

We introduce some function spaces, which will be useful to prove the

high-energy convergence of our algorithms. For m ∈ N, ε > 0 we consider

Wm,1(R2,Mn(C)) = {u : ∂ku ∈ L1(R2,Mn(C)) for |k| ≤ m},
Wm,1

ε (R2,Mn(C)) = {u : κε∂ku ∈ L1(R2,Mn(C)) for |k| ≤ m},

(κεu)(x) = (1 + |x|2)ε/2u(x), k ∈ (N ∪ 0)2, |k| = k1 + k2,

∂k = ∂k11 ∂
k2
2 , ∂j =

∂

∂xj
;

for α ∈]0, 1], s ∈ R we consider

Cα,s(R2,Mn(C)) = {u : ‖u‖α,s <∞},

where

‖u‖α,s = ‖κsu‖α

‖w‖α = sup
p,ξ∈R2, |ξ|≤1

(
|w(p)| + |w(p + ξ)− w(p)|

|ξ|α
)
,

(κsu)(p) = (1 + |p|2)s/2u(p), |u(p)| = max
1≤i,j≤n

|uij(p)|;

in addition we consider Hα,s(R
2,Mn(C)), defined as the closure of C∞

0 (R2,Mn(C))

(the space of infinitely smooth functions with compact support) in ‖ · ‖α,s.
Let

(5.1) V̂ (p) =
1

(2π)2

∫

R2

eipxV (x)dx, p ∈ R
2.

If a matrix-valued potential V satisfies

V ∈Wm,1
ε (R2,Mn(C)) for some ε > 0, m ∈ N,(5.2)

then

V̂ ∈ Hα,s(R
2,Mn(C)), α ∈]0, 1], s ∈ R+,(5.3)

where α = min(1, ε), s = m. Let

Σ(r) = (1− r)−1r.(5.4)

We have the following results:

Proposition 5.1. Let the condition (5.3) be valid. Then

|f(k, l)− V̂ (k − l)| ≤ Σ(r)‖V̂ ‖α,s(1 + |k − l|2)−s/2,(5.5a)

|Hγ(k, p) − V̂ (p)| ≤ Σ(r)‖V̂ ‖α,s(1 + p2)−s/2,(5.5b)
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for r = |k|−σc1(α, s, σ, n)‖V̂ ‖α,s < 1, k, l, p ∈ R
2, γ ∈ S1, k2 ≥ 1,

|H(k, p) − V̂ (p)| ≤ Σ(r)‖V̂ ‖α,s(1 + p2)−s/2,(5.5c)

for r = |Rek|−σc1(α, s, σ, n)‖V̂ ‖α,s < 1, k ∈ C
2 \ R2, p ∈ R

2, R ∋ k2 ≥ 1.

In particular

|f(k, l)| ≤ 2‖V̂ ‖α,s(1 + |k − l|2)−s/2, k, l ∈ R
2,(5.6a)

|Hγ(k, p)| ≤ 2‖V̂ ‖α,s(1 + p2)−s/2, k, p ∈ R
2, γ ∈ S1,(5.6b)

|H(k, p)| ≤ 2‖V̂ ‖α,s(1 + p2)−s/2, k ∈ C
2 \ R2, p ∈ R

2,(5.6c)

for k2 ≥ E1 = max(1, (2c1(α, s, σ, n)‖V̂ ‖α,s)2/σ), where Hγ(k, l) =

hγ(k, k − l), 0 < α < 1, s > 0, 0 < σ < min(1, s).

Lemma 5.2. Under condition (5.3), we have the following estimates:

|µγ(x, k) − I|+
∣∣∣∣
∂µγ(x, k)

∂x1

∣∣∣∣+
∣∣∣∣
∂µγ(x, k)

∂x2

∣∣∣∣ ≤ |k|−σc2(α, s, σ, n)‖V̂ ‖α,s,

(5.7a)

for x = (x1, x2) ∈ R
2, k ∈ R

2, γ ∈ S1,

|µ(x, k)− I|+
∣∣∣∣
∂µ(x, k)

∂x1

∣∣∣∣+
∣∣∣∣
∂µ(x, k)

∂x2

∣∣∣∣ ≤ |Rek|−σc2(α, s, σ, n)‖V̂ ‖α,s,

(5.7b)

for x = (x1, x2) ∈ R
2, k ∈ C

2 \ R
2, k2 ≥ E1(α, s, σ, n, ‖V̂ ‖α,s), where

0 < α < 1, s > 1, 0 < σ < min(1, s − 1).

Proposition 5.1 and Lemma 5.2 for the scalar case (n = 1) were given in

[19] and their generalisation to the matrix case (n ≥ 2) is straightforward.

6. Lipschitz stability and rapid convergence of

Algorithms 1 and 2 for E → +∞

We present here main rigorous results concerning stability and convergence

of our algorithms in the case of zero background potential for simplicity. In

addition, we expect that, for potentials of the form (1.5), Algorithm 1 with

non-zero background potential Λ (see subsection 3.1) will work even better

than its version with zero background potential.

Theorem 6.1 (Stability and convergence of Algorithm 1). Let V ∈Wm,1(R2,Mn(C)),

m ≥ 3, suppV ⊂ D and let Φ(E) be the Dirichlet-to-Neumann operator of

(1.6) at fixed energy E, where E ≥ E2(α, s, σ, n, ‖V̂ ‖α,s), 0 < α ≤ 1, s = m,

0 < σ < 1 and E is not a Dirichlet eigenvalue of −∆ + V and −∆ in D.

Then V is reconstructed from Φ(E) with Lipschitz stability via Algorithm 1

up to O(E−(m−2)/2) in the uniform norm as E → +∞.
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Theorem 6.2 (Stability and convergence of Algorithm 2). Let V satisfy

(5.2), for m ≥ 3, and let f be the scattering amplitude of (1.8) at fixed energy

E ≥ E2(α, s, σ, n, ‖V̂ ‖α,s), where α = min(1, ε), s = m and 0 < σ < 1. Then

V is reconstructed from f on ME with Lipschitz stability via Algorithms 2

up to O(E−(m−2)/2) in the uniform norm as E → +∞.

The constant E2 of Theorems 6.1 and 6.2 is precisely stated in Remark

6.3. The Lipschitz stability of Theorems 6.1 and 6.2 is specified in the proofs

of these theorems and is summarized in Remarks 6.4 and 6.5. The error term

O(E−(m−2)/2) of Theorems 6.1 and 6.2 is made explicit in formula (6.9).

Similarly with the presentation of Algorithms 1 and 2 in section 3, we

separate the proofs of Theorems 6.1 and 6.2 in several steps.

Proof of Theorem 6.1 (Φ(E) −→ h±). We have that equation (3.1) is a Fred-

holm linear integral equation of second kind for ψ±|∂D ∈ L2(∂D), which is

uniquely solvable with precise data Φ−Φ0 (the proof of the latter fact is the

same as in the scalar case; see [16]). Therefore the reconstruction of ψ± via

(3.1) is Lipschitz stable, with respect to small errors in Φ − Φ0 (in the L2

norm of the Schwartz kernel),

As a corollary, the reconstruction of h± in L2(ME) from Φ(E) − Φ0(E)

via equation (3.1) and formula (3.4) is also Lipschitz stable. �

Proof of Theorem 6.2 (f −→ h±). Estimates (5.6) and notations (2.21) give

|f(λ, λ′, E)| ≤ 2‖V̂ ‖α,s(1 + E|λ− λ′|2)−s/2, λ, λ′ ∈ T,(6.1a)

‖f‖L2(T×T ) ≤ c3n‖V̂ ‖α,sE−1/4,(6.1b)

for E ≥ E1, α = min(1, ε), s = m. Now, under the assumptions of

Theorem 6.2, integral equation (3.5) is uniquely solvable for h±(λ, ·, E) ∈
L2(T ) for λ ∈ T , E ≥ E1 (this is a consequence of the unique solvability

of integral equation (2.2) for E ≥ E1). In addition, by estimate (6.1b),

for E ≥ max(E1, (πc3n‖V̂ ‖α,s)4), equation (3.5) is uniquely solvable for

h±(λ, ·, E) ∈ L2(T ), λ ∈ T , and for h±(·, ·, E) ∈ L2(T × T ) by the method

of successive approximations. This implies the Lipschitz stability of the re-

construction of h± on T × T from f on T × T , with respect to small errors

in the L2 norm. �

Proof of Theorems 6.1 and 6.2 (h± −→ Vappr). The proof follows as in the

scalar case (that was treated in [19]), except for the order of the terms in

formulas and integral equations.
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Estimates (5.6), formula (2.16) and notations (2.21) give

|h±(λ, λ′, E)| ≤ 2‖V̂ ‖α,s(1 +E|λ− λ′|2)−s/2, λ, λ′ ∈ T,(6.2a)

‖h±‖L2(T×T ) ≤ c3n‖V̂ ‖α,sE−1/4,(6.2b)

for E ≥ E1, s = m and

(6.3) 0 < α ≤ 1 for Theorem 6.1 and α = min(1, ε) for Theorem 6.2.

We define the integral operator B(z,E) as

(6.4) (B(z,E)u)(λ) =

∫

T
u(λ′)B(λ, λ′, z, E)|dλ′|,

for λ ∈ T , where B(λ, λ′, z, E) is defined in (3.7) and u is a test matrix

function. The following decomposition holds

(6.5) B(z,E) = C+Q−(z,E) −C−Q+(z,E),

where

(C±u)(λ) =
1

2πi

∫

T

u(ζ)

ζ − λ(1∓ 0)
dζ,(6.6)

(Q±u)(λ) = πi

∫

T
u(λ′)χ+

(
±i
(
λ

λ′
− λ′

λ

))
h±(λ, λ

′, z, E)|dλ′|,(6.7)

z ∈ C, λ ∈ T , χ+, h± are defined in (2.30) and (2.31) and u is a test matrix

function. Thanks to (6.2), (6.5) and properties of the Cauchy projectors C±

(see [19] for more details), B(z,E) satisfies the estimates

‖B(z,E)u‖L2(T ) ≤ c4n‖V̂ ‖α,sE−1/4‖u‖L2(T ),(6.8a)
∥∥∥∥
∂

∂z
B(z,E)u

∥∥∥∥
L2(T )

≤ c4n‖V̂ ‖α,sE−1/4‖u‖L2(T ),(6.8b)

for z ∈ C, E ≥ E1, s = m, α as in (6.3).

Now by estimate (6.8a), for E ≥ max(E1, (c4n‖V̂ ‖α,s)4), integral equation

(3.6) is uniquely solvable for µ̃+(z, ·, E) ∈ L2(T ), at fixed z ∈ C, by the

method of successive approximations. This implies the Lipschitz stability of

the reconstruction of µ̃+(z, ·, E) on T , at fixed z ∈ C, from h± on T × T

with respect to small errors in the L2 norm. �

Proof of Theorems 6.1 and 6.2 (Vappr −→ V ). Our high-energy convergence

estimate is as follows:

(6.9) |V (z)− Vappr(z,E)| ≤ c5n‖V̂ ‖α,sE−(s−2)/2,

where z ∈ C, E ≥ E2(α, s, σ, n, ‖V̂ ‖α,s), α as in (6.3), s = m, 0 < σ < 1

(see [19] for complete details). This estimate follows from (2.29), (2.36),
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(3.6)–(3.9), (6.2b) and the following estimates (whose proofs for n = 1 can

be found in [19]):

∣∣∣∣2iE
1/2 ∂

∂z

(∫

D−

µ(z,−1

ζ̄
, E)r(ζ, z, E)dReζ dImζ

)∣∣∣∣ ≤ c6n‖V̂ ‖α,sE−(s−2)/2,

(6.10)

‖µ+(z, ·, E) − µ̃+(z, ·, E)‖L2(T,Mn(C)) ≤ c7n‖V̂ ‖α,sE−s/2,(6.11)
∥∥∥∥
∂µ+

∂z
(z, ·, E) − ∂µ̃+

∂z
(z, ·, E)

∥∥∥∥
L2(T,Mn(C))

≤ c7n‖V̂ ‖α,sE−(s−1)/2,(6.12)

for z ∈ C, s = m ≥ 3, E ≥ E2(α, s, σ, n, ‖V̂ ‖α,s), α as in (6.3). �

Remark 6.3. The constant E2 of Theorems 6.1 and 6.2 can be fixed as

some constant such that E ≥ E2 implies that

E ≥ E1, |µ(z, λ,E)| ≤ 2,

∣∣∣∣
∂

∂z
µ(z, λ,E)

∣∣∣∣ ≤ 1,

‖B(z,E)‖op
L2(T )

≤ 1

2
,

∥∥∥∥
∂

∂z
B(z,E)

∥∥∥∥
op

L2(T )

≤ 1

2
,

for z ∈ C, λ ∈ C, where µ and B are estimated in (5.7) and (6.8).

Now, let ΦV,0(x, y,E), x, y ∈ ∂D, denote the Schwartz kernel of the op-

erator Φ(E) − Φ0(E) considered as precise data for Problem 1. Let Φ′
V,0

denote ΦV,0 with some small errors (for the case of Problem 1) and f ′ denote

f with some small errors (for the case of Problem 2). Let V ′
appr denote Vappr

reconstructed from Φ′
V,0 via Algorithm 1 (for Problem 1) and from f ′ via

Algorithm 2 (for Problem 2).

The Lipschitz stability of Theorems 6.1 and 6.2 is summarized in the

following remarks:

Remark 6.4. Let the assumptions of Theorem 6.1 hold and let

(6.13) δ = ‖Φ′
V,0(·, ·, E) − ΦV,0(·, ·, E)‖L2(∂D×∂D) ≤ δ1(V,E,D, n).

Then

(6.14) ε = ‖V ′
appr − Vappr‖L∞(D) ≤ η1(V,E,D, n)δ.

Here δ1 and η1 are some positive constants summarizing the Lipschitz sta-

bility of Algorithm 1. In particular,

δ1(V,E,D, n) ≥ δ01 ,(6.15)

η1(V,E,D, n) ≤ η01E,(6.16)
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as ‖ΦV,0(·, ·, E)‖L2(∂D×∂D) → 0, for some positive (sufficiently small) δ01 and

(sufficiently big) η01, where δ01 and η01 are independent of V and E for fixed

D and n.

Remark 6.5. Let the assumptions of Theorem 6.2 hold and let

(6.17) δ = ‖f − f ′‖L2(ME) ≤ δ2(V,E, n).

Then

(6.18) ε = ‖Vappr − V ′
appr‖L∞(R2) ≤ η2(V,E, n)δ.

Here δ2 and η2 are suitable constants summarizing the Lipschitz stability of

Algorithms 2. In particular,

δ2(V,E, n) ≥ δ02 ,(6.19)

η2(V,E, n) ≤ η02E,(6.20)

as ‖f‖L2(ME) → 0, for some positive (sufficiently small) δ02 and (sufficiently

big) η02 , where δ02 and η02 are independent of V and E for fixed n.

Note that in Remark 6.5, the norm ‖·‖L2(ME) is identified with ‖·‖L2(T×T ).

The property that ‖f‖L2(ME) → 0, mentioned in Remark 6.5, is fulfilled,

in particular, for E → +∞, as a consequence of estimate (6.1b). On the con-

trary, the property that ‖ΦV,0(·, ·, E)‖L2(∂D×∂D) → 0, mentioned in Remark

6.4, is not fulfilled for E = Ej , j → ∞, for any sequence {Ej}j∈N of positive

real numbers such that Ej → +∞ as j → ∞, if V 6≡ 0. In this connection,

our high-energy conjecture is that

(6.21) sup
j∈N

‖ΦV,0(·, ·, Ej)‖L2(∂D×∂D) < +∞,

for some {Ej}j∈N dependent on V , where Ej → +∞ as j → ∞.

Note that the E factor in the right side of (6.16) and of (6.20) is related

with the choice of the L2 norm for estimates of the inverse problem data. For

example, for Algorithm 2, at least in the linear approximation (3.11)-(3.13),

this factor disappear if ‖ · ‖L2(ME) is replaced by ‖ · ‖L∞
s (ME), s = m, where

(6.22) ‖u‖L∞
s (ME) = sup

(λ,λ′)∈T×T
(1 + E|λ− λ′|2)s/2|u(λ, λ′)|.
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