
HAL Id: hal-00594663
https://hal.science/hal-00594663

Submitted on 20 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomials over the reals are safe for program
interpretations

Guillaume Bonfante, Florian Deloup, Antoine Henrot

To cite this version:
Guillaume Bonfante, Florian Deloup, Antoine Henrot. Polynomials over the reals are safe for program
interpretations. FOPARA 2009, Nov 2009, Eindhoven, European Union. �hal-00594663�

https://hal.science/hal-00594663
https://hal.archives-ouvertes.fr

Polynomials over the reals are safe for program
interpretations

Guillaume Bonfante1, Florian Deloup2 and Antoine Henrot3

1- Université de Nancy - LORIA, Nancy, France,
2- Université Paul Sabatier, Toulouse - IMT, France

3- Université de Nancy - IECN, Nancy, France

Abstract. In the field of implicit computational complexity, we are con-
sidering in this paper the fruitful branch of interpretation methods. Due
to their good intensional properties, they have been widely developped.
Among usual issues is the synthesis problem which has been solved by
the use of Tarski’s decision procedure, and consequently interpretations
are usually chosen over the reals rather than over the integers. Doing
so, one cannot use anymore the (good) properties of the natural (well-)
ordering of N employed to bound the complexity of programs. We show
that, actually, polynomials over the reals benefit from some properties
that allows their safe use for complexity. We illustrate this by two char-
acterizations, one of PTIME and one of PSPACE.

Among studies in rewriting are the noticeable work concerning termination.
This is now a largely and thoroughly studied field and very elegant methods have
been proposed that cover a large spectrum of algorithms (see for instance [8]).
These studies can be refined to get a characterization of the complexity of first
order programs. This has been one of the main successful approaches of implicit
computational complexity, see for instance the early work [2, 4].

To prove termination by interpretation over a well-founded ordering seems
rather natural and such interpretation methods have been introduced in the
70’s (see [16, 15]). Lankford describes interpretations as monotone Σ-algebras
with domain of interpretation being the natural numbers with their usual or-
dering. The fact that this ordering is well-founded gives immediately the well-
foundedness of the rewriting relation. Based on Kruskal’s Theorem, Dershowitz
showed in [7] that the well-foundedness of the domain of interpretation is not
necessary whenever the interpretations are chosen monotonic and have the sub-
term property.

One of the main interesting points about choosing of real numbers rather
than natural numbers is that we get (at least from a theoretical point of view) a
procedure to verify the validity of an interpretation of a program by Tarski’s de-
composition procedure [25]. But furthermore, we can even give a semi-algorithm
to compute interpretations: indeed, for a given choice of the degree of the in-
terpretations, finding the coefficients of these polynomial becomes decidable.
Actually, since the problem of the verification or the synthesis (up to some de-
gree) can be stated by a first order formula with two alternations of quantifiers,

following Roy et al. [1], the complexity of these algorithms is exponential with
respect to the size of the program. To obtain a faster procedure, we have used
in the crocus tool –developped by the first author– the (sufficient) criterion of
Hong and Jakuš [13].

A second good point is that the use of reals (as opposed to integers) enlarges
the set of rewriting systems that have an interpretation, as shown recently by
Lucas [18].

The main concern of this work is to show that the structure of polynomials
over the reals has an important role from the point of view of complexity. Our
thesis is that, in the field of complexity, due to Stengle’s Positivstellensatz [24],
polynomials over the reals can safely replace polynomials over the integers. To
say it more precisely, one may recover both derivational complexity (up to a
polynomial) and size bounds on terms as applications of the Positivstellensatz.
Moreover, this can be done in a constructive way.

Given a strict interpretation for a Term Rewriting System (TRS), it follows
immediately that for any rewriting step s→ t, we have Ls M > Lt M. If one takes the
interpretation on natural numbers (as they were introduced by Lankford [16]),
this can be used to give a bound on the derivation height. Thus, Hofbauer and
Lautemann have shown in [12] that the derivation height is bounded by a double
exponential. However, their argument uses deeply the fact that the interpretation
of a term is itself a bound on the derivation height:

dh(t) ≤ Lt M. (1)

Indeed, suppose t1 → t2 → · · · → tn, then Lt1 M > Lt2 M > · · · > Ltn M. On
natural numbers, this means that n ≤ Lt1 M. Such a proof does not hold with real
numbers.

Equation (1) comes from the fact that Lt M ≥ Lu M + 1 for terms t → u. This
fact itself is due to a) L` M > Lr M implies that

L` M ≥ Lr M + 1 (2)

and b) that for all xi > yi:

Lf M(x1, . . . , xi, . . . , xn)− Lf M(x1, . . . , yi, . . . , xn) ≥ xi − yi. (3)

The two inequalities (2), (3) do not hold in general for real interpretations. To
recover the good properties holding with natural numbers, people have enforced
the inequalities on terms. For instance [18, 22] suppose the existence of some real
δ > 0 such that L` M ≥ Lr M + δ. We prove that this is not necessary.

The mathematical structure of polynomials over the reals has also been con-
sidered by Shkaravska et al [23] with the intention to compute the size of terms
appearing in computations.

One of our two characterization use dependency pairs. In this vein, we men-
tion here the work of Hirokawa and Moser [10], and, in the same spirit, Lucas
and Peña in [20] made some investigation on the tools of rewriting to tackle
the complexity of first order functional programs. In particular, they provide a
certified compilation procedure to the JVM.

1 Preliminaries

We suppose that the reader has familiarity with first order rewriting. We briefly
recall the context of the study, essentially to fix the notations. Dershowitz and
Jouannaud’s survey [9] of rewriting is a good entry point.

1.1 Syntax of programs

All along, X will denote a set of variables, C a (finite) signature of constructor
symbols and F a (finite) signature of function symbols.

Definition 1. The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,X) 3 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(D-rules) D 3 d ::= f(p1, . . . , pn)→ t

where x ∈ X , f ∈ F , and c ∈ C.

We shall use a type writer font for function symbols and a bold face font for
constructors. Finally, we use u to denote a (finite) sequence of terms u1, . . . , un.
The size of a term is the number of symbols occuring in the term. It is written
|t|.

Definition 2. A program is a quadruplet f = 〈X , C,F , E〉 such that E is a finite
set of D-rules. Each variable in the right-hand side of a rule also appears in the
left hand side of the same rule. We distinguish among F a main function symbol
whose name is given by the program name f.

The set of rules induces a rewriting relation→. The relation ∗→ is the reflexive
and transitive closure of →. We write t0 →n tn the fact that t0 → t1 · · · →
tn. One defines the derivation height for a term t as the maximal length of a
derivation:

dh(t) = max{n ∈ N | ∃v : t→n v}.

Moreover, we suppose programs to be confluent. This is achieved by the
following syntactic restriction due to Huet [14]: (i) Each rule f(p1, · · · , pn) →
t is left-linear, that is a variable appears only once in f(p1, · · · , pn), and (ii)
there are no two left hand-sides which are overlapping. Such programs are called
orthogonal.

A substitution σ is a mapping from variables to terms. We say that it is a
constructor substitution when the range of σ is T (C).

Orthogonal programs define a class of deterministic first order functional
programs. The domain of the computed functions is the constructor term algebra
T (C). The program f computes a partial function JfK : T (C)n → T (C) defined as
follows. For every u1, · · · , un ∈ T (C), JfK(u1, · · · , un) = v iff f(u1, · · · , un) ∗→v.
Otherwise, it is undefined and JfK(u1, · · · , un) = ⊥.

Definition 3 (Call-tree). Suppose we are given a program 〈X , C,F , E〉. Let
be the relation

(f, t1, . . . , tn) g(u1, . . . , um)⇔ f(t1, . . . , tn)→ C[g(v1, . . . , vm)] ∗→C[g(u1, . . . , um)]

where f and g are defined symbols, and t1, . . . , tn, u1, . . . , um are constructor
terms. Given a term f(t1, . . . , tn), the relation defines a tree whose root is
(f, t1, . . . , tn) and η′ is a daughter of η iff η η′. The size of a call-tree is the
number of nodes it contains.

When we do not make a distinction between constructors and function sym-
bols, we speak of Term Rewriting System (TRS). We present them as 3-tuple
(X , Σ,R) where Σ is the signature and R is the set of rules.

1.2 Interpretations of programs

Given a signature Σ, a Σ-algebra on the domain A is a mapping L− M which
associates to every n-ary symbol f ∈ Σ an n-ary function Lf M : An → A. A
Σ-algebra can be extended to terms by

– Lx M = 1A, that is the identity on A, for x ∈ X ,
– Lf(t1, . . . , tm) M = comp(Lf M, Lt1 M, . . . , Ltm M) where comp is the composition

of functions.

The interpretation Lt M of a term t with n variables is then a function An → A.
An interpretation for a rewriting system (Σ,R) is an order-preserving map-

ping L− M from (T (Σ), +→) to some (partially) ordered set (A,>). From now on,
we restrict our attention to the case where (A,>) is the set of nonnegative real
numbers R+ with the usual ordering and L− M has the structure of a Σ-algebra:

Definition 4. A polynomial strict interpretation of a rewriting system (Σ,R)
is given by a Σ-algebra L− M such that:

1. for all symbol f , the interpretation Lf M is a monotonic polynomial, that is if
xi > x′i, then

Lf M(x1, . . . , xn) > Lf M(x1, . . . , x
′
i, . . . , xn),

2. for all symbol f , the interpretation Lf M verifies the (weak) sub-term property,
that is Lf M(x1, . . . , xn) ≥ xi with i ∈ 1..n,

3. for all rules `→ r, L` M > Lr M.

Example 1. Consider the system(
A(B(x))→ B(B(A(x)))
c(A(x))→ A(A(c(x)))

)
For this system, we define the interpretation LA M(x) = 3(x + 2), LB M(x) =

x+ 1 and Lc M(x) = x2 + 1.

Sup-interpretation have been introduced by Marion and Pechoux in [21]. We
give a slight variant of their definition. In [21], the last inequality refers to the
size of normal forms. We prefered to have a more uniform definition.

Definition 5. A (polynomial) sup-interpretation of a rewriting system (Σ,R)
is given by a Σ-algebra L− M such that:

1. Lf M is a weakly monotonic polynomial, that is if xi ≥ x′i, then

Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x
′
i, . . . , xn),

2. for all constructor terms t1, . . . , tn, we have the inequality Lf(t1, . . . , tn) M ≥
LJfK(t1, . . . , tn) M.

Lemma 1. Suppose that we are given a Σ-algebra for which interpretations of
symbols f is bounded by some polynomials. Then, for all closed terms, Lt M ≤
22O(|t|)

.

Proof. By induction on terms. A proof (for natural numbers, but this has no
consequences here) can be found in [2].

Definition 6. An interpretation of a program is said to be additive if for all
constructor c, we have Lc M(x1, . . . , xn) =

∑n
i=1 xi+cc for some constant cc > 0.

2 Positivstellensatz and applications

In this subsection, we introduce a deep mathematical result, the Positivstellen-
satz. Then we give some applications to polynomial interpretations. They will
be key points of the Theorems 4 and 6 in our analysis of the role of reals in
complexity (§3).

Let n > 0. Denote by R[x1, . . . , xn] the R-algebra of polynomials with real
coefficients. Denote by (R+)n = {x = (x1, . . . , xn) ∈ Rn | x1, . . . , xn > 0} the
first quadrant. Since we need to consider only the R-algebra of polynomial func-
tions (R+)n → R, it will be convenient to identify the two spaces. In particular
throughout this section, all polynomial functions are defined on (R+)n.

2.1 Preliminary results

Definition 7. A polynomial P ∈ R[x1, . . . , xn] is said over-homogeneous of
level d if there exists A,α > 0 such that for any λ > α and any x ∈ (R+)n,
||x|| > A =⇒ P (λx) ≥ λdP (x).

Remark . This notion is essentially independent of the chosen norm on Rn. We
say that P is (A,α)-over-homogeneous when we need to specify the bounds
(A,α). In this case, the bounds depend on the choice of the norm || · || on Rn.

Lemma 2. Let Q ∈ R[x1, . . . , xn] an over-homogeneous polynomial of level d ≥
1 such that there is some r > A such that

inf
||x||=r

Q(x1, . . . , xn) > 0

For any C > 0, there is D > 0 such that ||x|| > D =⇒ Q(x) > C.

Proof. Let us write α = inf ||x||=r Q(x) > 0. One observes thatQ(λx) ≥ λdQ(x) ≥
λdα > C for all λ > (C/α)1/d = D.

Lemma 3. Let Q ∈ R[x1, . . . , xn] an over-homogeneous polynomial of level d ≥
1.

(i) If there is x ∈ (R+)n such that P (x) ≥ 0 then P (λ x) ≥ 0 for all λ ≥ 0;
furthermore, the same statement holds with all inequalities replaced by strict
inequalities.

(ii) If there is x ∈ (R+)n such that P (x) < 0 then P (λ x) < 0 for all λ > 0;

Proof. (i): P (λ x) ≥ λd P (x) ≥ 0. (ii): arguing by contradiction, suppose there
is λ0 > 0 such that P (λ0 x) > 0. Then by (i), P (λx) > 0 for all λ > 0. Hence
P (x) > 0, which is a contradiction.

Lemma 4. Given P ∈ R[x1, . . . , xn], a over-homogeneous polynomial of level
d ≥ 2 such that ∀x ∈ (R+)n, ||x|| > B =⇒ P (x) ≥ 0 for some constant C.
Suppose that Q is over-homogeneous of level k with 1 ≤ k < d. Then, P +Q is
over-homogeneous of level k.

Proof. Suppose that P is (A,α)-over-homogeneous andQ is (B, β)-over-homogeneous.
Let C = max(A,B). For ||x|| > C, λ > max(1, α, β),

P (λx) +Q(λx) ≥ λdP (x) + λkQ(x)
≥ λkP (x) + λkQ(x) since P (x) ≥ 0
= λk(P +Q)(x)

Given a polynomial P ∈ R[x1, . . . , xn], we can decompose it in homogeneous
components P = Pd + Pd−1 + · · ·P0 with each Pi of degree i. Furthermore we
note P≥k the polynomial

∑d
i=k Pi.

Lemma 5. Let P ∈ R[x1, . . . , xn] of total degree greater than 1. Suppose that
there is some C > 0 such that for all k ≥ 0, and all x ∈ (R+)n with ||x|| > C,
we have P (x) > 0. Then, P≥k is over-homogeneous of level k for 1 ≤ k ≤ d and
P≥k(x) > 0 with ||x|| > C ′ for some C ′.

Proof. By descending induction on k ≤ d. For the base case, P≥d = Pd is
homogeneous, hence over-homogeneous, of level d. Moreover, Pd has the sign
of P for ||x|| > C (1) hence Pd is nonnegative for ||x|| > C. Since each Pi is
homogeneous (and consequently over-homogeneous) of level i, the induction step
is a direct consequence of Lemma 4.
1 This comes from the equality P (λx) = λdPd(x) +R(λx) with degλ(R) < d.

Theorem 1. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),

then, there exist A ≥ 0 such that P (x1, . . . , xn) > x1+· · ·+xn whenever ||x|| > A.

Proof. Let d = deg(P). Without loss of generality, we may assume that P (0) =
P0 = 0. For d = 1, the theorem is easily seen to hold. Assume that d > 1. Note
that (i) implies that P (x) > 0 if x 6= 0 (x is assumed to lie in (R+)n as usual).
Applying Lemma 5, we see that P≥k is positive and over-homogeneous of level
k for any 1 ≤ k ≤ d.

Lemma 6. If P is positive, over-homogeneous of level k ≥ 2 and satisfies
the hypothesis (i), then for any K > 0, there exists A = AK > 0 such that
P (x1, . . . , xn) > K(x1 + · · ·+xn) whenever ||x|| > A. In particular, the theorem
holds.

Proof of the Lemma. Let x = (x1, . . . , xn) ∈ (R+)n, let λ ∈ R+ and let X = λ x.
We have

P (X) = P (λ x) ≥ λkP (x) ≥ λk max(x1, . . . , xn)

≥ λk x1 + · · ·+ xn
n

= λk−1X1 + · · ·+Xn

n
.

Since k ≥ 2, there exists A ≥ 0 such that for any λ > A, λk−1

n > K > 0. This
proves the lemma.

In particular the theorem holds if P has no homogeneous component P1 of
degree 1. We now complete the proof when P1(x) = a1x1 + · · ·+ anxn 6= 0.

Lemma 7. P≥2 = P − P1 satisfies the hypothesis (i).

Proof of the lemma. Argue by contradiction and suppose it does not. There
exists then x = (x1, . . . , xn) ∈ (R+)n such that P≥2(x) − xi ≤ 0 for some
fixed 1 ≤ i ≤ n. Since P≥2(x) is over-homogeneous, Lemma 4 ensures that the
polynomial Q(x) = P≥2(x) − xi is over-homogeneous of level 1. By Lemma 3,
Q(λx) = P≥2(λ x) − λ xi ≤ 0 for any λ ≥ 0. Since P≥2 is positive, the map
λ 7→ P≥2(λx) is a positive polynomial of degree d. Thus

lim
λ→+∞

P≥2(λx)− λxi = +∞,

which is a contradiction.

Apply Lemma 6 to P≥2 with K = 1+max(|a1|, . . . , |an|). We obtain P≥2(x) >
K(x1 + · · ·+ xn). Hence

P (x) = P≥2(x) + P1(x) > (K + a1)x1 + · · ·+ (K + an)xn > x1 + · · ·+ xn.

This achieves the proof of the theorem.

Corollary 1. Let P (x1, . . . , xn) be a polynomial with the hypotheses of Theo-
rem 1. There is a constant A such that for any subset I ⊆ {1..n}, such that

x1, . . . , xn ≥ 0, xi ≥ A, for all i ∈ I =⇒ P (x1, . . . , xn) >
∑
i∈I

xi.

Proof. Use the norm ||x|| = max(|x1|, . . . , |xn|).

Theorem 2. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1 ≥ 0, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),

(ii) ∀x1 ≥ 0, . . . , xn ≥ 0 :
∂P

∂xi
(x1, . . . , xn) > 0 for all i ≤ n,

then, there exist A > 0 such that for any ∆ > 0, we have P (x1, . . . , xi +
∆, . . . , xn) > P (x1, . . . , xn) +∆ whenever ||x|| > A.

Proof. For simplicity we take n = 2 (the reader will readily extend the argument
to the general case) and we make an analysis by case. Consider the case where

P (x, y) = P0(y) + xP1(y). Let us consider
∂P

∂x
(x, y) = P1(y). First , we prove

that P1(y) ≥ 1 for all y ≥ 0. Ad absurdum, suppose that P1(y) < 1. Then, take

x >
P0(y)

1− P1(y)
> 0. Due to (i), we have

P (x, y)− x = P0(y) + x(P1(y)− 1) > 0. (4)

Since P1(y)− 1 < 0 and x >
P0(y)

1− P1(y)
> 0, we have

P0(y) + x(P1(y)− 1) < P0(y) +
P0(y)

1− P1(y)
× (P1(y)− 1) = 0

which contradicts (4).
In particular, for y large enough, P1(y) > 1. The conclusion follows by the

mean value inequality.

Consider now
∂P

∂y
(x, y) = P ′0(y) + xP ′1(y). Suppose P ′1(y0) < 0 for some

y0 > 0. Then

lim
x→∞

∂P

∂y
(x, y0) = lim

x→∞
P ′0(y0) + xP1(y0) = −∞.

This contradicts (ii). So, P ′1(y) ≥ 0. Now, P (0, y) = P0(y) > y shows that

P ′0(y) − 1 ≥ 0 for y sufficiently large, say y > A. Then we have
∂P

∂y
(x, y) =

P ′0(y) + xP ′1(y) > 1. We conclude as before.
The case P (x, y) = Q0(x, y) + yQ1(x, y) is symmetric. So the remaining case

is when degx(P) ≥ 1 and degy(P) ≥ 1. Thus Q :=
∂P

∂x
is positive and has total

degree greater than 2. According to Lemma 5, Q≥1 is positive over-homogeneous.

Hence Lemma 2 applies to Q≥1 with C = 1 +

∣∣∣∣∣∂P∂x(0, 0)

∣∣∣∣∣. Hence there is some

D > 0 such that for ||(x, y)|| > D,

∂P

∂x
(x, y) = Q≥1(x, y) +Q(0, 0) > 1 + C +

∂P

∂x
(0, 0) > 1.

We conclude with the mean value inequality.

Corollary 2. With the hypotheses of Theorem 2, there is a bound B such that
for all x1, . . . , xn ≥ 0, if xi > B, then, P (x1, . . . , xi+∆, . . . , xn) > P (x1, . . . , xn)+
∆.

Proof. Apply Theorem 2 with the norm ||x|| = max(|x1|, . . . , |xn|).

2.2 Positivstellensatz and applications

Theorem 3 (Positivstellensatz, Stengle [24]). Suppose that we are given
polynomials P1, . . . , Pm ∈ R[x1, . . . , xk], the following two assertions are equiv-
alent:

1. {x1, . . . , xk : P1(x1, . . . , xk) ≥ 0 ∧ · · · ∧ Pm(x1, . . . , xk) ≥ 0} = ∅
2. ∃Q1, . . . , Qm : −1 =

∑
i≤mQiPi where each Qi is a sum of squares of poly-

nomials (and so is positive and monotonic).

Moreover, these polynomials Q1, . . . , Qi can effectively computed. We refer
the reader to the work of Lombardi, Coste and Roy [17, 5]. As a consequence, all
the constructions given below can be actually (at least theoretically) computed.

It will be convenient to derive from the Positivstellensatz a proposition useful
for our applications.

Proposition 1. Let (Pi)i∈I and (Qj)j∈J two finite families of polynomials in
R[x1, . . . , xn]. Suppose that maxi∈I Pi(x) > maxj∈J Qj(x) for all x ∈ (R+)n.
Then there exists a polynomial R ∈ R[x1, . . . , xn] such that

R(x) > 0 and max
i∈I

Pi(x) ≥ max
j∈J

Qj(x) +
1

R(x)
, for all x ∈ (R+)n.

Proof. First we prove the result when J is a singleton. Suppose that maxi∈I Pi(x) >
Q(x) for all x ∈ (R+)n. Let s ∈ I. Define

Ds = {x ∈ (R+)n : Ps(x) ≥ Pi(x) for all i 6= s}.

For x ∈ Ds, Ps(x) = maxi∈I Pi(x) > Q(x). Therefore the setx1 ≥ 0, . . . , xn ≥ 0,
Ps(x)− Pi(x) ≥ 0, for alli 6= s,
Q(x)− Ps(x) ≥ 0

is empty. The Positivstellensatz yields positive monotonic polynomials (Tk)1≤k≤n,
(Ui)i 6=s and Vs such that∑

k

Uk(x)xk +
∑
i 6=s

Ti(x)(Ps(x)− Pi(x)) + Vs(x)(Q(x)− Ps(x)) = −1.

Hence for x ∈ Ds,

(Ps(x)−Q(x))Vs(x) = 1 +
∑
i 6=s

Ti(x)(Ps(x)− Pi(x)) ≥ 1.

Thus
∀x ∈ Ds, max

i∈I
Pi(x)−Q(x) ≥ 1

Vs(x)
.

Hence, setting R(x) =
∑
s∈I Vs(x) > 0, we have

∀x ∈ (R+)n, max
i∈I

Pi(x)−Q(x) ≥ 1
R(x)

.

Next, we treat the general case. The previous argument yields for each j ∈ J a
positive monotonic polynomial Rj such that maxi∈I Pi(x) − Qj(x) ≥ 1

Rj(x)
for

all x ∈ (R+)n. Set R(x) =
∑
j∈J Rj(x). For any j ∈ J ,

max
i∈I

Pi(x) ≥ Qj(x) +
1

R(x)
.

Hence maxi∈I Pi(x) ≥ maxj∈J Qj(x) + 1
R(x) .

We give a first application.

Proposition 2. Suppose that a TRS (Σ,R) admits an interpretation L− M over
Max-Poly such that for all rules ` → r, we have L` M > Lr M. There is a positive,
monotonic polynomial P such that for any rule `→ r, we have L` M(x1, . . . , xk)−

Lr M(x1, . . . , xk) ≥
1

P (x1, . . . , xk)
.

Proof. For each symbol `, there is a finite family of polynomials (Pi)i∈I such that
L` M(x1, . . . , xn) = maxi∈I Pi(x1, . . . , xn). Therefore, if L` M > Lr M, Proposition
1 applies: there is a positive monotonic polynomial P`→r such that such that

L` M(x1, . . . , xk)−Lr M(x1, . . . , xk) ≥
1

P`→r(x1, . . . , xk)
. Since there are only finitely

many rules, we can take P =
∑
`→r∈R P`→r.

Proposition 2 has an important consequence. Since, in a derivation all terms
have an interpretation bounded by the interpretation of the first term, there is
a minimal decay for each rule of the derivation.

Proposition 3. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Max-Poly. For all A > 0, the set of terms {t ∈ T (Σ) | Lt M < A} is finite.

Proof. For all symbols f ∈ Σ, we have Lf M(x1, . . . , xn) > xi for all i. By Propo-

sition 2, there is a polynomial P such that Lf M(x1, . . . , xn) ≥ xi+
1

P (x1, . . . , xn)
.

Take a term f(t1, . . . , tn) such that Lf(t1, . . . , tn) M < A.

Lf(t1, . . . , tn) M ≥ Lti M +
1

P (Lt1 M, . . . , Ltn M)

≥ Lti M +
1

P (A, . . . , A)

where the second inequality is due to the sub-term property together with the
monotonicity of P . Consequently, the height of a term t with Lt M < A is bounded
by A× P (A, . . . , A). There are only finitely many such terms.

Proposition 4. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Poly. There is a real A > 0 and a positive, monotonic polynomial P such
that for all x1, . . . , xn ≥ 0, if xi1 , . . . , xik > A, then for all symbol f , we have

Lf M(x1, . . . , xn) ≥ xi1 + · · ·+ xik +
1

P (Lf M(x1, . . . , xn))
.

Proof. Due to Corollary 1, there is a bound A such that for all x1, . . . , xn ≥ 0, if
xi1 , . . . , xik > A, then for all symbol f , we have Lf M(x1, . . . , xn) > xi1 + · · ·+xik .
Applying Theorem 3, we get Qf such that Lf M(x1, . . . , xn) ≥ xi1 + · · · + xik +

1
Qf (x1, . . . , xn)

≥ xi1 + · · · + xik +
1

Qf (Lf M(x1, . . . , xn), . . . , Lf M(x1, . . . , xn))
. It

is then routine to get a uniform polynomial wrt to all symbols.

3 The role of reals in complexity

We have now all the tools to prove that reals can safely replace integers from a
complexity point of view. This is illustrated first by the following theorem.

Theorem 4. Functions computed by programs with an additive interpretation
(over the reals) are exactly Ptime functions.

The rest of the section is devoted to the proof of the Theorem. The main
difficulty of the proof is that inequalities as given by the preceding section only
hold for sufficiently large values. So, the main issue is to split ”small” terms
(and ”small rewriting steps”) from ”large” ones. The Positivstellensatz gives us
the arguments for the large terms (Lemma 8), Lemmas 9,10 show that there are
not too many small steps. Lemma 12 describe how small steps and big steps
alternate.

From now on, we suppose we are given a program with an additive strict
interpretation over polynomials.

Lemma 8. There is a polynomial P and a real A > 0 such that for all step `σ →

rσ with Lrσ M > A, then, for all context C, we have LC[`σ] M ≥ LC[rσ] M+
1

P (L`σ M)
.

Proof. From Proposition 2, we have a polynomial P such that L` M − Lr M >
1
P

.

From 2, we have a uniform bound A such that for all symbol f , f(x1, . . . , xi +
∆, . . . , xn) ≥ f(x1, . . . , xn)+∆ if xi > A. The Lemma is then obtained by induc-

tion on the context C. For the base case, we have L`σ M ≥ Lrσ M+
1

P (Lt1 M, . . . , Ltn M)
where t1, . . . , tn are in the range of σ. By sub-term property, Lti M ≤ L`σ M, so that

L`σ M ≥ Lrσ M +
1

P (L`σ M, . . . , L`σ M)
. Using A as defined above, the induction step

is immediate (by the sub-term property).

Definition 8. Given a real A > 0, we say that the A-size of a closed term t is
the number of subterms u of t (including itself) such that Lu M > A. We note |t|A
the A-size of t.

Lemma 9. There is a constant A and a polynomial Q for which |t|A ≤ Q(Lt M)
for all closed terms t. For all B > A, |t|B ≤ |t|A ≤ Q(Lt M).

Proof. Take A and P as given by Proposition 4. Consider one term t, we note

a =
1

P (Lt M)
. By induction on sub-terms u of t, we show that |u|A ≤ Lu M/a.

If Lu M ≤ A, then |u|A = 0 ≤ Lt M/a. Otherwise, Lu M > A. Let us write u =
f(u1, . . . , un), and say that ui1 , . . . , uik verify Luij M > A. Then,

|u|A = 1 + |ui1 |A + · · ·+ |uik |A
≥ (a+ Lui1 M + · · ·+ Luik M)/a (by induction)

≥ (
1

P (Lu M)
+ Lui1 M + · · ·+ Luik M)/a (sub-term property)

≥ Lf(u1, . . . , un) M/a (due to Proposition 4).

As a consequence, |t|A ≤ Lt M× P (Lt M).

For A > 0, we say that t = C[`σ] → C[rσ] = u is an A-step whenever
Lrσ M > A. We note such a rewriting step t→>A u. Otherwise, it is an ≤ A-step,
and we note it t →≤A u. We use the usual ∗ notation for transitive closure. In
case we restrict the relation to the call by value strategy2, we add “cbv” as a
subscript. Take care that an →≤A-normal form is not necessarily a normal form
for →.

Lemma 10. There is a constant A and a polynomial P such that for all terms
t, any call by value derivation t →∗≤A,cbv u has length less than P (Lt M).

2 Innermost in the present context.

Proof. Take A and P as in the Lemma above. Let S be the finite set of terms with
interpretation smaller than A. According to Proposition 2, the set S is finite.
Then, we can define a to be the maximal derivation length of terms in S. Let d be
the maximal arity of a term. By induction on terms, we show that the derivation
length t →∗≤A,cbv u of ≤ A-steps is bounded by max(|t|A × (d+ 1)× (a+ 1), a).

– If Lt M ≤ A, then, by definition of a, we have dh(t) ≤ a = max(|t|A × (d +
1)× (a+ 1), a).

– Otherwise, let us write t = f(t1, . . . , tn). According to ≤ A-call by value, con-
sider the rewriting f(t1, . . . , tn) →m

≤A,cbv f(u1, . . . , un). Let us note i1, . . . , ik
indices for which Ltij M > A, we have by induction

m ≤ (n− k)× a+ (d+ 1)× (a+ 1)×
k∑
j=1

|tij |A

≤ d× a+ (d+ 1)× (a+ 1)×
k∑
j=1

|tij |A.

Consider f(u1, . . . , un), if f(u1, . . . , un) is not a ≤ A-normal form, since the
ui are ≤ A-normal form, a ≤ A-step is of the form f(u1, . . . , un) → u with
Lu M ≤ A. In which case, the derivation length of u is bounded by a. To sum
up, the derivation length is then bounded by 1 + a+ d× (a+ 1) + (d+ 1)×
(a+ 1)×

∑k
j=1 |tij |A = (d+ 1)× (a+ 1)× |t|A.

Using the Lemma above, |t|A ≤ P (Lt M), and consequently, the derivation
length is bounded by (d+ 1)× (a+ 1)× P (Lt M).

Lemma 11. For constructor terms, we have Lt M ≤ Γ ×|t| for some constant Γ .

Proof. Take Γ = max{
1
γc
| Lc M(x1, . . . , xn) =

∑n
i=1 xi + γc}. By induction on

terms.

Lemma 12. Let us suppose we are given an additive program with interpretation
in Poly. For a given function symbol f , there is a strategy such that for all
constructor terms t1, . . . , tn, the derivation length of f(t1, . . . , tn) is bounded by
Q(max(|t1|, . . . , |tn|)) where Q is a polynomial.

Proof. Let us consider A and P0 as defined in Lemma 10 and B and P1 as defined
in Lemma 8. We define C = max(A,B). Let us consider the strategy as intro-
duced above: rewrite as long as possible the according to →≤C,cbv , and then,
apply an C-step. That is, we have t1 →∗≤C,cbv t

′
1→>C,cbv t2 →∗≤C,cbv t

′
2 →∗. In

Lemma 10, we have seen that there are at most (d+1)×a×P0(Lti M) steps in the
derivation ti →∗≤C,cbv t

′
i. From Lemma 8, we can state that there are at most

Lt1 M×P1(Lt1 M) such C-steps. Consequently, the derivation length is bounded by
Lt1 M× P1(Lt1 M)× (1 + (d+ 1)× a× P0(Lt1 M)) since Lti M < Lt1 M.

Consider now a function symbol f ∈ F , from Lemma 11, Lf(t1, . . . , tn) M =
Lf M(Lt1 M, . . . , Ltn M) ≤ Lf M(Γ max(|t1|, . . . , |tn|), . . . , Γ max(|t1|, . . . , |tn|)). The con-
clusion is immediate.

Proof (Theorem 4). With the strategy defined above, we have seen that the
derivation length of a term f(t1, . . . , tn) is polynomial wrt to max(|t1|, . . . , |tn|).
The computation can be done in polynomial time due to dal Lago and Mar-
tini, see [6], together with the fact that the normal form has polynomial size
(Lemma 11). For the converse part, we refer the reader to [2] where a proof that
Ptime programs can be computed by functional programs with strict interpre-
tations over the integers. This proof can be safely used in the present context.

3.1 Dependency Pairs with polynomial interpretation over the reals

Termination by Dependency Pairs is a general method introduced by Arts and
Giesl [26]. It puts into light recursive calls.

Suppose f(t1, . . . , tn) → C[g(u1, . . . , un)] is a rule of the program. Then,
(F (t1, . . . , tn), G(u1, . . . , un)) is a dependency pair where F and G are new sym-
bols associated to f and g respectively. S(C,F , R) denotes the program thus
obtained by adding these rules. The dependency graph links dependency pairs
(u, v)→ (u′, v′) if there is a substitution σ such that σ(v) ∗→σ(u) and termination
is obtained when there is no cycles in the graph. Since the definition of the graph
involves the rewriting relation, its computation is undecidable. In practice, one
gives an approximation of the graph which is bigger. Since this is not the issue
here, we suppose that we have a procedure to compute this supergraph which
we call the dependency graph.

Theorem 5. [Arts,Giesl [26]] A TRS (C,F , R) is terminating iff there exists a
well-founded weakly monotonic quasi-ordering ≥, where both ≥ and > are closed
under substitution, such that

– ` ≥ r for all rules `→ r,
– s ≥ t for all dependency pairs (s, t) on a cycle of the dependency graph and
– s > t for at least one dependency pair on each cycle of the graph.

It is natural to use the polynomial orderings presented above for the quasi-
ordering and the ordering of terms. However, the ordering > is not well-founded
on R, so that system may not terminate. Here is such an example.

Example 2. Consider the non terminating system:(
f(0)→ 0
f(x)→ f(s(x))

)
Take L0 M = 1, Ls M(x) = x/2. The system has a unique dependency pair F (x)→
F (s(x)) for which we can give the interpretation LF M(x) = x+1.3 Take Lf M(x) =
x.

3 The interpretation is correct since for all terms t, Lt M > 0.

One way to avoid these infinite descent is to force the inequalities over reals to
be of the form P (x1, . . . , xn) ≥ Q(x1, . . . , xn)+δ for some δ > 0 (see for instance
Lucas’s work [19]). Doing so, one gets a well-founded ordering on reals. We
propose an alternative approach to that problem, keeping the original ordering
of R.

Definition 9. A weak polynomial4 algebra for a signature Σ consists of mono-
tone polynomials Lf M for all symbols in Σ.

Definition 10. A R-DP-interpretation for a program P = (C,F , R) is weak
polynomial algebra L− M for S(P) such that

1. there is δ > 0 such that for each n-ary constructor c with n > 0, for all
x1, . . . , xn ≥ 0, we have Lc M(x1, . . . , xn) ≥ δ,

2. L` M ≥ Lr M for `→ r ∈ R,
3. Ls M ≥ Lr M for (s, r) ∈ DP (R),
4. for each dependency pair (s, t) in a cycle, Ls M > Lr M holds.

The main difference with say [22] is that we do not ask for the existence of
some δ such that Ls M ≥ Lr M + δ in the last equation. To simplify the proof of
Theorem 6, we took Ls M > Lt M for all dependency pairs in a cycle, and not for
only one. We make the conjecture that the theorem holds, even in the standard
case: for each cycle, there is a dependency pair (s, t) such that Ls M > Lr M.

Lemma 13. Suppose that a polynomial P is weakly monotonic in every ar-
gument on (R+)n. Suppose that it is not constant wrt some variable. Then
for any arbitrarily small δ > 0, there is a polynomial Pδ such that for all
x1 ≥ δ, . . . , xn ≥ δ, if xi ≥ Pδ(A) for some i, then P (x1, . . . , xn) ≥ A.

Proof. Consider first that n = 1. We write P (x) = axk +R(x) with k being the
degree of P . There is B > 0 such that for all x > B, we have P (x) ≥ a/2xk.

Then, define Pδ(A) = 1 +B +
2
a
×A. We observe

P (x) ≥ P (Pδ(A)) by monotonicity

≥
a

2
(Pδ(A))k since Pδ(A) > B

≥
a

2
Pδ(A) since Pδ(A) > 1

≥ A by definition of Pδ(A)

For a polynomial with n + 1 variable P (x1, . . . , xn+1). Let us consider one
of the variables. Wlog, we take it to be the last one: xn+1. Then, for an ar-
bitrary small δ, P is not constant wrt xn+1. And, for all x1, . . . , xn ≥ δ, we
have P (x1, . . . , xn, xn+1) ≥ P (δ, . . . , δ, xn+1) by monotonicity. Define Q(xn+1) =
P (δ, . . . , δ, xn+1), and we come back to the case with one variable.
4 L-polynomial algebra in the terminology of Lucas [19].

Theorem 6. A program with a R-DP-interpretation is strongly terminating.

Moreover, its derivation height is bounded by 222O(n)

with n the size of the input.
This bound is tight.

Proof. Since, in the present terms, the hypothesis of the Theorem 5 do not hold,
we come back to its proof and show that we have an extra-ingredient to get the
termination property. Actually, we give a presentation of the proof by means of
call-tree. Since the size of a call tree gives an upper bound on the derivation
height, we get a direct more proof for our Theorem.

Let us consider the call-tree of a term f(t1, . . . , tn) for some constructor terms
t1, . . . , tn. The size of the call tree bounds the derivation height of the term
f(t1, . . . , tn). Suppose that we prove that there is a polynomial P such that the
height of the call tree is polynomial wrt to the interpretation of F (t1, . . . , tn).
Since the branching of the call-tree is bounded by R the maximal size of the right
hand side of rules, the size of the call-tree is bounded by RP (Lf(t1,...,tn) M). But,
since LF (t1, . . . , tn) M ≤ 22O(|F (t1,...,tn)|)

by Lemma 1, we have P (LF (t1, . . . , tn) M) ≤
P (22O(

∑n
i=1 |ti|+1)

) = 22O(maxn
i=1 |ti|) . And, the conclusion follows.

So, it remains to prove that the existence of such a polynomial P . This is
done by induction on the rank of symbols. But, first, consider a rule f(pi)σ →
C[g(ei)]σ with f and g of same rank. Then, we have LF (pi) M > LG(ei) M. Notice
that Proposition 2 applies in the present context for dependency pairs of same

rank, so that we can state that LF (pi) M− LG(ei) M >
1

P (x1, . . . , xn)
where xi are

the variables of F (pi). Wlog, we can suppose (possibly by padding arguments)
that P is common to all the dependency pairs of equal rank.

Now, let’s work on the induction. Actually, the base case draw the shape of
the proof.

Base case Let us consider a symbol f of minimal rank and some constructor
terms t1, . . . , tn and finally, let P = f1(u1), . . . , fk(uk)), . . . be a path in the
call tree of f(t1, . . . , tn). From hypothesis (4) of Definition 10, we can state that
LF1(u1) M > LF2(u2) M > · · · .

Given a dependency pair given by ` = h(pi)→ C[g(ei)] = r with h and g of
equal rank, we extract the sequence Pψ = (fψ(i)(uψ(i)))i∈N from P such that

– fψ(i) = h and
– `σ = fψ(i)(uψ(i))→ C[fψ(i)+1(uψ(i)+1)] = r.

Wlog, we can suppose that LH(pi) M varies with x1, . . . , xm and is constant
wrt xm+1, . . . , xn. Let us consider a (possibly empty) set θ ⊆ {1..m}. To simplify
the readability of the proof, we suppose θ = {k..m}.

We extract the sequence Pϕ = (fϕ(i)(uϕ(i)))i∈N from Pψ such that

1. for all j ≤ k, Lσ(xj) M 6= 0,
2. for all j ≥ k, Lσ(xj) M = 0,

where σ is the substitution mentioned in the construction of Pψ.
Observe that LH(pi) M varies with x1, . . . , xk. And that Lσ(xi) M ≥ δ for all

i ≤ k. Consequently, from Lemma 13, we get a polynomial Q such that Lσ(xi) M ≤

Q(Lfi(ui) M). But, then, LH(pi) M ≥ LG(ei) M+
1

P (Q(LFi(ui) M), . . . , Q(LFi(ui) M))
≥

LG(ei) M +
1

P (Q(LF1(u1) M), . . . , Q(LF1(u1) M))
.

As a conclusion, we have a polynomial bound on the initial subsequence
restricted to the redex of a chosen rule and a particular choice of variable whose
interpretation is 0. Since the number of dependency pairs is finite, since the
number of choice for the variables is finite (bounded by 2D where D is the
maximal number of variables in a rule), since only (finitely many) constants
have interpretation equal to 0, we can say that the length of the sequence P is
bounded by N × 2D × |C| × P (Q(LF1(u1) M), . . . , Q(LF1(u1) M)).

Induction step Suppose f has a higher rank. A path of a call-tree can be decom-
posed in a sub-path of nodes with function of rank of f , and symbols of smaller
rank. The depth of symbols of rank of f can be treated as it has been done in
the base case. For symbols of lower rank, one employs the induction. The depth
of symbols of different ranks sums, and we get a call-tree of polynomial depth
in the interpretation of the initial term.

The bound is tight as shown by the next example.

Example 3. The Quantified Boolean Formula (QBF) problem is Pspace com-
plete. It consists in determining the validity of a boolean formula with quantifiers
over propositional variables. Without loss of generality, we restrict formulae to
¬,∨,∃. QBF problem is solved by the following program.

not(tt)→ ff not(ff)→ tt
or(tt, y)→ tt or(x, tt)→ tt or(ff ,ff)→ ff

0 = 0→ tt s(x) = 0→ ff
0 = s(y)→ ff s(x) = s(y)→ x = y
in(x, ε)→ ff in(x, cons(a, l))→ or(x = a, in(x, l))

verify(Var(x), t)→ in(x, t)
verify(Not(ϕ), t)→ not(verify(ϕ, t))

verify(Or(ϕ1, ϕ2), t)→ or(verify(ϕ1, t), verify(ϕ2, t))
verify(Exists(n, ϕ), t)→ or(verify(ϕ, cons(n, t)), verify(ϕ, t))

qbf(ϕ)→ verify(ϕ, ε)

They admit the following interpretation :

L0 M = Lε M = 1
Ls M(x) = LNot M(x) = LVar M(x) = x+ 1

Lcons M(x, y) = LOr M(x, y) = LExists M(x, y) = x+ y + 1
Lor M(x) = Lnot M(x) = Lqbf M(x) = 1

L= M(x, y) = Lin M(x, y) = Lverify M(x, y) = 1
LNOT M(x) = x

LOR M(x, y) = LEQ M(x, y) = max(x, y)
LIN M(x, y) = x+ y

LVERIFY M(x, y) = 2× x+ y + 1
LQBF M(x) = 2x+ 1

It is well known that the derivation height of the QBF is exponential wrt
the number of nested Exists symbols. Since the following program builds an
input of double exponential depth, we get the triple exponential bound on the
derivation height.

add(0, y)→ y add(s(x), y)→ s(add(x, y))
mult(0, y)→ 0 mult(s(x), y)→ add(y, mult(x, y))
dexp(0)→ s(s(0)) dexp(s′′(x))→ mult(dexp(x), dexp(x))

e(0)→ tt e(s(n))→ Exists(n, e(n))
main(x)→ qbf(e(x))

with interpretations:

L0 M = 0
Ls′′ M(x) = (x+ 3)2

Le M(x) = 3x LE M(x) = x

Lmain M(x) = Lqbf(e(x)) M LMAIN M(x) = 6x+ 1
Ladd M(x, y) = x+ y LADD M(x, y) = x+ y

Lmult M(x, y) = x× y LMUL M(x, y) = (x+ 1)(y + 1)
Ldexp M(x) = x+ 2 LDEXP M(x) = x

We observe that the term main(s′′ · · · s′′︸ ︷︷ ︸
n times q

0)→∗ Exists(s2
n

(0, . . . ,Exists(0, tt) · · ·)

gives the triple exponential derivation height lower bound. We provide in the
technical report an interpretation for the system.

It is not clear whether there are some programs with R-DP-interpretation
which do not admit L-weak interpretation. Nevertheless, there is at least one
good point for R-DP-interpretation: the logical formulation of the synthesis of
R-DP-interpretation involves less alternation of quantifiers. Suppose that we are
given program and a fixed degree, the logical formula corresponding to L` M > Lr M
is ∀x1, . . . , xn > 0 : L` M(x1, . . . , xn) > Lr M(x1, . . . , xn). While for expressing >δ,

we have to write ∃δ > 0 : ∀x1, . . . , xn > 0 : L` M(x1, . . . , xn) > Lr M(x1, . . . , xn)+δ.
Since the complexity of the QED procedure depends drastically on the number
of alternation, we may hope to get thus a better procedure.

With respect to complexity, the proof of Theorem 6 gives us some insight on
the cost of a computation. Consider programs with a R-DP-interpretation such
that any constructor c has an interpretation of the form kc +

∑
i xi, in other

words, an additive R-DP-interpretation in [22] terminology. There is a constant
K such that for all contructor terms t, Lt M ≤ K.|t|, so that Lf(t1, . . . , tn) M is
polynomially bounded wrt the size of the (constructor) terms ti.5 The proof
shows then that the nesting of function calls is itself bounded polynomially. If,
furthermore the interpretation of capital functions verify the sub-term property,
due to Lemma 13, we can state that the size of arguments remain polynomial.
This is an other formulation (and a slightly more general one) of the hypothesis
of “bounded recursion call” which can be found in [22]. So that computations
can be performed within Pspace. Since polynomial time can be done with such
systems (cf. [2]), and QBF can be simulated, it is then clear that the following
Theorem holds:

Theorem 7. Functions computed by programs

– with additive R-DP-interpretations
– the interpretation of capital symbols F has the sub-term property

are exactly Pspace computable functions.

Proof. The completeness comes from the example of the QBF, plus the fact that
all functions in polynomial time can be easily computed by such programs. It is
then routine to plug all these programs together.

Conclusion

If one goes back to the two characterization of complexity classes presented in
this paper, one sees that we essentially use two arguments: a) interpretations
with the subset properties provide a polynomial bound wrt the interpretation
of the initial interpretation, and b) the size of terms is polynomial wrt their
interpretation.

As a consequence, our result can be used in other context such as proofs of
termination by matrix interpretations [11]. Potentially, any system dealing with
decreasing chain of (interpreted) could be treated.

References

1. Saugata Basu, Richard Pollack, and Marie.-Françoise Roy. Algorithms in real al-
gebraic geometry. Springer, Berlin Heidelberg New York, 2003.

5 See [3] for a proof.

2. Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélène Touzet. Al-
gorithms with polynomial interpretation termination proof. J. Funct. Program.,
11(1):33–53, 2001.

3. Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. Quasi-
interpretations: a way to control resources. Theoretical Computer Science, 2009.
to appear.

4. Adam Cichon and Jean-Yves Marion. The light lexicographic path ordering. Tech-
nical report, Loria, 2000. Workshop Rule.

5. Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dynamical method in
algebra: Effective nullstellensätze. Annals of Pure and Applied Logic, 111:203256,
2001.

6. Ugo dal Lago and Simone Martini. Derivational complexity is an invariant cost
model. In Foundational and Practical Aspects of Resource Analysis (FOPARA
’09), 2009.

7. Nachum Dershowitz. A note on simplification orderings. Information Processing
Letters, pages 212–215, 1979.

8. Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
pages 69–115, 1987.

9. Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of Theoretical Com-
puter Science vol.B, chapter Rewrite systems, pages 243–320. 1990.

10. Nao Hirokawa and Georg Moser. Automated complexity analysis based on the
dependency pair method. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR, volume 5195 of Lecture Notes in Computer Science, pages
364–379. Springer, 2008.

11. Dieter Hofbauer. Proving termination with matrix interpretations. In Proceedings
of the 17th International Conference on Rewriting Techniques and Applications,
RTA-06, volume 4098 of Lecture Notes in Computer Science, pages 328–342, Seat-
tle, USA, 2006. Springer-Verlag.

12. Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of
derivations. Lecture Notes in Computer Science, 355:167–177, 1988.

13. Hoon Hong and Dalibor Jakus. Testing positiveness of polynomials. J. Autom.
Reasoning, 21(1):23–38, 1998.

14. Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

15. Gérard Huet and Derek Oppen. Equations and rewrite rules: A survey. In R. V.
Book, editor, Formal Language Theory: Perspectives and Open Problems, pages
349–405. AP, 1980.

16. D.S. Lankford. On proving term rewriting systems are noetherien. Technical
report, 1979.

17. Henri Lombardi. Effective real nullstellensatz and variants. In Effective Methods
in Algebraic Geometry, volume 94, page 263288. Mora T., Traverso C. Birkhaüser,
1991.

18. Salvador Lucas. On the relative power of polynomials with real, rational, and inte-
ger coefficients in proofs of termination of rewriting. Appl. Algebra Eng., Commun.
Comput., 17(1):49–73, 2006.

19. Salvador Lucas. Practical use of polynomials over the reals in proofs of termination.
In PPDP ’07: Proceedings of the 9th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 39–50, New York, NY,
USA, 2007. ACM.

20. Salvador Lucas and Ricardo Peña. Rewriting techniques for analysing termination
and complexity bounds of safe programs. In LOPSTR 08, pages 43–57, 2008.

21. Jean-Yves Marion and Romain Péchoux. Resource analysis by sup-interpretation.
In FLOPS, volume 3945 of Lecture Notes in Computer Science, pages 163–176.
Springer-Verlag, 2006.

22. Jean-Yves Marion and Romain Péchoux. Characterizations of polynomial com-
plexity classes with a better intensionality. In Sergio Antoy and Elvira Albert,
editors, PPDP, pages 79–88. ACM, 2008.

23. Olha Shkaravska, Marko van Eekelen, and Ron van Kesteren. Polynomial size
analysis of first-order shapely functions. CoRR, abs/0902.2073, 2009.

24. Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geom-
etry. Mathematische Annalen, 207(2):87–97, 1973.

25. Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Univer-
sity of California Press, 1951. 2nd edition.

26. Arts Thomas and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

