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Adhesive contact: a few comments on cohesive zone
models and self-consistency

E. Barthel1

Surface du Verre et Interfaces, CNRS/Saint-Gobain, UMR 125, 93330, Aubervilliers Cedex
France.

Abstract

We comment on the use of cohesive zone models in the context of the adhesive

contact of spheres. We also propose an alternative derivation of the double Hertz

cohesive zone model proposed by Greenwood and Johnson (J. Phys. D - Appl.

Phys. 3279 (1998)). Based on this example, and the derivation method we use,

we discuss some features of adhesive contact models, with emphasis on the role

of the additional, physically motivated, lengthscale introduced by the cohesive

zone.

Keywords: adhesion, contact, JKR, DMT, cohesive zone models, double

Hertz model.

Introduction

Cohesive zone models have been introduced in adhesive contact problems

20 years ago [1, 2]. They are useful to inject an additional lengthscale in adhe-

sion problems. In some cases indeed the details of the adhesive interaction are

significant, beyond the mere adhesion energy w.

For instance for the DMT-JKR transition [1], the decay length of the inter-

action controls the fine details of the macroscopic contact variables, although

the impact of this additional lengthscale is limited: for instance, moderate vari-

ations of the adhesion force are found throughout the DMT-JKR transition.
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Things start to look different if the system size becomes of the order of the co-

hesive zone size. As an example cohesive zones are instrumental in the modelling

of flaw insensitive adhesion [3, 4]. For macroscopic samples, the local contact

edge lengthscale impacts the stress distribution locally, and will strongly affect

the overall behavior when non-elastic material response must be taken into ac-

count. For plastic response the peak stress governs the deviation from elastic

behaviour. For viscoelastic materials, the lengthscale combined with the contact

edge velocity controls deformation rates and eventually dissipation [5, 6, 7, 8].

For these reasons it is useful to study cohesive zone models in the context

of adhesive contact problems. A large number such models have been pro-

posed [1, 9, 10]. Comparison of various cohesive zone models has demonstrated

that they are equivalent to a very large extent [9]. It is therefore possible to

use the simpler one, for instance regarding computational difficulties. A very

simple – and numerically amenable – cohesive zone model has been proposed

by Greenwood and Johnson in 1998 [10]. This so called double Hertz model has

subsequently been used for more complex systems, especially viscoelastic [11].

The original derivation of the double Hertz model was carried out by scaling

from the Hertz solution. In this paper we reconsider the double Hertz model

in a slightly different context. We show how the double Hertz model can be

derived using the auxiliary function method [12, 11]. Then we take advantage

of its numerical simplicity to illustrate some generic features of adhesive contact

models.

1. Standard models

We start from the contact of an elastic, frictionless and axisymmetric punch

with a rigid plane. The convex punch shape is otherwise not specified. Negative

stresses are taken as tensile.

The punch is loaded with force F which results in the development of a

contact zone of radius a (Figure 1). The penetration δ is the rigid body dis-

placement of the undeformed parts of the punch far away from the contact zone.
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In the absence of adhesion (Hertzian contact), the penetration δ and force F

can be calculated as a function of the contact radius a:

δ = δH(a) (1)

F = FH(a) (2)

1.1. Attractive interactions – DMT model

Simply adding adhesive interaction stresses σ(r) around the contact zone

results in the following contact equations (Fig. 1)

δDMT = δH(a) (3)

FDMT = FH(a) + Fext(a) (4)

where the outer force term

Fext(a) = 2π

∫ +∞

a

drrσ(r) (5)

is the force applied on the sphere by the interaction stresses.

The gap h(r) is the normal distance between the flat surface and the sur-

face of the deformed punch. If the cohesive stresses derive from an interaction

potential V (z) then

σ(r) = −dV

dz
(h(r)) (6)

The adhesive force Fext(a) can be calculated numerically [13]. The result is in

fact strongly dependent upon geometry [14].

In the specific case of a sphere of radius R, however, the result is remark-

ably simple. If the interaction stresses are weak enough, we can expect limited

deviation (Fig.2) of the gap from

h(r) ' r2

2R
(7)

from which, to a very good approximation, Fext is found constant:

Fext(a) = 2πRV (0) (8)
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Since the adhesion energy w = −V (0) > 0 the pull out force for the DMT

theory [15] is then

Fpullout = −2πRw (9)

In the DMT theory the work of adhesion results from the vertical motion (pene-

tration) of the sphere in the interaction field, irrespective of the contact problem

and especially of the contact radius.

1.2. Surface energy transfer – JKR

In the JKR model adhesion is a completely different mechanism involving

adhesion energy coupled to the contact area and the release of elastic energy

stored in the deformed punch. The JKR model can be viewed as a pull-back

motion applied to the sphere inducing a peel action, as shown on Fig. 2. This

pull-back motion at fixed contact radius is a flat punch displacement δfp. It

results in the formation of a neck at the edge of the contact (Fig. 2). This neck

is experimentally observed on soft solids in adhesion.

The adhesion energy is controlled by the neck height δfp as

2πaw = E?δ2
fp (10)

where

E? =
E

1− ν2
(11)

This equation is at the root of the JKR model [16]. This is a local approach

to adhesion and the neck height depends upon the elastic response and adhesion

energy but is completely independent upon the punch shape.

Linear superposition of the adhesionless contact for an arbitrary punch shape

and the flat punch solutions provides the contact equations

δJKR(a) = δH(a) + δfp (12)

FJKR(a) = FH(a) + Ffp(a) (13)

In contrast to the previous models the flat punch term offsets both Hertzian

force and penetration. The correction to the Hertzian force, the flat punch force
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term, is given by

Ffp(a) = δfpS(a) (14)

where the stiffness 2 is

S(a) = 2aE? (16)

The pull out force for the JKR theory for a sphere of radius R is the minimum

registered for Eq. 13 or

Fpullout = −3
2
πRw (17)

1.3. Domains of validity

Considering here a sphere of radius R, an order of magnitude estimate of the

contact radius is obtained by equating Hertzian and adhesive force contributions

in Eq. 4 or 13. Then

FH(a) =
4E?a3

3R
' πwR (18)

As a result the typical contact radius is

ac =
(

πwR2

E?

) 1
3

(19)

and the typical penetration is

δ ' a2

R
=

(
π2w2R

E?2

) 1
3

(20)

The gap shape Eq. 7 will deviate from the parabolic profile only for heights of

the order of the penetration so that Eq. 8 applies when the interaction range

δint À
(

π2w2R

E?2

)1/3

(21)

For the JKR model, combining Eqs. 10 and 19 we observe that the JKR flat

punch displacement is

|δfp| '
(

πw2R

E?2

)1/3

(22)

2Regarding this stiffness note also that Eq. 10 is a special case of the compliance equation

2πaw =
1

2
δ2
fp

dS

da
(15)

which results from the differentiation of the elastic energy at fixed grip.
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Now if the neck height δfp is large enough, which is typically the case for soft

materials, then it spans the full interaction range, of order δint. A contact radius

variation da results in a transfer of work w d(πa2) from the contact zone, in

complete analogy with a peel test for example. The crack is in a steady state

and the surface energy approach is vindicated.

Tabor [17] suggested to introduce a parameter comparing the flat punch

displacement to the interaction range potential δint ' w/σ. Denoting this

parameter λ, we have

λ ≡ δfp

δint
' σ

(
wE?2

πR

)1/3
(23)

This parameter measures the impact of the interaction stresses on the surface

deformations. The JKR case is obtained for large λ while small λ values char-

acterize the DMT regime. In contrast to DMT, the JKR theory applies when

interaction stresses are large and the materials compliant.

2. Cohesive Zone Models

In the general case, the relation between macroscopic variables is

δ(a) = δH(a) + δfp (24)

F (a) = FH(a) + Ffp(a) + Fext(a) (25)

where Eq. 5 is valid. However if the flat punch displacement δfp is not zero, then

the gap h is increased from the flat punch displacement and the contribution

to Eq. 5 is reduced. Simultaneously in Eq. 10 only a fraction of the total

adhesion energy is involved because steady state is not reached. Of course for a

quantitative description to be obtained the details of the interactions between

surfaces must be specified and at this point the cohesive zone model enters in

the picture.

2.1. The double Hertz model

Here we consider a specific cohesive zone model, the double Hertz model. In

the double Hertz model, the stress distribution in the cohesive zone is ellipsoidal.

6



With the present notation:

σ(r) =




−σ0

√
c2−r2

c2−a2 if a ≤ r ≤ c

0 if c < r
(26)

with σ0 > 0. Greenwood and Johnson calculated the full solution by scaling

Hertzian distributions by some ad hoc factor k. The factor k basically plays the

role of the cohesive stress σ0 but the form

k

R
=

πσ0

2E?
√

c2 − a2
(27)

mixes parameters relevant to the punch and parameters relevant to the cohesive

zone, which obscures the meaning of the various terms, especially in the self-

consistency equation (Eq. 30). Below we briefly show how the double Hertz

model can be derived from the cohesive zone stress distribution using auxiliary

functions but before that, we summarize the main results of the double Hertz

model [10], translated into the present notation:

1. penetration

δ = δH(a)− πσ0

2E?

√
c2 − a2 (28)

2. force

F (a) = FH(a)− 2πσ0

3
c3 − a3

√
c2 − a2

. (29)

3. self-consistency equation

w =
1
3

(
1
R

+
πσ0

2E?
√

c2 − a2

)
σ0√

c2 − a2
IH(c, a). (30)

with

IH(c, a) = (c− a)2(c + 2a) (31)

We will now introduce the model with a rather general method in which

adhesive elastic contacts are handled using auxiliary functions. We first show

how the method applies to the double Hertz model then discuss some general

features of adhesive contacts on the specific example of this cohesive zone model.
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For an axisymmetric, elastic frictionless contact, we define two auxiliary

functions [8, 11]

g(s) =
∫ +∞

s

rσ(r)
(r2 − s2)1/2

dr, (32)

θ(s) =
d

ds

∫ s

0

ru(r)√
s2 − r2

dr, (33)

Then mechanical equilibrium results in the relation

g(s) =
E?

2
θ(s) for all s. (34)

Note that in contrast to the equilibrium relation written in direct space, this

relation is purely local.

2.1.1. Normal Surface Stresses

From Eq. 32 and the stress distribution Eq. 26, we calculate g outside the

contact zone. The inverse form

σ(r) = − 2
π

∫ c

r

g′(s)√
s2 − r2

ds (35)

directly suggests that for a ≤ r ≤ c

g′(r) =
π

2
σ0√

c2 − a2
r (36)

so that g(r) is parabolic:

g(r) =





π
4 σ0

r2−c2√
c2−a2 if a ≤ r ≤ c

0 if c < r
(37)

This simple analytical form for g is the very reason why the double Hertz model

is so amenable.

2.1.2. Surface Displacements

For a given punch shape θ is known inside the contact zone. Indeed we find

from Eq. 33 that

θ(r) = δ − δH(r) (38)
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where the function δH(a) is the penetration for the adhesionless contact 3 for a

contact radius a. In particular it appears that θ(a) is the flat punch displacement

of Eq. 10.

2.2. Contact Equations

Using Eq. 34, continuity of the stress distribution at a implies

g(a) =
E?

2
θ(a) (39)

which determines the flat punch displacement. From Eq. 37 we obtain in the

double Hertz model

g(a) = −π

4
σ0

√
c2 − a2 (40)

From what has been said so far, it is clear that the value of the auxiliary

function g taken at r = a is the key variable in the present approach. We will

now investigate the meaning of g(a) in more detail.

2.2.1. Penetration

From Eq. 39 we obtain the flat punch displacement as a function of g(a)

δfp =
2

E?
g(a) (41)

which is negative, in agreement with the pull-back motion involved. Then Eq. 28

results.

2.2.2. Force

The two first terms in Eq. 25 are

FH(a) + Ffp(a) = FH(a) + 4ag(a) = FH(a)− πσ0a
√

c2 − a2 (42)

where the second term is the JKR-like flat punch force term (Eq. 13). The third

term (the DMT-like external force term – Eq. 5) is given by

Fext(a) = − πσ0

3
√

c2 − a2
(c− a)2(2c + a). (43)

Altogether all three contributions result in Eq. 29.

3As shown by inserting g(a) = 0 in Eq. 39
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3. Self-Consistent Approach

Generally speaking, solving the elastic problem taking into account equation

6 exactly is tedious, and unnecessary [9]. Instead we resort to a weaker form of

the same equation, imposing as additional condition that the spatial distribu-

tion should mimick the stress distribution derived from a reasonable interaction

potential (Eq. 6). Based on the stress distribution given by Eq. 26 and enforc-

ing the definition of adhesion energy [9], we obtain the following self-consistency

equation

w = −
∫ +∞

0

dzσ(z) = −
∫ +∞

a

σ(r)
dh(r)

dr
dr (44)

The calculation of the gap h(r) is more involved. It is carried out by inverting

Eq. 33 and the results are summarized in the appendix. The various contribu-

tions add up to Eq. 30.

As discussed previously [18], the first term results from the work of the

interaction stresses in the Hertzian displacement field (linear in σ0) while the

second term is the work of the interaction stresses in the displacement field they

have induced themselves (quadratic in σ0). The first term is of DMT character

while the second term is JKR (or fracture-like) in nature. Indeed the derivation

of the relation between stress intensity factor and energy release rate is exactly

the calculation of the work of the fracture stresses in the fracture displacement

for a virtual crack motion [19].

In the large σ0 limit ε ≡ c − a ¿ a and the first DMT like term in the self

consistency equation Eq. 30 is negligible. Then using Eqs. 40 and 41 the JKR

equation Eq. 10 is recovered. Conversely in the small σ0 limit

σ0c
2

3R
' w (45)

and Eq. 25 reduces to Eq. 8. The gradual transition from purely external force

contribution (DMT) to purely peeling effect (JKR) is illustrated on Fig. 3.
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3.1. Surface stresses

The distribution of normal surface stresses (Fig. 4) for r ≤ a can be calcu-

lated through Eq. 35 resulting in

σz(r) =
2
π

{(
E?

R
+

π

2
σ0√

c2 − a2

) √
a2 − r2 − π

2
σ0√

c2 − a2

√
c2 − r2

}
(46)

When ε = (c− a) → 0 the difference of the last two terms converges as

√
c2 − r2 −

√
a2 − r2 → a(c− a)√

a2 − r2
(47)

so that this contribution to the stress distribution converges as

σzz(r) → 2
π

g(a)√
a2 − r2

(48)

where Eq. 40 with
√

c + a → √
2a has been used. This is the flat punch stress

distribution expected in the JKR limit, as demonstrated on Fig. 4.

Close to the crack tip, this stress distribution takes on the fracture-like

distribution

σz ' K√
2π(a− r)

(49)

where the stress intensity factor

K =
2g(a)√

πa
(50)

This result further illustrates the alternative role of g(a) as an expression of the

stress intensity factor.

3.2. The Carpick-Schwartz model

We also note in passing that all models describing the JKR-DMT transition

are not cohesive zone models. From the previous considerations, we can conclude

that the present theoretical framework is perfectly amenable to an attractive

interaction resulting from the superposition of a very short range interaction in

the JKR manner (adhesion energy w1) and a very long range interaction in the

DMT manner (adhesion energy w2). The total adhesion energy is w = w1 +w2.

The flat punch displacement will be determined by

2πaw1 = E?δ2
fp (51)
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and the external force by

Fext(a) = −2πRw2 (52)

from which the contact equations are derived as before. This result amounts to

the Carpick-Schwarz [20, 21] model (CS), which were initially derived from an

ad hoc form of the self consistency equation.

However, in the CS model, the stress distribution is the JKR stress dis-

tribution for the adhesion energy w1. In particular we point to the fact that

this effective adhesive contact model spans the transition without addition of a

physically motivated lengthscale as needed for more advanced contact models.

The Tabor-like parameter defined as w1/w2 mimicks a DMT-JKR transition

as shown by Carpick [20] and Schwarz [21], but only for the macroscopic con-

tact variables. Indeed the singular stress distribution characteristic of the JKR

model is maintained in the CS model. This is different from our previous at-

tempt to include different lengthscales simultaneously [22]. Although the CS

model provides helpful contact equations, at the macroscopic scale, it does not

offer a useful solution for more complex issues such as dissipation at the crack

tip, where the strain rate is mitigated by the finite size of the cohesive zone.

4. Conclusion

We have shown how the double Hertz model can be derived using the auxil-

iary function g and θ. The theory is used to illustrate the structure of adhesive

contact theories. Adhesion is mediated both by the direct interaction through

the gap and by the release of stored elastic energy as in fracture. The range

of the cohesive stresses and the resulting size of the cohesive zone are the key

lengthscales which determine the respective contributions of these two processes.

This lengthscale impacts advanced models where material response is involved.

In particular it is central to the modeling of velocity dependent adhesive contact

of viscoelastic materials.
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Appendix: the gap and the self-consistency equation

The Hertzian gap is

hH(r, a) =
2
π

1
R

fH(r, a), (53)
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where

fH(r, a) ≡
∫ r

a

ds
(s2 − a2)√

r2 − s2
=

{
a

2

√
r2 − a2 +

(
r2

2
− a2

)
arccos

(a

r

)}
(54)

For the double Hertz model the gap is

h(r) =
(

2
πR

+
σ0

E?
√

c2 − a2

)
fH(r, a)

− σ0

E?
√

c2 − a2
Y (r − c)fH(r, c). (55)

For the self-consistency equation 44 the first term only in Eq. 55 contributes to

the integral. We have to calculate

I =
∫ c

a

dr
√

c2 − r2
∂

∂fH
r(r, a). (56)

It can be shown that

I =
π

6
IH(c, a), (57)

where IH is given by Eq. 31 Thus

w =
(

2
πR

+
σ0

E?
√

c2 − a2

)
σ0√

c2 − a2
I (58)

and Eq. 30 results.
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Figure 1: Schematics of an adhesive contact and the relevant boundary conditions: the macro-

scopic contact variables are the force F , the penetration δ and the contact radius a. The known

normal surface displacement u(r) inside the contact zone and the tensile normal surface stress

σ(r) outside the contact zone are schematized by two different types of arrows.
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Figure 2: The gaps for the DMT and JKR limits, along with a solution of the double Hertz

model with Tabor parameter λ = 1. Normalized forms were used with contact radius a = 1

and a sphere radius R = 1. A penetration offset has been applied so that all curves converge

to the undeformed sphere (short dashes) at large radius. The arrow points to the edge of the

cohesive zone in the double Hertz model.
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Figure 3: Evolution of normalized external force and flat punch displacement as a function

of Tabor parameter λ. These two quantities exhibit inverse evolutions, which exemplifies

the transition between the two regimes. For low values of the Tabor parameter, adhesion is

dominated by the work of the external stresses into the rigid body displacement of the punch

(DMT). For larger values, in contrast, interfacial energy is transferred at the crack tip through

the stress singularity (JKR).
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Figure 4: Stress distribution around the cohesive zone as a function of λ. The contact radius

a = 1. The finite size of the cohesive zone, which physically speaking results from the decay

length of the adhesion interactions, regularizes the JKR singularity.
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