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Semi-characteristic polynomials, ϕ-modules and skew

polynomials

Jérémy Le Borgne

Abstract

We introduce the notion of semi-characteristic polynomial for a semi-linear map of a finite-

dimensional vector space over a field of characteristic p. This polynomial has some properties

in common with the classical characteristic polynomial of a linear map. We use this notion to

study skew polynomials and linearized polynomials over a finite field, giving an algorithm to

compute the splitting field of a linearized polynomial over a finite field and the Galois action

on this field. We also give a way to compute the optimal bound of a skew polynomial. We then

look at properties of the factorizations of skew polynomials, giving a map that computes several

invariants of these factorizations. We also explain how to count the number of factorizations

and how to find them all.
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The aim of this paper is to relate the theory of ϕ-modules over a finite field, which is semi-linear

algebra, with the theory of skew polynomials, and give some applications to understand better the

factorization of skew polynomials over finite fields. Let K be a field of characteristic p > 0 endowed

with a Frobenius morphism σ, and let D be a finite-dimensional vector space over K endowed with

a map ϕ that is semi-linear with respect to σ: this structure is called a ϕ-module. If one wants

to evaluate a polynomial with coefficients in K at such a semi-linear map, the ring of polynomials

considered should have a natural structure of skew polynomial ring (or twisted-polynomial ring, as

discussed by Kedlaya in [Ked08]), in order for the relation PQ(ϕ) = P (ϕ)Q(ϕ) to be valid. The

theory of ϕ-modules has been widely investigated in p-adic Hodge theory, often as a tool in the the-

ory of (ϕ,Γ)-modules that Fontaine introduced in [Fon91] for the study of p-adic representations of

local fields. On the other hand, the theory of skew polynomials was founded by Ore, who gave the

fundamental theorems about such polynomials. In the context of finite fields, this theory has been
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recently used (for example by Boucher and Ulmer in [BU09]) to build error-correcting codes. One

of Ore’s main theorems concerns factorizations of skew polynomials, and it says that in two given

factorizations of a polynomial, the irreducible factors that appear do not depend on the factor-

ization up to similarity (similarity is an equivalence relation on skew polynomials, that generalize

the notion of being equal up to multiplicative constant in the case of commutative polynomials,

see section 1.1 for more detail). One very important result concerning skew polynomial rings over

finite fields is a polynomial-time (in the degree of the polynomial) factorization algorithm due to

Giesbrecht in [Gie98].

In order to relate these theories, we introduce in the first part of the article the notion of semi-

characteristic polynomial for a semi-linear map over a vector space over a field K of characteristic

p > 0. Indeed, to a skew polynomial is naturally associated a ϕ-module (whose matrix is the

companion matrix of the polynomial). Conversely, to a ϕ-module over K we associate a skew

polynomial with coefficients in K, the semi-characteristic polynomial. This polynomial should

somehow behave like the characteristic polynomial of a linear map (in particular, its degree is

the same as the dimension of the underlying vector space), except that it depends on the choice

of some element in the ϕ-module D. For the purpose of this article, our definition of the semi-

characteristic polynomial is mostly interesting in the case that the ϕ-module has a basis of the

form (x, ϕ(x), . . . , ϕd−1(x)) for some x ∈ D. We give several properties of the semi-characteristic

polynomial in this context, yielding the fact that the semi-characteristic polynomials given by two

such x are equivalent under the similarity relation, which is a crucial equivalence relation in the

theory of skew polynomials. This polynomial is denoted by χϕ,x. We give an interpretation of

a study of Jacobson about skew-polynomials in our context (see [Jac], Chapter 1) to understand

the factorizations of the semi-characteristic polynomial of a ϕ-module. Our Theorem 1.4.4 gives

a natural bijection between the Jordan-Hölder sequences of a ϕ-module and the factorizations of

its semi-characteristic polynomial, the irreducible factors being given by the semi-characteristic

polynomials of the composition factors. Conversely, our Proposition 1.4.5 shows any factorization

of the semi-characteristic polynomial χϕ,x yields a Jordan-Hölder sequence for the ϕ-module.

In the second part of the article, we use the preceding tools to study skew polynomials over

finite fields. To a skew polynomial is naturally associated a so-called linearized polynomial, which

is a polynomial of the form
∑

aiX
qi , where the cardinal of the base field is a power of q. Linearized

polynomials have long been related to skew polynomials (see for example [LN94]), and it is easy

to see that the set of the roots of a linearized polynomial is a Fq-vector space. On the other hand,

to a ϕ-module is associated a linear representation of a Galois group by Fontaine’s theory of ϕ-

modules in characteristic p, which is recalled briefly in section 2.1. It appears that the considered

representation is naturally the vector space of the roots of the associated linearized polynomial.

As an application, we explain how to find the splitting field of a linearized polynomial together

with the action of the Galois group on its roots:

Theorem 1 (Theorem 2.2.3). Let P ∈ Fqr [X, σ] with nonzero constant coefficient, and let LP be

the associate linearized polynomial. Let Γ be the companion matrix of P , and Γ0 = Γσ(Γ) · · ·σr−1(Γ).

Then the characteristic polynomial Q of Γ0 has coefficients in Fq, and the splitting field of LP has

dimension m over Fqr , where m is the maximal order of a root of Q in Fq. Moreover, the action

of a generator g of the Galois group GFqr
is given in some basis of the Fq-vector space of the roots

of LP by the Frobenius normal form of Γ0.

We give a fast algorithm to compute a multiple of a skew polynomial that lies in the center of the
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ring, which has been a natural question about skew polynomials. In particular, since Giesbrecht’s

algorithm for factoring uses the computation of such a multiple, we improve the complexity of this

part of his algorithm. We also explain how to test the similarity of skew polynomials effectively.

Then, we investigate further the relations between the factorizations of a skew polynomial P and the

structure of the ϕ-module associated to P as suggested by our Proposition 1.4.2. We define a map

Ψ that is shown to be multiplicative and to send a skew polynomial P to a commutative polynomial

of the same degree. This map allows to compute some invariants for P such as the number and

degrees of factors of P in a given class of similarity, and tests irreducibility effectively. We explain

how the factorization of the associated commutative polynomial Ψ(P ) yields one factorization of

P (and in fact, all of them) when Ψ(P ) is squarefree. At the level of ϕ-modules, this map classifies

the ϕ-modules up to semi-simplification. We also show

Theorem 2 (Corollary 2.4.4). Let P ∈ Fqr [X, σ]. Then the similarity classes of irreducible factors

of P appear in all possible orders in the factorizations of P .

We also use the map Ψ to give a new way to compute the number of monic irreducible skew

polynomials of given degree over a finite field. We then give a polynomial-time algorithm in the

degree to count the number of factorizations of a skew polynomial as a product of monic irre-

ducible polynomials, and explain a method to find them all (naturally, an algorithm for this would

be exponential in general because so is the number of factorizations, however our method is linear

in this number).

Note that ϕ-modules are often used as a tool for the study of Galois representations over lo-

cal fields (and usually with characteristic zero). A ϕ-module over a local field has a sequence of

slopes, which are rational numbers that characterise the composition factors of the ϕ-module. It

should be possible to recover the slopes of a ϕ-module over a field of positive characteristic from

a factorization of its semi-characteristic polynomial, and even probably without factoring it using

Newton polygons. This is not the approach of this paper, where the focus is on finite fields, but

this topic will be discussed in the forthcoming paper [LeB].

1 The semi-characteristic polynomial of a ϕ-module

Let K be a field of characteristic p, let a ≥ 1 be an integer, and σ : K → K be the a-th power

of the absolute Frobenius. Set q = pa. The fixed field of σ is the intersection of K with the finite

field with q elements Fq. From now on, we assume that Fq ⊂ K. If P,Q ∈ K[X ] and ϕ is a

semi-linear map on Kd, then it is not true in general that PQ(ϕ) = P (ϕ)Q(ϕ), since ϕ does not

act trivially on K. The right point of view for the polynomials of semi-linear maps is that of skew

polynomials. Before investigating the properties of the semi-characteristic polynomials, we will

recall some definitions and basic properties of the skew polynomial ring with coefficients in K.

1.1 Skew polynomials

Definition 1.1.1. The ring of skew polynomials with coefficients in K, denoted K[X, σ], is the set

of polynomials with coefficients in K endowed with the usual addition, and the non-commutative

multiplication · verifying X · a = σ(a) ·X .
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Definition 1.1.2. Let P,Q ∈ K[X, σ], we say that P is a right-divisor of Q (or that P divides Q

on the right) if there exists U ∈ K[X, σ] such that Q = UP . If this is the case, we say that Q is a

left-multiple of P .

The ring of skew polynomials was first studied by Ore in [Ore33]. In this paper, he proves

that the ring K[X, σ] is a right-euclidean domain, and therefore a left-principal ideal domain. The

notions of right greatest common divisor (rgcd) and left lowest common multiple (llcm) are well

defined: we say that D is a rgcd (resp. a llcm) of P and Q if D is a left-multiple of any polynomial

that divides both P and Q on the right (resp. if it is a right-divisor of any polynomial that is

a left-multiple of both P and Q). The same notions exist on the other side if K is perfect. A

factorization of a skew polynomial is in general not unique up to permutation of the factors and

multiplication by a constant. Two different factorizations are related by the notion of similar

polynomials, which we define now.

Definition 1.1.3. Two skew polynomials P and Q are said to be similar if there exists U ∈

K[X, σ], such that the right-greatest common divisor of U and P is 1, and such that QU is the

left-lowest common multiple of U and P .

Theorem 1.1.4 (Ore, [Ore33]). Let P1 · · ·Pr = Q1 · · ·Qs ∈ K[X, σ] be two factorizations of a

given polynomial as a product of irreducible polynomials. Then r = s and there exists a permutation

σ ∈ Sr such that Qσ(i) and Pi are similar for all 1 ≤ i ≤ r.

We will use the notions of skew polynomials in a context of semilinear algebra, because these

polynomials are naturally the polynomials of semilinear endomorphisms.

1.2 Definition of the semi-characteristic polynomial

As before, let K be a field of characteristic p and σ : K → K be the a-th power of the absolute

Frobenius. We still assume that Fq ⊂ K. A ϕ-module overK is a finite dimensional vector space D

endowed with a map ϕ : D → D that is semi-linear with respect to σ. Such a ϕ-module is said to

be étale if the image of ϕ contains a basis ofD. The aim of this section is to associate to a ϕ-module

a polynomial (or, more precisely, a family of polynomials) that is an analog of the characteristic

polynomial for linear maps. In general, for x ∈ D, the set Iϕ,x = {Q ∈ K[X, σ] | Q(ϕ)(x) = 0}

is a left-ideal. Indeed, Iϕ,x is an additive subgroup of K[X, σ], and if P ∈ Iϕ,x and Q ∈ K[X, σ],

then QP (ϕ)(x) = Q(ϕ)(P (ϕ)(x)) = 0. Hence this ideal has a generator mϕ,x that we may call

the minimal polynomial of x under the action of ϕ. We are mostly interested in the case where

the degree of this polynomial is the dimension of the ϕ-module. In this case, we want to give

an algebraic construction of mϕ,x that will be called the semi-characteristic polynomial of ϕ in

x. The idea is that by Cramer’s formulas, the coefficients of mϕ,x are rational functions in the

coefficients of the matrix of the map ϕ: indeed, if (x, ϕ(x), . . . , ϕd−1(x)) is a basis of the ϕ-module

D of dimension d, then ϕd(x) can be written as a linear combination of x, ϕ(x), . . . , ϕd−1(x), the

coefficients being of the form

det(x, ϕ(x), . . . , ϕi−1(x), ϕd(x), ϕi+1, . . . , ϕd−1(x))

det(x, ϕ(x), . . . , ϕd−1(x))
.

We show that these coefficients are actually polynomials.
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Let d ∈ N and let A = K[(aij)1≤i,j≤d]. Let

G =









a11 · · · a1d
...

...

ad1 · · · add









be the so-called generic matrix with coefficients in A.

Theorem 1.2.1. Let x ∈ Kd \ {0}, and let ϕ be the σ-semi-linear map on Ad whose matrix in the

canonical basis is G. Then there exists a unique family of polynomials P0, . . . , Pd−1 ∈ A, depending

only on x, such that

ϕd(x) = Pd−1ϕ
d−1(x) + · · ·+ P1ϕ(x) + P0x.

Moreover, each Pi is an homogeneous polynomial in the coefficients of G.

Before proving the theorem, let us mention the following corollary :

Corollary 1.2.2. Let L = K(x1, . . . xd), and x =









x1

...

xd









∈ Ld. Let Pi be the polynomials defined

as in Theorem 1.2.1. Then the Pi lie in K[x1, . . . , xd][aij ]. In particular, we can define the Pi for

x = 0.

The proof of the corollary will be given after that of the theorem. Let x0 ∈ Kd, and let (xi) be

the sequence of elements of Ad defined by induction by xi+1 = Gσ(xi). Here, σ acts on a vector in

Ad by raising each coordinate to the same power pa as σ on K. We call this sequence the sequence

of iterates of x0 under G. We will need the following lemma:

Lemma 1.2.3. For all x ∈ Kd \ {0}, the determinant ∆ = det(x0, . . . , xd−1) is an homogeneous

element of A that is squarefree.

The fact that this determinant is homogeneous is clear since for all i ≥ 0, the coefficients of

xi are all homogeneous polynomials of degree
∑i−1

j=0 p
j. We first show another lemma that will

simplify the proof of Lemma 1.2.3.

Lemma 1.2.4. With the above notations, it is enough to prove Lemma 1.2.3 for only one x0 ∈

Kd \ {0}.

Proof. It is harmless to assume that K is algebraically closed (and hence infinite), which we will

do in the proof. Let x0, x
′
0 ∈ Kd \ {0}. Let (xi) (respectively (x′

i)) the sequence of iterates of

x0 (respectively x′
0) under G. We assume that det(x0, . . . , xd−1) is a squarefree polynomial. Let

P ∈ GLd(K) such that x′
0 = Px0. Let y0 = x0 and let (yi) be the sequence of iterates of y0

under P−1Gσ(P ). We have x′
1 = Gσ(x′

0) = Gσ(P )σ(x0) = Py1. An easy induction shows that for

all i ≥ 0, x′
i = Pyi. Hence, det(x′

0, . . . , x
′
d−1) = detP det(y0, . . . , yd−1). Since detP ∈ K×, it is

enough to show that det(y0, . . . , yd−1) is squarefree. Define a morphism of K-algebras θ : A → A

by G 7→ P−1Gσ(P ) (this gives the image of all the indeterminates by θ, and hence defines a unique

morphism of K-algebras). In fact, this morphism is an isomorphism, with inverse given by G 7→

PGσ(P )−1. The map θ extends naturally to Ad and Ad×d and commutes with σ. By definition,

θ(x′
0) = x0 = y0, and θ(xi+1) = θ(G)σ(θ(xi)) = P−1Gσ(P )σ(θ(xi)), which shows by induction

that for all i ≥ 0, θ(xi) = yi. Next, we remark that θ(det(x0, . . . , xd−1)) = det(y0, . . . , yd−1). Since
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θ is an isomorphism, is maps a squarefree polynomial to a squarefree polynomial (the quotient of

A by the ideal generated by a polynomial Q is reduced if and only if Q is squarefree). This proves

the lemma.

We can now prove Lemma 1.2.3.

Proof. Let us prove the proposition by induction on the dimension d. Our induction hypothesis

is that for any field K, the determinant ∆ is a squarefree polynomial. If d = 1, then the result

is obvious. Assume the proposition is proved for d ∈ N, and prove it for d + 1. Recall that any

factorization of ∆ has homogeneous irreducible factors. Therefore, we note that evaluating some

of the variables to zero sends ∆ to a squarefree polynomial (in the unevaluated variables) if and

only if ∆ is squarefree and the evaluation is nonzero. Indeed, if such an evaluation has a square

factor, then so has ∆. Conversely, if ∆ has a square factor, then such an evaluation maps this

square factor to either a nonconstant polynomial or to 0, and hence the evaluation also has a square

factor.

We will evaluate some of the variables to zero, namely we look at

G =

(

0 0 · · · 0

X0 G′

)

,

where X0 is of size (d− 1)× 1 and G′ is of size (d− 1)× (d− 1).

We define by induction Xi+1 = G′σ(Xi) for i ≥ 0. Now let x0 =













1

0
...

0













, and (xi) the sequence of

iterates of x0 under this evaluation of G. Let us compute (xi). First, x1 = Gσ(x0) =

(

0

X0

)

and

x2 =

(

0

X1

)

. An easy induction shows that for all i ≥ 1, xi =

(

0

Xi−1

)

. Therefore, the evaluation

∆′ of ∆ that we are computing is

∆′ = det(x0, . . . , xd−1) =

∣

∣

∣

∣

∣

1 0 0 · · · 0

0 X0 X1 · · · Xd−2

∣

∣

∣

∣

∣

.

This determinant is equal to its lower right (d−1)×(d−1) minor, which is equal to det(X0, . . . , Xd−2).

Denote by S the set of variables appearing in X0 (i.e., a21, . . . , ad1), and S′ the set of all the other

variables appearing in G′. By induction hypothesis, applied with the field K(S), the polynomial

∆′ ∈ K(S)[S′] is squarefree. This shows that if ∆′ has a square factor, then the only variables

appearing in this square factor lie in S. Hence it is enough to find an evaluation in S′ of ∆′

that is squarefree to show that ∆′ is squarefree, which implies that ∆ is squarefree as well. We

use the previous computation that we evaluate in G =

(

0 0 · · · 0

X0 Id−1

)

, where Id−1 is the

d − 1 identity matrix. Then Xi = σi(X0), and the evaluation of ∆′ that we are computing is

∆′′ = det(X0, σ(X0), . . . , σ
d−2(X0)). What we need to prove now is that, in K[b1, . . . , bd], the
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determinant

Vq(b1, . . . , bd) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 bq1 · · · bq
d−1

1

b2 bq2 · · · bq
d−1

2
... · · · · · ·

...

bd bqd · · · bq
d−1

d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(which is known as the Moore determinant) is squarefree. It is a well-known fact that we have the

following factorization:

Vq(b1, . . . , bd) = c
∏

ε∈Pd−1(Fq)

d
∑

i=1

εibi,

with c ∈ F
×
q . By ε ∈ P

d−1(Fq), we mean that the considered d-uples ε have their first nonzero

coordinate equal to one. Note that if ε = (ε1, · · · , εd) ∈ P
d−1(Fq), then Fε =

∑d
i=1 εibi is an

irreducible polynomial (it is homogeneous with global degree 1). Two such distinct polynomials are

not colinear since the coefficients are defined up to homothety, and hence are coprime. Moreover,

if Fε(β1, · · · , βd) = 0, then σ being linear on Fq implies that the evaluation of the q-Vandermonde

determinant at (β1, · · · , βd) is the determinant of a matrix whose rows are linearly dependant over

Fq, so this evaluation is zero. Hilbert’s zeros theorem shows that Fε divides Vq, and given the

coprimality of the Fε’s, their product divides Vq. It is now enough to check that they have the

same degree, that is easily seen to be qd−1 + · · ·+ q + 1 = qd−1
q−1 .

Proof of Theorem 1.2.1. Since there exist simple ϕ-modules of dimension d with coefficients in A

(that is, simple objects in the category of ϕ-modules over A, meaning that they have no nontrivial

subspaces stable under the action of ϕ), the ϕ-module defined by ϕ is simple as a ϕ-module over

the field of fractions B of A. In particular, for all x ∈ Kd \ {0}, there exists a unique family

F0, . . . , Fd−1 ∈ B such that ϕd(x) = Fd−1ϕ
d−1(x) + · · · + F1ϕ(x) + F0x. We want to show that

the Fi’s are actually in A.

Let x0 = x and (xi)i≥0 be the sequence of iterates of x under G: for i ≥ 0, xi is the vector

representing φi(x) in the canonical basis. According to Cramer’s theorem, the Fi’s are given by

the following formula, for i ≥ 0,:

Fi =
det(x0, . . . , xi−1, xd, xi+1, . . . , xd−1)

det(x0, . . . , xd−1)
.

The denominator of Fi is nothing but the determinant ∆ from Lemma 1.2.3. Since it is squarefree

according to that lemma, Hilbert’s zeros theorem (assumingK is algebraically closed) shows that it

is enough to prove that the numerator vanishes whenever the denominator vanishes. If ∆ is mapped

to zero by the evaluation of G at a, then the family (x0(a), . . . , xd−1(a)) is linearly dependent over

K, so it spans a vector space of dimension at most d − 1. But the span of this family is also

stable under ϕ since the smallest subspace stable by ϕ containing x0(a) (that we denote Dx0(a))

is spanned by the xi(a)’s, and for all r ∈ N, xd+r(a) lies in the span of xr(a), . . . , xr+d−1(a).

Therefore, any family of d elements of Dx0(a) is linearly dependent over K, so that the numerator

of Fi vanishes at a for all 0 ≤ i ≤ d− 1, which proves the theorem.

Proof of Corollary 1.2.2. The case d = 1 is obvious, so we will prove the corollary for d ≥ 2.

Recall that we want to show that, applying Theorem 1.2.1 with the field L = K(x1, . . . , xd), we
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get the fact that the Pi’s lie in K(x1, . . . , xd)[aij ]. Now let y =













1

0
...

0













, P =















x1 0 · · · 0

x2 1
. . .

...
... 0

. . . 0

xd · · · 0 1















,

and H = P−1Gσ(P ), so that x = Py, and the Pi associated to x (with respect to the matrix

G) and y (with respect to the matrix H) are the same (by the computation of Lemma 1.2.4).

Since the coefficients of H lie in K[x1, . . . , xd][aij ][x
−1
1 ], so do the Pi’s. Now taking another P

whose determinant is, say, x2 (which is possible since d ≥ 2), we see that the Pi’s also lie in

K[x1, . . . , xd][aij ][x
−1
2 ], so they actually lie in K[x1, . . . , xd][aij ].

Definition 1.2.5. With the previous notations, the polynomial χ0
ϕ,x = Xd −

∑d−1
i=0 PiX

i ∈

A[x1, . . . , xd][X, σ] obtained from the vector x of Corollary 1.2.2 is called the universal semi-

characteristic polynomial in over K.

Given a ϕ-module D of dimension d over K, whose matrix in a basis B of Kd is G(a), and x ∈ D

whose coordinates in the basis B are given by ξ = (ξ1, . . . , ξd), the semi-characteristic polynomial

of ϕ in x in the basis B is the evaluation of χ0
ϕ,x at a, ξ, that will be denoted χϕ,x,B or just χϕ,x

when no confusion is possible.

Remark 1.2.6. We will see later (see Corollary 2.6.2) that if the ϕ-module D has dimension d,

then χϕ,0,B = Xd.

Of course, χϕ,x,B lies inK[X, σ]. The main properties of this polynomial are that χϕ,x,B(ϕ)(x) =

0 and that χϕ,x,B is constructed algebraically from G(a) and the coefficients of x. Let us give an

example with σ(x) = xq, d = 2, G =

(

a b

c d

)

, x =

(

1

0

)

. Then χϕ,x = X2 + P1(a, b, c, d)X +

P0(a, b, c, d), with P0(a, b, c, d) = adcq−1 − bcq, P1(a, b, c, d) = −aq − cq−1d. Note that, when

formally putting q = 1, we recover the expression of the characteristic polynomial. When d = 3,

with x =







1

0

0






, we can write χϕ,x = X3 + P2X

2 + P1X + P0. The polynomial P0 has 336 terms,

P1 has 232 terms, and P2 has 107 terms.

Lemma 1.2.7. Let (D,ϕ) be a ϕ-module of dimension d over K, endowed with a basis B. Let

x ∈ D and let χϕ,x be the associated semi-characteristic polynomial. Then the left-ideal Iϕ,x =

{Q ∈ K[X, σ] | Q(ϕ)(x) = 0} contains χϕ,x, and if the ϕ-module D is generated by x, then

Iϕ,x = K[X, σ]χϕ,x.

Proof. We have already seen that χϕ,x(ϕ)(x) = 0. Assume x generatesD, then x, ϕ(x), . . . , ϕd−1(x)

is a linearly independant family in D, so all the nonzero elements of Iϕ,x have degree at least d.

Then the monic generator of Iϕ,x, which is the minimal polynomial mϕ,x of x by definition, has

degree d. Since Iϕ,x contains a unique monic element of minimal degree, mϕ,x = χϕ,x. Hence

Iϕ,x = K[X, σ]χϕ,x.

The hypothesis that the ϕ-module admits a generator might not sound very satisfactory, but

the following proposition shows that, at least when K is infinite, such a generator always exists.

Proposition 1.2.8. Assume the field K is infinite, and let (D,ϕ) be an étale ϕ-module over K.

Then there exists x ∈ D which generates D under the action of ϕ.
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Proof. Let d = dimD. What we want to prove is that there exists x ∈ D such that the determinant

det(x, ϕ(x), . . . , ϕd−1(x)) 6= 0. We work with the fieldK(X1, . . . , Xd) over which the map σ extends

naturally, and we denote by G the matrix of the map ϕ in a basis of D. Let x0 = (X1, . . . , Xd)

and for 0 ≤ i ≤ d − 1, xi+1 = Gσ(xi), we consider the polynomial R = det(x0, . . . , xd−1). Since

K is infinite, it is enough to show that R is not the zero polynomial. Hence, it is enough to

check that there is a specialization of X1, . . . , Xd in an algebraic closure Kalg of K such that R

is not sent to zero. Since D is isomorphic over Kalg to the ϕ-module whose matrix is identity,

R = αVq(X1, . . . , Xd) where α ∈ K is nonzero and Vq is the q-Vandermonde determinant that

already appeared above, which is nonzero. This shows that R 6= 0.

Remark 1.2.9. We shall see later what happens when K is finite. The matter of when a ϕ-module

over K has a generator is discussed in the section 2.6.1. We will also see in the next section a more

precise description of χϕ,x when x is not a generator (see Corollary 1.4.3).

1.3 Basic properties

We look at some of the first properties of the semi-characteristic polynomials that are directly

related to Ore’s theory of skew polynomials. In particular, we explain how the notion of similarity

appears naturally in our context. Note that the results of this section and the next one are mostly

a reinterpretation of Chapter I of [Jac].

Proposition 1.3.1. Let D be a ϕ-module over K and x, y ∈ D two nonzero elements. Assume

that both x and y generate D as a ϕ-module. Then χϕ,x and χϕ,y are similar.

Proof. Since x generates D, there exists U ∈ K[X, σ] such that y = U(ϕ)(x). Now, let B be a

basis of D, and let χϕ,x, χϕ,y be the semi-characteristic polynomials corresponding to x and y in

this basis. Then χϕ,yU(ϕ)(x) = 0, so χϕ,x is a right-divisor of χϕ,yU .

Since y generates D, there exists a polynomial V such that x = V (ϕ)(y), so that V U(ϕ)(x) = x.

Hence, χϕ,x divides V U − 1 on the right: this exactly means that the right greatest common

divisor of U and χϕ,x is 1. Hence, χϕ,yU , that has degree degU + degχϕ,x, is the left lowest

common multiple of U and χϕ,x. Conversely, let P be a monic polynomial similar to χϕ,x. Then

there exists U ∈ K[X, σ] and V ∈ K[X, σ] two polynomials, such that U and χϕ,x are right-

coprime, and V χϕ,x = PU . Since U and χϕ,x are right-coprime, there exist P1, P2 ∈ K[X, σ] such

that P1U + P2χϕ,x = 1, so P1(ϕ)U(ϕ)(x) = x. In particular, y = U(ϕ)(x) is a generator of D.

Moreover, P (ϕ)(y) = 0, so χϕ,y is a right-divisor of P . Since they have the same degree and P is

monic, they are equal.

Corollary 1.3.2. Let (D1, ϕ1) and (D2, ϕ2) be two isomorphic ϕ-modules. Assume that x1 ∈ D1

generates D1, and x2 ∈ D2 generates D2. Then the semi-characteristic polynomials χϕ1,x1
and

χϕ2,x2
are similar.

Proof. Choosing an isomorphism mapping x1 to some x′
2 ∈ D2, we are reduced to prove that χϕ2,x2

and χϕ2,x′

2
are similar. This follows from Proposition 1.3.1.

This shows that if x generates the ϕ-module D, and B is a basis of D, then the semi-

characteristic polynomial χϕ,x,B does not depend on the choice of the basis up to similarity. Frow

now on, we shall sometimes talk about the semi-characteristic polynomial of a ϕ-module, which

will stand for the set of its characteristic polynomials with first vector generating the ϕ-module.

It is contained in a similarity class that depends neither upon the class of isomorphism of the
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ϕ-module, nor upon the choice of the generator x. More precisely, it is the set of all monic poly-

nomials contained in this similarity class. This set will be denoted by χϕ.

1.4 Semi-characteristic polynomials and sub-ϕ-modules

We now want to understand how the notion of semi-characteristic polynomial behaves with respect

to sub-ϕ-modules.

Proposition 1.4.1. Let (D,ϕ) be a ϕ-module of dimension d over K. Then χϕ,x is irreducible in

K[X, σ] for all x ∈ D \ {0} if and only if D is a simple ϕ-module.

Proof. Assume that χϕ,x is irreducible for all x ∈ D \ {0}. Using the above notations, for all x,

Iϕ,x = K[X, σ]χϕ,x. This means that for all nonzero polynomial Q ∈ K[X, σ] with degQ < d, and

for all x, Q(ϕ)(x) 6= 0. In particular, all the families x, . . . , ϕd−1(x) are linearly independant over

K, so D is simple.

Conversely, assume that D is simple. Let x ∈ D, nonzero. If χϕ,x = PQ with P,Q monic and

degP < d, then P (ϕ)Q(ϕ(x)) = 0. The ϕ-module generated by Q(ϕ(x)) is then of dimension < d,

so it is zero, and Q(ϕ(x)) = 0, which means that χϕ,x divides Q on the right, so Q = χϕ,x.

Proposition 1.4.2. Let 0 → D1 → D → D2 → 0 be an exact sequence of ϕ-modules, and denote by

ϕ1, ϕ, ϕ2 the respective maps on D1, D,D2. Let x ∈ D. Let x̄ = x mod D1, and x1 = χϕ2,x̄(ϕ)(x).

Then

χϕ,x = χϕ1,x1
χϕ2,x̄.

Moreover, if x is a generator of D, then x1 (resp. x̄) is a generator of D1 (resp. of D2).

Proof. We can assume that K is algebraically closed. The set {x ∈ D / x generates D} is the

Zariski-open subset of D {det(x, ϕ(x), . . . , ϕd−1(x)) 6= 0}. Since it is not empty, and the identity

is polynomial in the coefficients of the vector x, it is enough to prove the proposition when x is a

generator of D. The result is clear if D1 = D, so we assume that D1 6= D. In this case, x /∈ D1,

otherwise x would not generate the whole of D. Therefore, x̄ 6= 0. Let x1 = χϕ2,x̄(ϕ)(x). Since

χϕ2,x̄(ϕ)(x̄) = 0, x1 ∈ D1. It is a generator of D1, otherwise there would be a polynomial P with

degree < dimD1 such that P (ϕ)(x1) = 0, so Pχϕ2,x̄(ϕ)(x) = 0, with degPχϕ2,x̄ < dimD, which is

in contradiction with the fact that x generates D. On the other hand, it is obvious that x̄ generates

D2. Hence, χϕ1,x1
χϕ2,x̄(ϕ)(x) = 0, so χϕ1,x1

χϕ2,x̄ is right-divisible by P , and the equality of the

degrees proves that χϕ,x = χϕ1,x1
χϕ2,x̄.

Corollary 1.4.3. Let D be an étale ϕ-module over K of dimension d and x ∈ D. Assume that

the sub-ϕ-module Dx generated by x has dimension r ≤ d. Denote by ϕx the map induced by ϕ on

Dx. Then χϕ,x = χϕx,xX
d−r.

Proof. Apply Corollary 1.4.3 with D1 the sub-ϕ-module generated by x. Since x is 0 in D2 and D2

has dimension d− r, it remains to show that χϕ2,0 = Xd−r. We will show by induction on d that

if D is a ϕ-module of dimension d, then χϕ,0 = Xd. Assume K is algebraically closed. If d = 1, a

direct computation shows that χϕ,0 = X . For d ≥ 2, D is isomorphic to the ϕ-module whose matrix

is identity since K is algebraically closed, so we can pick a sub-ϕ-module D1 of D of dimension 1.

By induction hypothesis and Proposition 1.4.2, we get the fact that χϕ,0 = X ·Xd−1 = Xd.
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Theorem 1.4.4. Let 0 ⊂ Dm ⊂ · · · ⊂ D0 = D be a Jordan-Hölder sequence for the ϕ-module

D. Denote by ϕi the map induced by ϕ on Di, and by ϕi the map induced by ϕ on Di/Di+1 for

0 ≤ i ≤ m− 1. Let x ∈ D. Then

χϕ,x = πm−1 . . . π0,

with πi = χϕi,yi
for some yi ∈ Di/Di+1, for all 0 ≤ i ≤ m− 1 (in particular each polynomial πi is

irreducible in K[X, σ]).

Proof. Let us prove the theorem by induction on m. If m = 0 the result is clear. Assume m ≥ 1,

then Proposition 1.4.2 shows that χϕ,x = χϕ1,x1
χϕ0,x̄ with x̄ = x mod D1 and x1 = χϕ0,x̄(x) ∈ D1.

The induction hypothesis shows that χϕ1,y1
factors as

∏2
i=m−1 χϕi,xi

with xi ∈ Di/Di+1.

Let D be an étale ϕ-module that has a generator x, and let χϕ,x be its semi-characteristic

polynomial with respect to x. If D → D2 is a quotient of D (on which the induced map is denoted

by ϕ2), then we can associate to D2 the semi-characteristic polynomial χϕ2,x where x is the image

of x in the quotient. The following proposition shows that this map is in fact a bijection.

Proposition 1.4.5. Let D be an étale ϕ-module that has a generator x, and let χϕ,x be its semi-

characteristic polynomial with respect to x in some basis. Then the above map is a natural bijection

between the following sets:

(i) The monic right-divisors of χϕ,x;

(ii) The quotients of the ϕ-module D.

Moreover, this bijection maps exactly the irreducible divisors to the simple quotients.

Proof. First note that by Proposition 1.4.2, χϕ2,x̄ is an irreducible right-divisor of P . The consid-

ered map is surjective. Indeed, let χϕ,x = P1P2 with P2 irreducible, and let y = P2(ϕ)(x). Let Dy

be the sub-ϕ-module generated by y and let D → D/Dy be the canonical projection. Then x̄ = x

mod Dy generates D/Dy and P2(ϕ)(x̄) = 0, so χϕ,x̄ = P2. Now, we show that the considered

map is also injective. Let D′, D′′ be two simple quotients endowed with the induced maps ϕ′, ϕ′′.

Denote by x̄′ (resp. x̄′′) the image of x by the canonical projection to D′ (resp. D′′). Assume that

χϕ′,x̄′ = χϕ′′,x̄′′ . Then there exists a unique map D′ → D′′ sending x̄′ to x̄′′, and this map is an

isomorphism. Moreover, the kernel of the composite map D → D′′ is the set of y ∈ D such that

y = Q(ϕ)(x) for some polynomial Q that is right-divisible by χϕ′′,x̄′′ . This is exactly the kernel

of the canonical map D → D′′, so D′ = D′′. The fact that irreducible polynomials correspond to

simple ϕ-modules follows from Proposition 1.4.1.

We have the following corollary, that will be useful to count the factorizations of a skew poly-

nomial over a finite field.

Corollary 1.4.6. Let P ∈ K[X, σ] be a monic polynomial with nonzero constant coefficient.

Then there is a natural bijection between the factorizations of P as a product of monic irreducible

polynomials, and the Jordan-Hölder sequences of VP .

Proof. The proof is an easy induction on the number of irreducible factors of P .
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2 Skew polynomials and ϕ-modules over finite fields

We now want to focus on ϕ-modules over finite fields. We investigate some other links with skew

polynomials and the so-called linearized polynomials. The reference used for basics on linearized

polynomials over finite fields is [LN94], Chap 4, §4.

2.1 Galois representations and ϕ-modules

Let K be a field of characteristic p, and Ksep be a separable closure of K. There is an anti-

equivalence of categories between the Fq-representations of GK = Gal(Ksep/K) and the étale

ϕ-modules over K, when ϕ acts as x 7→ xq on K. The functor from representations to ϕ-modules

is HomGK
(·,Ksep), and its quasi-inverse is Homϕ(·,K

sep), where GK acts naturally on Ksep and ϕ

acts as x 7→ xq onKsep. This theory was introduced by Fontaine to study the Galois representations

of local fields of characteristic p and then gave birth to the theory of (ϕ,Γ)-modules to study the

p-adic representations of p-adic fields. We want to use this tool in the context of finite fields. Here,

we use the equivalence of categories to skew polynomials rather than representations. Indeed, the

data of a representation of GFqr
is very simple: it is just given by the action of the Frobenius

x 7→ xqr on the representation.

Let p be a prime number, q = pa a power of p, and r ≥ 1 be an integer.

Definition 2.1.1. A q-linearized polynomial over Fqr is a polynomial L ∈ Fqr [X ] of the form

L =
∑d

i=0 aiX
qi where for all 0 ≤ i ≤ d, ai ∈ Fqr .

Remark 2.1.2. Such polynomials define Fq-linear maps on any extension of Fqr , hence the termi-

nology. Furthermore, the roots of a q-linearized polynomial have a natural structure of Fq-vector

space.

The vector space of q-linearized polynomials is endowed with a structure of noncommutative

Fqr -algebra, with the usual sum and product given by the composition: L1×L2(X) = L1(L2(X)).

It is easily checked that there is a natural isomorphism between the Fqr -algebras of q-linearized

polynomials over Fqr , and of skew polynomials Fqr [X, σ] where σ(x) = xq. The correspondance

between linearized and skew polynomials is the following:

Definition 2.1.3. Let P ∈ Fqr [X, σ] be a skew polynomial, P =
∑d

i=0 aiX
i. By definition, the

associated linearized polynomial is LP =
∑d

i=0 aiX
qi . Conversely, if L is a linearized polynomial

over Fqr , its associated skew polynomial is denoted by PL.

Let P ∈ Fqr [X, σ] be a monic polynomial, say P = Xd −
∑d−1

i=0 aiX
i. To P we associate the

linearized polynomial LP as before, and the ϕ-module DP given by the following data:

• DP =
⊕d−1

i=0 Fqrei,

• for i ∈ {0, . . . , d− 2}, ϕ(ei) = ei+1,

• ϕ(ed−1) =
∑d−1

i=0 aiei.

We can note that in the canonical basis (e0, . . . , ed−1), χϕ,e0 = P .

Lemma 2.1.4. Let (D,ϕ) be a ϕ-module over Fqr . Then (D,ϕr) is a ϕr-module over Fqr . Let V

be the Fq-representation of GFqr
associated to ϕ and Vr be the Fqr -representation of GFqr

associated

to ϕr. Then Vr ≃ V ⊗Fq
Fqr .
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Proof. It is clear that ϕr is σr-semi-linear (which means just linear!). Then, there is a natural

injective map V = Homϕ(D,Fq) →֒ Homϕr(D,Fq) = Vr . A classical argument (appearing for

example in the proof of Proposition 1.2.6 in [Fon91]) shows that a family of elements of V that is

linearly independant over Fq remains linearly independant over Fqr . Hence V ⊗Fq
Fqr injects into

Vr, and since dimFq
V = dimFqr

Vr, we get Vr ≃ V ⊗Fq
Fqr .

Lemma 2.1.5. The representation VP associated to the ϕ-module DP is naturally isomorphic to

the vector space of the roots of LP endowed with the natural action of GFqr
.

Proof. By definition, VP = Homϕ(DP , F̄q). Let f ∈ VP . Let ξi = f(ei), the relations between the

ei’s and the fact that f is ϕ-equivariant imply that for all 0 ≤ i ≤ d − 2, ξi = ξq
i

0 . Subsequently,

ξq
d

0 =
∑d−1

i=0 aiξ
qi

0 , so that ξ0 is a root of LP . Conversely, the same computation shows that given

any root ξ of LP , the map D → Fq sending ei to ξq
i

is a ϕ-equivariant morphism. Hence, the map
(

VP → {Roots of LP }

f 7→ f(e0)

)

is an isomorphism. Moreover, the action of GFqr
on VP comes from

that on Fqr , so that it is just the raising to the qr-th power, and it is compatible with the previous

map, making it an isomorphism of representations.

Theorem 2.1.6. Let (DP , ϕ) be the ϕ-module associated to the polynomial P . Then the Frobenius

map g ∈ GFqr
acting on VP (by x 7→ xqr ) and the map ϕr on DP have matrices that are conjugate.

Proof. Since the matrix of the Frobenius acting on VP is conjugate to the matrix of the Frobenius

acting on the Fqr -representation associated to (DP , ϕ
r) by Lemma 2.1.4, we will show that the

matrix of the latter is conjugate to the matrix of ϕr. By the Chinese remainders theorem, it is

enough to show the result when the characteristic polynomial of ϕr is a power of an irreducible

polynomial Q. By the elementary divisors theory, it is also enough to show the result when

ϕr is a cyclic endomorphism. Assume that the matrix of ϕr in the basis (e0, . . . ed−1) is the

companion matrix of a polynomial Qe, with Q irreducible. Then the map Homϕr(DQe ,Fqr ) →
{

Roots of LQe(Xr)

}

= VQe(Xr), mapping f to f(e0) is an isomorphism of Fqr -representations by

Lemma 2.1.5. Let ξ be a nonzero root of LQe(Xr), and let f ∈ Homϕr(DQe ,Fqr ) mapping e0

to ξ. Let g be the Frobenius map on VQe(Xr), and χg be its characteristic polynomial. Then

f(χg(ϕ
r)(e0)) = χg(g)(ξ) = 0 because f is ϕr-equivariant. Hence for all f ∈ Homϕr(DQe ,Fqr ),

f(χg(ϕ
r)(e0)) = 0. The injectivity of the map Homϕr(DQe ,Fqr ) → VQe(Xr) implies that χg(ϕ

r) =

0, so the minimal polynomial of ϕr divides χg. If Q
ε(g) = 0 for some ε ≤ e, then Qε(ϕr)(f)(x) =

Qε(g)(f(x)) for all x ∈ D, f ∈ Homϕr(DQe ,Fqr ), and so Qε(ϕr) = 0, which shows that ε = e.

Therefore, the minimal polynomial of g is Qe, and the matrices of g and ϕr are conjugate.

From now on and throughout the article, we will perform complexity computations using the

usual notations O and Õ (we say that a complexity is Õ(g(n)) if it is O(g(n) logk(n)) for some

integer k). For computations over finite fields, we will usually express the complexity as the

number of operations needed in the base field Fq. We will make the common assumption that the

multiplication in Fqr is quasilinear. We will denote by MM(d) the complexity of the multiplication

of two matrices of size d× d over Fq, so that the multiplication of two matrices of size d × d over

Fqr is MM(dr).

Remark 2.1.7. The matrix of g can be computed in O(MM(dr) log r + d2r2 log q log r) mul-

tiplications in Fq if P has degree d and multiplication of matrices of size d × d over Fqr has

complexity MM(dr). Indeed, if G is the companion matrix of ϕ, then the matrix of ϕr is
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Gσ(G) · · · σr−1(G). Since applying σt to an element of Fqr costs t log q operations in Fqr (by

a fast exponentiation algorithm), a divide-and-conquer algorithm allows us to compute the matrix

of ϕr with O(MM(d) log r + d2r) operations in Fqr .

Algorithm 1 Returns E(G, r) = Gσ(G) · · · σr−1(G)

Input: G the matrix of ϕ, r ≥ 1 an integer
Output: E(G, r) the matrix of ϕr

if r = 1 then

return G
else

if r is even then

return E(G, r/2) · σr/2(E(G, r/2))
else

return G · σ(E(G, (r − 1)/2) · σ(r−1)/2(E(G, (r − 1)/2)))
end if

end if

The following proposition gives another application of considering ϕr, namely testing similarity

of polynomials.

Proposition 2.1.8. Let P,Q ∈ Fqr [X, σ] be two monic polynomials. Let ΓP (resp. ΓQ) be

the companion matrix of P (resp. Q). Then P and Q are similar if and only if the matrices

ΓP · · ·σr−1(ΓP ) and ΓQ · · ·σr−1(ΓQ) are conjugate.

Proof. Assume P and Q are similar, and let d = degP = degQ. Then P = χϕ,x for some

x ∈ DQ. Therefore, there exists U ∈ GLd(Fqr ) such that ΓP = U−1ΓQσ(U), so ΓP · · ·σr−1(ΓP ) =

U−1ΓQ · · ·σr−1(ΓQ)U . Hence, these two matrices are conjugate.

Conversely, assume that these matrices are conjugate. Then the representations VQ and VP are

isomorphic (because these matrices are conjugate to the matrices of the action of the Frobenius on

the respective representations, which are therefore Fq-conjugate), so the ϕ-modules DP and DQ

are isomorphic. Hence, P and Q are similar.

This proposition shows how similarity can be tested only by computing the Frobenius normal

form of ϕr , which can be done in Õ(MM(dr)) operations in Fq.

2.2 The splitting field of a linearized polynomial

In this section, we use the previous results to explain how to compute the splitting field of a q-

linearized polynomial with coefficients in Fqr and the action of GFqr
on its roots. We start with a

lemma from [LN94].

Lemma 2.2.1. Let Q ∈ Fq[Y ] with nonzero constant coefficient and let LQ be the q-linearized

associated polynomial. Then the splitting field of LQ is Fqm , where m is the maximal order of a

root of Q in F
×

q .

Remark 2.2.2. If Q = Qt1
1 · · ·Qts

s with the polynomials Qi distinct monic irreducible, then setting

t = max{ti} − 1 and e = max{Order of the roots of Qi}, we have m = ept.

We are ready to prove the following:
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Theorem 2.2.3. Let P ∈ Fqr [X, σ] with nonzero constant coefficient, and let LP be the associated

linearized polynomial. Let Γ be the companion matrix of P , and Γ0 = Γσ(Γ) · · ·σr−1(Γ). Then the

characteristic polynomial Q of Γ0 has coefficients in Fq, and the splitting field of LP has degree m

over Fqr , where m is the maximal order of a root of Q in Fq.

Moreover, the Frobenius normal form G0 of Γ0 has coefficients in Fq, and the action of a generator

g of the Galois group GFqr
is given (in some basis of the Fq-vector space of the roots of LP ) by G0.

Proof. By Theorem 2.1.6, Γ0, being the matrix of (DP , ϕ
r), is conjugate to the matrix of the

action of g on the roots of LP . The latter has coefficients in Fq since it is the matrix of an Fq-

representation VP of GFqr
, as does the Frobenius normal form of Γ0. It only remains to determine

the splitting field of LP . But this field is the same as the subfield of Fqr fixed by the kernel of the

representation VP . This again is the same as the subfield fixed by the kernel of the representation

VP ⊗ Fqr , which is the same as the splitting field of LQ. The result then follows from Lemma

2.2.1.

Example 2.2.4. Let q = 7 and r = 5. The field F75 is built as F7[Y ]/(Y 5 + Y + 4), and

ω denotes the class of Y in F75 . Let L = Z73 + ωZ72 − ω2Z ∈ F75 [Z]. The associated skew

polynomial P ∈ F75 [X, σ] is X3 + ωX2 −ω2, so the matrix of ϕ on DP is Γ =







0 0 ω2

1 0 0

0 1 −ω






. The

characteristic polynomial of the matrix Γ0 of ϕr is Y 3 + Y 2 + Y + 5, which is irreducible. The

order of any root of this polynomial in F7 is 171, so the splitting field of L is F75×171 . This also

shows that the Jordan form of the matrix of ϕr is







0 0 −5

1 0 −1

0 1 −1






, that is the matrix of the action

of x 7→ x75 on a basis of the roots of L over F75 .

2.3 Optimal bound of a skew polynomial

The previous section has shown that, given a ϕ-module (D,ϕ) over Fqr , the ϕr-module (D,ϕr)

should have interesting properties for the study of (D,ϕ). In this subsection, we will show how

this idea can also help us solve the problem of finding a multiple of a polynomial lying in the

center of Fqr [X, σ]. We recall the notations from the above section, that we shall use in this one:

if P ∈ Fqr [X, σ], then DP is the associated ϕ-module, LP is the associated linearized polynomial,

and VP is the associated linear representation of GFqr
(either by Fontaine’s theory, or as the roots

of LP , since both are the same object by Lemma 2.1.5).

The following lemma is a slightly generalized version of a lemma from [LN94], where only the

case r = 1 is treated.

Lemma 2.3.1. Let L1, L be two linearized polynomials. Then L1 is a right-divisor of L in the

algebra of linearized polynomials if and only if it is a divisor of L in the classical sense.

Proof. First assume that L1 divides L on the right in the sense of linearized polynomials, meaning

that there exists a linearized polynomial L2 such that L(X) = L2(L1(X)). Since the constant

coefficient of L2 is zero, this implies that L1 divides L in the classical sense.

Conversely, if L1 divides L in the classical sense, write the right-euclidean division of L by L1 as

linearized polynomials, we have L = L2 ◦ L1 + R with degR < degL1. From the first part of
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the proof, L1 divides L2 ◦ L1 in the classical sense, so it also divides R. Since degR < degL1,

R = 0.

This already allows us to give an explicit description of the optimal bound of a skew polynomial.

A bound of a skew polynomial P is a nonzero multiple of P that lies in the center of Fqr [X, σ]

(which is easily shown to be Fq[X
r]), and an optimal bound is a bound with lowest degree.

Theorem 2.3.2. Let P ∈ Fqr [X, σ] be a monic polynomial with nonzero constant term. Let πϕr

be the minimal polynomial of the Fq-linear map ϕr : DP → DP . Then the optimal bound for P is

πϕr(Xr). It has degree at most r degP and can be computed in Õ(d2r2 log q+MM(rd)) operations

in Fq.

Proof. Since πϕr (ϕr) = 0, πϕr (Xr)(ϕ)(e0) = 0. Since P = χϕ,e0 , P is a right divisor of πϕr(Xr).

Conversely, if Q ∈ Fq[Y ] is a monic polynomial such that Q(Xr) is right-divisible by P , then

Q(ϕr)(e0) = 0. Moreover, since Q(Xr) is central, XQ(ϕr)(e0) = Q(ϕr)(ϕ(e0)). An immediate

induction shows that, since e0 generates DP under the action of ϕ, Q(ϕr) = 0. Hence, πϕr divides

Q.

By Remark 2.1.7, the matrix of ϕr can be computed in Õ(d2r2 log q + MM(rd)) operations in

Fq. Its minimal polynomial can be computed in Õ(MM(rd)) operations by [Gie95], hence the

complexity of the computation of the optimal bound.

Remark 2.3.3. This complexity can be compared with Giesbrecht’s computation of an optimal

bound in Õ(d3r2 + MM(rd)) operations in Fqr ([Gie98], Lemma 4.2). Since this part is used

in his factorization algorithm, computing the optimal bound using Theorem 2.3.2 improves the

complexity of this part of Giesbrecht’s algorithm.

Theorem 2.2.3 has shown that the characteristic polynomial of ϕr already gives interesting

information. Since the characteristic polynomial is also slightly easier to compute than the minimal

polynomial, we introduce the following definition:

Definition 2.3.4. Let P ∈ Fqr [X, σ] a monic skew polynomial, and let (DP , ϕ) be the associated

ϕ-module. The polynomial Ψ(P ) ∈ Fq[Y ] is defined as the characteristic polynomial of ϕr, that is

det(Y id− ϕr).

Remark 2.3.5. The polynomial Ψ(P ) can be thought of as lying in the center Fq[X
r] of Fqr [X, σ].

This is a reason why we use the variable Y . The other reason is that Ψ(P ) is a commutative

polynomial, and a different notation for the variable can help avoid confusions.

Remark 2.3.6. By a result of Keller-Gehrig, the characteristic polynomial of an endomorphism

of Fd
qr can be computed in O(MM(dr)) operations in Fq (see [KG85]). Hence, if P has degree d,

Ψ(P ) can be computed in O(MM(dr) log r + d2r2 log r log q) operations in Fq.

Corollary 2.3.7. Let P ∈ Fqr [X, σ] with nonzero constant coefficient. The polynomial Ψ(P )(Xr)

is a bound for P .

Proof. It follows directly from Theorem 2.3.2.

2.4 The map Ψ and factorizations

In this section, we explain how the map Ψ can be used to find factorizations of a skew polynomial.

Let (D,ϕ) be an étale ϕ-module over Fqr .
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Proposition 2.4.1. The map Ψ is constant on similarity classes.

Proof. Assume that the ϕ-module D is generated by some x ∈ D, and let χϕ,x be the corresponding

semi-characteristic polynomial of ϕ in the basis x, ϕ(x), . . . , ϕd−1(x). Then it is clear from the

definition that Ψ(χϕ,x) is the characteristic polynomial of ϕr. Now, if two polynomials P and Q

are similar, Q appears as the semi-characteristic polynomial of an element of DP . Hence, there

exists x ∈ DP such that χϕ,x = Q. In this case, Ψ(Q) is the characteristic polynomial of ϕr, which

also equals Ψ(P ), so Ψ(P ) = Ψ(Q).

As we will see below, Ψ does not classify the similarity classes of polynomials, but it classifies

the similarity classes of the factors appearing in the factorizations of a polynomial.

Proposition 2.4.2. Let P,Q ∈ Fqr [X, σ] be two monic, nonconstant polynomials. Then Ψ(PQ) =

Ψ(P )Ψ(Q).

Proof. We translate Proposition 1.4.2 in terms of matrices: let (e0, . . . , ed−1) be the canonical basis

ofDPQ, and let y = Q(ϕ)(e0). Let δ1 = degP and δ2 = degQ, then (y, ϕ(y), . . . , ϕδ1−1(y), e0, . . . , eδ2−1)

is a basis of DPQ in which the matrix of ϕ is H =

(

GP (⋆)

0 GQ

)

, where GP (resp. GQ) is the

companion matrix of P (resp. of Q). Since this matrix is block-upper-triangular, the characteristic

polynomial of Hσ(H) · · ·σr−1(H) is Ψ(P )Ψ(Q). On the other hand, since H is the matrix of ϕ in

some basis, this characteristic polynomial is Ψ(PQ).

Proposition 2.4.3. Let P,Q ∈ Fqr [X, σ] be two monic polynomials with P irreducible. Then P

is similar to a right-divisor of Q if and only if Ψ(P ) divides Ψ(Q).

Proof. The case P = X is obvious, so we treat the case where P has nonzero constant coefficient.

If P is a right-divisor of Q, then Proposition 2.4.2 shows that Ψ(P ) divides Ψ(Q). Conversely, if

Ψ(P ) divides Ψ(Q), we want to show that DP is a quotient of DQ, or equivalently, that VP is a

subrepresentation of VQ. Let g be the Frobenius map x 7→ xqr acting on VQ. We want to show

that VQ has a subspace stable under g, of dimension degP , on which the characteristic polynomial

of g is Ψ(P ). By the Chinese remainders Theorem, we can assume that Ψ(Q) is a power of Ψ(P ).

Indeed, this Theorem shows that DQ is the direct sum of subspaces stable under the action of

g, and such that the characteristic polynomial of the action of g on each of these subspaces is a

power of an irreducible polynomial. Now, assuming that Ψ(Q) is a power of Ψ(P ), we see that the

Jordan form of g on VQ is a block-upper-triangular matrix whose diagonal blocks are all the same,

equal to the companion matrix of Ψ(P ). Thus VP appears as a subrepresentation of VQ.

Corollary 2.4.4. Let P ∈ Fqr [X, σ]. Then the similarity classes of irreducible factors of P appear

in all possible orders in the factorizations of P .

Proof. If the similarity class of P0 ∈ K[X, σ] appears in some factorization of P , then Ψ(P0) is a

divisor of Ψ(P ), and P has a right-divisor similar to P0. For the general case, it is easy to see that

if Q ∈ Fqr [X, σ] is any polynomial, then there exists Q̃ similar to Q such that XQ = Q̃X .

Corollary 2.4.5. Let P,Q ∈ Fqr [X, σ] be two monic polynomials, with P irreducible. Then P and

Q are similar if and only if Ψ(P ) = Ψ(Q).

Proof. Since we already know that Ψ is constant on similarity classes, it is enough to prove that

if Ψ(P ) = Ψ(Q), then P and Q are similar. If Ψ(P ) = Ψ(Q), then Q has a right-divisor that is

similar to P . Since P and Q have the same degree, P is similar to Q.
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We note that this property is not true when P is not irreducible: this will be discussed in

Remark 2.4.10 below.

Lemma 2.4.6. Every irreducible monic polynomial in Fq[Y ] is the image of a monic irreducible

polynomial by the map Ψ.

Proof. It is clear that Y is the image of X . Now assume that R ∈ Fq[Y ] is irreducible, monic,

with nonzero constant coefficient. Let V be the Fq-representation of GFqr
whose dimension is the

degree of R, and for which the matrix of the Frobenius map x 7→ xqr is the companion matrix of

R. Let (D,ϕ) be the ϕ-module corresponding to V . Since R is irreducible, V is an irreducible

representation, so (D,ϕ) is an irreducible ϕ-module. Let χϕ be the semi-characteristic polynomial

of ϕ at some nonzero x ∈ D. Theorem 2.1.6 shows that R is equal to the characteristic polynomial

of ϕr, which is just Ψ(χϕ) by definition. Moreover, the irreducibility of the ϕ-module D yields the

irreducibility of χϕ,x.

Corollary 2.4.7. Let P ∈ Fqr [X, σ] be a monic polynomial. The polynomial P is irreducible if

and only if Ψ(P ) is irreducible in Fq[Y ].

Since testing irreducibility of a polynomial of degree d over Fq can be done in O(dMM(d)) mulit-

plications in Fq, we can test irreducibility of a polynomial in Fqr [X, σ] of degree d inO(d2r2 log r log q+

MM(rd) + dMM(d)) multiplications in Fq.

Proof. We can assume that P has nonzero constant coefficient. By Proposition 2.4.2, we know

that if Ψ(P ) is irreducible, then so is P . Conversely, Lemma 2.4.6 shows that every irreducible

divisor D of Ψ(P ) has an irreducible antecedent Q by Ψ. By Proposition 2.4.3, Q is similar to a

right-divisor of P . Hence since P is irreducible, Q = P , and Ψ(P ) = D, so Ψ(P ) is irreducible.

Corollary 2.4.8. The map Ψ is surjective.

Proof. The result follows directly from Lemma 2.4.6 and Proposition 2.4.2.

Corollary 2.4.9. The degrees of the factors in a factorization of a monic polynomial P ∈ Fqr [X, σ]

as a product of irreducibles are the same as the degrees of the factors of Ψ(P ) in a factorization as

a product of irreducible polynomials in Fq[Y ].

Remark 2.4.10. Let P,Q ∈ Fqr [X, σ] be two monic polynomials, then Ψ(P ) = Ψ(Q) if and only if

DP and DQ have the same semi-simplifications. Indeed, the similarity classes (with multiplicities)

of the monic irreducible factors appearing in factorizations of P are uniquely determined by Ψ(P )

because Ψ is multiplicative and by Ore’s Theorem. On the other hand, these similarity classes are

also uniquely determined by the semi-simplification of DP again by multiplicativity of Ψ and by

Theorem 1.4.4.

Now, we use the map Ψ to get more precise information about the factorization of P ∈ Fqr [X, σ]

from the factorization of Ψ(P ) ∈ Fq[Y ].

Proposition 2.4.11. Let P ∈ Fqr [X, σ] be a monic polynomial. Assume Ψ(P ) = Q1 · · ·Qs, with

Qi ∈ Fq[Y ] distinct irreducible monic polynomials (Ψ(P ) is squarefree). Then P has a unique

right-divisor Pi such that Ψ(Pi) = Qi. It is given by Pi = rgcd(P,Qi(X
r)).
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Proof. Assuming that the Pi’s are irreducible, uniqueness is clear, since a right-divisor S of P such

that Ψ(S) = Qi must divide both P and Qi(X
r). Let 1 ≤ i ≤ s, and Pi = rgcd(P,Qi(X

r)).

Since VΨ(P )(Xr) = VP ⊗Fq
Fqr , Ψ(Ψ(P )(Xr)) = Ψ(P )(X)r. Hence, all divisors of Ψ(Pi) are in the

same similarity class, and Ψ(Pi) is a power of Qi, so its degree is divisible by degQi. But Qi has

only multiplicity one as a divisor of Ψ(P ), so Ψ(Pi) is either 1 or Qi. Since
∑

i degPi = degP ,

Ψ(Pi) = Qi for all 1 ≤ i ≤ s, and Pi has degree degQi and is irreducible because Qi is.

Remark 2.4.12. More generally, when Ψ(P ) = Qe1
1 · · ·Qes

s , Pi = rgcd(P,Qi(X
r)) has degree

divisible by degQi, and Ψ(Pi) = Qεi
i for some 1 ≤ εi ≤ ei. This can sometimes provide a partial

or even complete factorization for P , but not always: this will be better understood later when we

count factorizations of a given polynomial.

2.5 Counting irreducible polynomials

Before counting factorizations of a given skew polynomial, we focus on finding the number of monic

irreducible skew polynomials. This computation appears in [CHH04], although it is obtained by

very different methods. Here, it only comes from the computation of the cardinal of the fibers of

Ψ.

Recall that a ϕ-module is called simple if it has no nontrivial subspaces stable by ϕ.

Lemma 2.5.1. Let D be a simple étale ϕ-module over Fqr of dimension d. Then End(D) =

Fq[ϕ
r] ≃ Fqd .

Proof. Let E = End(D). It is clear that Fq[ϕ
r] is contained in E. Moreover, any u ∈ E commutes

with ϕ and therefore with ϕr. Since D is simple, ϕr has no nontrivial invariant subspace, so

it is a result of elementary linear algebra that the commutant of ϕr is Fqr [ϕ
r]. Hence E is

contained inFqr [ϕ
r]. Now let u =

∑d−1
i=0 aiϕ

r ∈ E. The condition that u commutes with ϕ

yields
(

∑d−1
i=0 (a

q
i − ai)ϕ

r
)

ϕ = 0. Hence, the endomorphism
∑d−1

i=0 (a
q
i −ai)ϕ

r is zero on the image

of ϕ. Since D is étale,
∑d−1

i=0 (a
q
i − ai)ϕ

r is zero, and since (id, ϕr, . . . , ϕ(d−1)r) is a basis of the

commutant of ϕr over Fqr , a
q
i = ai for all 0 ≤ i ≤ d− 1, so u ∈ Fq[ϕ

r]. Hence E has dimension d

over Fq, and it is isomorphic to Fqd .

Proposition 2.5.2. Let Q ∈ Fq[Y ] be a monic irreducible polynomial of degree d. Then the number

of monic polynomials P ∈ Fqr [X, σ] such that Ψ(P ) = Q is qdr−1
qd−1

.

Proof. By Corollary 2.4.5, it is enough to compute the number of polynomials P similar to a given

P0 such that Ψ(P ) = Q. Let P be such a polynomial. Since Q is irreducible, so is P , and therefore

the ϕ-module DP is simple. We already know that any polynomial similar to P appears as a

semi-characteristic polynomial of ϕ.

Now we want to characterize the nonzero x, y ∈ DP such that χϕ,x = χϕ,y. We claim that these

are the nonzero x, y such that y = u(x) for some u ∈ End(DP ). Indeed, it this is the case, then

χϕ,x(ϕ)(y) = u(χϕ,x(ϕ)(x)) = 0, so χϕ,y = χϕ,x. Conversely, if χϕ,x = χϕ,y then the map x 7→ y

defines an automorphism of Fqr -vector space of DP that is ϕ-equivariant thanks to this relation.

This shows, using Lemma 2.5.1, that there is a natural bijection between DP modulo the relation

χϕ,x = χϕ,y and DP modulo the relation of End(DP )-colinearity.

Putting both parts together, we get the fact that {Monic polynomials similar to P} is in bijection

with {End(DP )-lines in DP }, yielding the result.
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Corollary 2.5.3. The number of monic irreducible polynomials of degree d in Fqr [X, σ] is

qdr − 1

d(qd − 1)

∑

i|d

µ

(

i

d

)

qi,

where µ is the Möbius function.

Proof. It follows directly from Corollary 2.4.5, Proposition 2.5.2 and the classical formula for the

number of irreducible monic polynomials in Fq[Y ], that can be for instance found in [LN94]. As

mentioned before, this formula already appeared in [CHH04].

2.6 A closer look at the structure of DP

In this section, we consider the whole structure of the ϕ-moduleDP instead of just looking at Ψ(P ).

We address two different problems that both need a careful look at the structure of a ϕ-module

D, or equivalently of the associated representation. Note that Proposition 2.4.11 shows that when

Ψ(P ) has no square factors, for each choice of an order of the similarity classes of the polynomials

arising in a factorization of P , there is a unique factorization of P such that P has its factors in the

chosen order. Therefore, there are exactly s! factorizations of P as a product of irreducible monic

polynomials in this case. The starting point of our discussion is Proposition 1.4.5. We rewrite it

in our context, adding the formulation coming from representation theory. Let P ∈ Fqr [X, σ] be

a monic polynomial with nonzero constant coefficient. There are natural bijections between the

following sets:

(i) The monic irreducible right-divisors of P ;

(ii) The simple quotients of the ϕ-module DP ;

(iii) The irreducible subrepresentations of VP .

Remark 2.6.1. In this context, this result may sound surprising, because if V0 = V ⊕s with V

an irreducible representation of dimension d and s > r, V0 has qds−1
qd−1

distinct subrepresentations

with irreducible quotient, whereas all the divisors of P are similar, and hence P has less than
qdr−1
qd−1

monic irreducible right-divisors. There is no contradiction, however: the proposition just

says that this case never happens, meaning that in this case V0 is not some VP , or, equivalently,

that the ϕ-module associated to V0 cannot be generated by a single element if s ≥ r. We can give

yet more precise information about whether there is a generator for a ϕ-module over a finite field:

because of the equivalence of categories with the representations, the ϕ-module is a direct sum of

ϕ-modules such that the composition factors of each summand are all the same, and the ϕ-module

has a generator if and only if each of them has one. It remains to decide when a ϕ-module with

isomorphic composition factors (that is, with semi-simplification isomorphic to a direct sum of

copies of the same simple object) has a generator. We will introduce some definitions to discuss

this matter. They will also be useful to count factorizations.

20



2.6.1 Generated ϕ-modules over finite fields

We recall that an endomorphism is in Jordan form if its matrix is block-diagonal, where the blocks

have the following form:


















A I 0 . . . 0

0 A I . . . 0

0 0
. . .

. . .
...

0 . . . 0
. . . I

0 . . . . . . 0 A



















,

where the characteristic polynomial of A is irreducible. These blocks are called the Jordan blocks,

and the length of a Jordan block is the number of A in this writing (it is the length of the Fq[Y ]-

module corresponding to the endomorphism whose matrix is the Jordan block). Note that if the

characteristic polynomial of the endomorphism is split, the matrices A that appear in its Jordan

form are 1-dimensional. Assume that the minimal polynomial µg of g is a power of an irreducible

polynomial π, say µg = πt, with deg π = δ. Let W = F
δ
q endowed with the endomorphism whose

matrix in the canonical basis is the companion matrix of π : any irreducible invariant subspace of

g is isomorphic to W . We say that g has type (t1, . . . , tm) if t1 ≥ · · · ≥ tm and the Jordan blocks

of (the Jordan form of) g have lengths t1, . . . , tm. Of course, t = t1. In general, if g has type

(t1, . . . , tm), then the map induced by g on any quotient of V by an irreducible invariant subspace

has type (t′1, . . . , t
′
m) where t′i = ti except for one i for which t′i = ti − 1 (or possibly m′ = m− 1

when tm = 1).

Lemma 2.6.2. Let D be an étale ϕ-module over Fqr . Assume all the composition factors of D are

isomorphic. Then D has a generator if and only if the number of Jordan blocks of the representation

V associated to D is ≤ r.

Proof. Since all the composition factors of D are isomorphic, it makes sense to talk about the

type of the associated representation V , on which the Frobenius acts by g. The proof is done by

induction on the type of g. The possible types for the considered endomorphisms have the form

(t1, . . . , ts) with s ≤ r by hypothesis. We complete the notation with zeros in order that the type

is denoted by a r-tuple (t1, . . . , ts, 0, . . . , 0). We order the types with respect to the lexicographical

order. If g has type (1, 0, . . . , 0), then D is simple, so it has a generator. Now assume g has type

(t1, . . . , ts, 0, . . . , 0). If every simple sub-ϕ-module of D is a direct factor of D, then g has type

(1, . . . , 1, 0, . . . , 0), and D = D⊕s
0 where D0 is the only composition factor of D. But we know that

D⊕s
0 has a generator since it is a quotient of D⊕r

0 which has one. Now, if D has a simple subobject

D0 that is not a direct factor, then we have an exact sequence

0 → D0 → D → D′ → 0

that is not split, and where the representation V ′ associated to D′ has a smaller type than g. By

induction hypothesis, there exists some x0 ∈ D′ such that D′ is generated by x0. Let x be any lift

of x0 in D, and let Dx be the sub-ϕ-module of D generated by x. If Dx ∩D0 = {0}, then x0 7→ x

gives a splitting, which is not possible. Hence D0 ⊂ Dx, and Dx = D, so D has a generator.
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2.6.2 Counting factorizations

Now let us consider the problem of counting factorizations of a monic polynomial P ∈ Fqr [X, σ]

as a product of monic irreducible polynomials. The problem is reduced to that of computing the

number of Jordan-Hölder sequences for an endomorphism g of an Fq-vector space V . As before,

first assume that the minimal polynomial µg of g is a power of the irreducible polynomial π, say

µg = πt, with deg π = δ, and let W = F
δ
q endowed with the endomorphism whose matrix in the

canonical basis is the companion matrix of π. There are qδm−1
qδ−1 irreducible invariant subspaces

for g because the intersection of such an invariant subspace with a Jordan block must be the

only irreducible invariant subspace of this block, or zero, so Hom(W,V ) = Hom(W,W⊕m). We

want know how many quotients of V by an irreducible invariant subspace there are for each given

possible type.

Lemma 2.6.3. Let (t1, . . . , tm) be the type of g. Let 1 ≤ i ≤ m such that i = m or ti > ti+1. Let i0

be the smallest j such that tj = ti. Then there are qδ(i−1)+ qδi+ · · ·+ qδ(i0−1) invariant irreducible

subspaces of V such that the quotient has type (t1, . . . , ti − 1, ti+1, . . . , tm) (or (t1, . . . , tm−1) if

i = m and tm = 1).

Proof. Denote by (e1,1, . . . , e1,δ, e2,1, . . . , e2,δ, . . . ) a basis of V in which the matrix of g has Jordan

form. More precisely, for all 1 ≤ i ≤ m, and for all 1 ≤ j ≤ ti and 1 ≤ l ≤ δ, we have g(ej,l) = ej,l+1

if (j, l) is not of the shape (j, 1) for some integer j ≥ 2, or of the shape (j, δ) for some integer j ≥ 1,

g(ej,1) = eδu,δ + eδu+1,2 if j ≥ 2, and g(ej,δ) =
∑δ

l=1 alej,l, where
∑δ

l=1 alY
l−1 ∈ Fq[Y ] is an

irreducible polynomial that does not depend of j (it is the characteristic polynomial of the induced

endomorphism on any irreducible invariant subspace).

There are i0 − 1 Jordan blocks of g whose length is greater than the length of the i-th block.

For λ = (λ1,1, . . . , λ1,δ, . . . , λi0−1,δ) ∈ F
δ(i0−1)
q , let vλ = ei0,1 +

∑i0−1
j=1

∑δ
l=1 λj,lej,l. Since two

such vectors vλ, vµ are not colinear, they generate distinct invariant subspaces Vλ, Vµ, which

are clearly isomorphic to W . Moreover, the quotient V/Vλ has the same type as V/V(0) be-

cause the map V → V that sends ei0,1 to vλ and is the identity outside the invariant subspace

generated by ei0,1 is an isomorphism (its matrix is upper triangular). One can build the same

way invariant subspaces with quotients of the same type as generated by vectors of the shape

ei0+1,1 +
∑i0

j=1

∑δ
l=1 λj,lej,l, . . . , ei,1 +

∑i−1
j=1

∑δ
l=1 λj,lej,l. There are exactly qδi0−1 + · · · + qδi−1

invariant subspaces that are built in this way. Doing such constructions for each i′ satisfying the

hypotheses of the lemma, we get exactly qδm−1
qδ−1

irreducible invariant subspaces, which means all of

them. Among these subspaces, the ones for which the quotient has the requested shape are exactly

the qδi0−1 + · · ·+ qδi−1 built for the first i we considered. This proves the lemma.

In order to compute the number of Jordan-Hölder sequences of g, consider the following dia-

gram:

1 qδ . . . qδ(m−1)

t1 t2 . . . tm

with t1 ≥ · · · ≥ tm. An admissible path is a transformation of this table into another table

1 qδ . . . qδ(m
′−1)

t′1 t′2 . . . t′m′ such that

• either m′ = m− 1, t′j = tj for 1 ≤ j ≤ m− 1, if tm = 1;

• or m′ = m, t′j = tj for all j 6= i, with 1 ≤ i ≤ m such that ti > ti+1.
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To such a path γ, we affect a weight w(γ), which is the sum of the coefficients written above the

cells of the first table containing the same number ti as the cell whose coefficient was lowered in the

second table. Here is an example of a table and all the admissible paths with the corresponding

weights:

1 qδ q2δ q3δ

3 2 2 1

1

wwooooooooooo

qδ+q2δ

��

q3δ

&&MMMMMMMMMM

1 qδ q2δ q3δ

2 2 2 1

1 qδ q2δ q3δ

3 2 1 1

1 qδ q2δ

3 2 2

By Lemma 2.6.3, the weight of an admissible path from one table to another, is the number of

irreducible invariant subspaces of an endomorphism g with type given by the first table such that

the quotient has the type given by the second table. Therefore, a sequence of admissible paths

ending to an empty table represents a class of Jordan-Hölder sequences. Thus the number of dis-

tinct sequences in this class is the product of the weights of the paths along the sequence. Hence,

the number of Jordan-Hölder sequences for g is
∑

(γ1,...γτ )

∏τ
i=1 w(γi) the sum being taken on all

sequences (γ1, . . . , γτ ) of admissible paths ending at the empty table (so τ =
∑m

j=1 tj).

In general, we do not know any simple formula for this computation (except in some particular

cases that we shall discuss below), but a recursive algorithm can be used to compute the result.

Given a table with coefficients (t1, . . . tm), we need to compute the values associated to all tables

that can be built out of this table through an admissible path. There are at most t1 . . . tm such

tables. According to Remark 2.6.1, there are at most r Jordan blocks for g. Using the notations

above, this means m ≤ r. Moreover,
∑m

i=1 δti = dimV , so that τ ≤ dimV
δ . Then, by the

arithmetic-geometric inequality, t1 . . . tm ≤
(

dimV
δ

)r
, so the computation of the number of Jordan-

Hölder sequences of g can be done in polynomial time in the dimension of V , when r is fixed.

Example 2.6.4. Let us take a closer look at one particular example: assume that the type of

g is (1, . . . , 1) (m terms). Then there is only one admissible path γ, that leads to (1, . . . , 1)

(m − 1 terms), and its weight is qmδ−1
qδ−1 . Hence the number of Jordan-Hölder sequences of g is

∏m
j=1

qδj−1
qδ−1 = [m]qδ !, the qδ-factorial of m.

Example 2.6.5. Let us look at an actual example. Let q = 7, r = 2, with F72 defined as

F7[Y ]/(Y 2 − Y + 3), and let ω be the class of Y in F72 . Consider the polynomial P = X6 +

ω3X5 + ω17X4 + ω3X3 + ω27X2 + ω35X + ω36. The Jordan form of the matrix of ϕ2 on DP is




















0 −4 0 0 0 0

1 −1 0 0 0 0

0 0 0 −4 0 0

0 0 1 −1 1 0

0 0 0 0 0 −4

0 0 0 0 1 −1





















, so the endomorphism g has type (2, 1) with 2-dimensional irreducible
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blocks. We write the following diagram with all the admissible paths and their weights:

1 72

2 1

1

}}{{
{{

{{
{{ 72

��
>>

>>
>>

>>
>

1 72

1 1

1+72

��

1

2

1

��

1

1

��
�O
�O
�O

1

1

��
�O
�O
�O

1 + 72 + 72 = 1 + 72 + 72

This shows that the number of factorizations of P as a product of monic irreducible polynomials is

99. An exhaustive research of all the factorizations with Magma gives the same result, but takes

around one minute, whereas this computation is instantaneous.

Now, we need to look at the general case, with no further assumption on the minimal polynomial

of g. In this case, by the Chinese remainders Theorem, V is a direct sum of invariant subspaces

on which the induced endomorphisms have minimal polynomial that is a power of an irreducible.

Here, the type of g is defined again as the data of ((W1, T1), . . . , (Ws, Ts)) where the Wl’s are the

distinct classes of irreducible invariant subspaces of V , and the Tl’s are the tables representing

the types of the endomorphisms induced on the corresponding subspaces of V . The notion of

admissible path can be defined as previously.

Proposition 2.6.6. Let g be an endomorphism of an Fq-vector space V . Assume that the type of g

is ((W1, T1), . . . , (Ws, Ts)). Denote by δi the dimension of Wi, and by τi the sum of the coefficients

in table Ti. Then the number of Jordan-Hölder sequences of g is

(τ1 + · · ·+ τs)!

τ1! · · · τs!

∏

(Γ1,...,Γs)

w(Γ1) · · ·w(Γs),

the product being taken over all the s-uples (Γ1, . . . ,Γs) of admissible path sequences ending at the

empty tables.

Proof. From a chain of admissible paths ending at ((W1, ∅), . . . , (Ws, ∅)), it is possible to extract

its Wl-part Γl for all 1 ≤ l ≤ s. By definition, it is the sequence of all the paths involving a change

in the table associated to Wl. Such a chain is a sequence of admissible paths from Tl ending at

the empty table. It is clear that the weight of the path sequence is the product of the weights

of the Γl’s. Therefore, it does not depend on the way the Γl’s were combined together. The

admissible path sequences that end at ((W1, ∅), . . . , (Ws, ∅)) are all the different ways to recombine

admissible path sequences from all the (Wi, Ti) to the empty table. The weight of such a sequence

is the product of the weights of the Wl-parts. There are as many recombinations as anagrams

of a word that includes τl times the letter Wl for all 1 ≤ l ≤ s, τl being the sum of the integers

appearing in Tl. The result then follows directly from the previous discussion an the fact that the
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number of anagrams of a word that includes τl times the letter Wl is the multinomial coefficient
(τ1+···+τs)!

τ1!...τs!
.

Example 2.6.7. Assume g has type ((W1, (t1)), . . . , (Ws, (ts))). It is easy to see that the only

admissible path sequence for (Wl, (tl)) has weight 1. Hence the number of Jordan-Hölder sequences

of g is (t1+···+ts)!
t1!...ts!

.

The previous discussions also allow us to explain how to find all factorizations of a given

polynomial P using Giesbrecht’s algorithm. A first factorization of P yields a Jordan-Hölder

sequence for the ϕ-module DP . All the simple sub-ϕ-modules of DP can be constructed as in the

proof of Lemma 2.6.3. Any such simple sub-ϕ-module yields a factorization of P as P = P1Q,

with P1 irreducible as in Theorem 1.4.2. By performing left-euclidean division in Fqr [X, σ] (which

is possible because Fqr is perfect), we can find Q, which we factor again by Giesbrecht’s algorithm.

For each factorization we find, it takes as many uses of Giesbrecht’s algorithm as factors there are

in the polynomial. Since Giesbrecht’s algorithm is polynomial in the degree and in r, this quite

näıve method gives all the factorizations of P with a complexity that is a polynomial in d and r

times the number of factorizations of P .

Algorithm 2 AllFactorizations(P ) returns all the factorizations of P ∈ Fqr [X, σ]

Input: P ∈ Fqr [X, σ], monic
Output: List of all possible factorizations of P as product of monic irreducibles
Compute a factorization of P , P = P1 . . . Ps

if s = 1 then

return [P ]
else

Let G be the companion matrix of P , compute a Jordan-Hölder sequence for the ϕ-module
that has matrix G as in Proposition 1.4.2
Let FP = [ ]
for each isomorphism class C of submodules of DP do

for x ∈ DP such that the submodule generated by x is in C do

Compute F = AllFactorizations(χ−1
ϕ,xP )

Add (χϕ,x, F ) to FP , for all F ∈ F
end for

end for

return FP

end if

Note that the same kind of methods could also be used to find all the factorizations of a

polynomial with prescribed orders of the similarity classes of the factors appearing in P , or of just

some of them.
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[LeB] Le Borgne, J., Un algorithme pour la réduction des φ-modules sur k((u)), in preparation

[LN94] Lidl R., Niederreiter H., Introduction To Finite Fields And Their Applications, Cambridge
University Press, 1994

[Ore33] Ore, O., Theory of Non-Commutative Polynomials, Annals of Math., Vol. 34, No. 3, 1933,
pp. 480–508

26


