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Correction of Thin Shell Finite Element Magnetic Models
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A subproblem finite-element method is developed for correcting the inaccuracies near edges and corners inherent to thin shell models,
for both magnetostatic and magnetodynamic problems. A thin shell solution, supported by a simplified mesh near the thin structures,
serves as a source of a correction problem with the actual volumic thin regions alone in a homogeneous medium, concentrating the
meshing effort on the thin regions only. Improvements of local fields are efficiently achieved and allow accurate force and loss calcula-

tions.

Index Terms—TFinite-element method (FEM), model refinement, subdomain method, thin shell.

I. INTRODUCTION

HIN SHELL (TS) finite-element (FE) models are com-

monly used to avoid meshing the thin structures and
lighten the mesh of the surrounding regions [1]-[4]. Indeed, the
fields in the thin regions are approximated by a priori known
1-D analytical distributions (throughout the shell thickness),
that generally neglect end and curvature effects. Their interior
is thus not meshed and is rather extracted from the studied
domain, being reduced to a zero-thickness double layer with
interface conditions (IC) linked to the inner analytical distribu-
tions [4]. The TS models suffer from inaccuracies in the vicinity
of geometrical discontinuities, edges and corners, increasing
with the thickness, which limits their range of validity.

The aim of this contribution is to develop a method to cor-
rect such inaccuracies for both magnetostatic and magnetody-
namic problems, in particular for the magnetic vector potential
formulations. The method is developed in the framework of the
subproblem method (SPM), defining a complete solution as a
sum of subproblem solutions, already applied to numerous cor-
rections and problem splittings [5]-[10]. It can then be inspired
and benefit from the SPM existing tools, adding its particulari-
ties.

II. THIN SHELL CORRECTION IN A SUBPROBLEM METHOD

A. Canonical Magnetodynamic/Static Problem

A canonical magnetodynamic/static problem p, to be solved
at step p of the SPM, is defined in a domain €2,,, with boundary
0, =T, =T}, UTy . The eddy current conducting part of

Q,, is denoted €., and the non-conducting one QS , with Q,, =

Q.U pr Massive inductors belong to €2, ,,, whereas stranded
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inductors belong to Qgp. Subscript p refers to the associated
problem p. The equations, material relations and boundary con-
ditions (BCs) of problem p are

curl h, =j, (1a)

divb, =0 (1b)

curl e, = — o;b, (1c)

h, =pu, b, + h, (2a)

jp =o0pep + js,p (2b)

n X hp|r,hp =Jsp (3a)

n- bp|r,,,p =Ffrp (3b)

n X ep|rwcrb,p =ksp (o)

where h,, is the magnetic field, b, is the magnetic flux density,
e, is the electric field, jp is the electric current density, p,, is
the magnetic permeability, o), is the electric conductivity and
n is the unit normal exterior to §2,. Note that (1c) is only de-
fined in Q. (as well as e, ), whereas it is reduced to the form
(1b) in Q?:p. It is thus absent from the magnetostatic version
of problem p. Further (3¢c) is more restrictive than (3b) in their
homogeneous forms. Equations (1b-c) are fulfilled via the def-
inition of a magnetic vector potential @, and an electric scalar
potential v, leading to the a,-formulation, with

curla, = b, (4a)
e, = —0a, — grad v, (4b)
nXaplp, =6, (4c)

For various purposes, also for a TS representation, some
paired portions of I', can define double layers, with the thin
region in between exterior to €2, [5]-[9]. They are denoted 'y;’
and v, and are geometrically defined as a single surface v,

with ICs, fixing the discontinuities ([-],, = -|7; — -|7;)
[nx hy], (52)
[n-b], (5b)
nx e, (5¢)
[n X ap]vp.



With the definitions (n,, = n|,,) = —(n" = n| ) =
(n~ =n|, 7) for the normal n in different contexts, one has,
e.g., for (Sa)

[n X hP]—yp :n’\/p X hp|'y: - n’\/p X hp Yp

= — (0 xhylp —n XMyl ). 6

The fields h; , and Jsp in (2a) and (2b) are volume sources
(VSs). The source h , is usually used for fixing a remnant field
in magnetic materials. The source j, , fixes the current density
in inductors. With the SPM, h, ,, is also used for expressing
changes of permeability and j, , for changes of conductivity,
or for adding portions of inductors [6]-[10]. For changes in a
region, from p, and o, for problem g to 1, and o, for problem
p, the associated VSs hs,p and jSJ, are

hy, = (;fl - /1,{;1) b,

Js,p (0p — 0q)eq

(7a)
(7b)

for the total fields to be related by the updated relations h, +
h, =, ' (b, +by,) and j, + 4, = op(e, +ep).

The surface fields j; . f ¢, and ky ;, in (32)=(3c), and ay
in (4c), are generally zero for classical homogeneous BCs. The
discontinuities (5a)—(5d) are also generally zero for common
continuous field traces. If nonzero, they define possible surface
sources (SSs) that account for particular phenomena occurring
in the thin region between fy;r and T [51-[9]. This is the case
when some field traces in a problem g are forced to be discontin-
uous. The continuity has to be recovered after a correction via
a problem p. The SSs in problem p are thus to be fixed as the
opposite of the trace solution of problem gq.

Each problem p is to be constrained via the so defined VSs
and SSs from parts of solutions of other problems. This is a
key element of the SPM, offering a wide variety of possible
corrections, in particular of TS solutions as shown hereafter.

B. Thin Shell Model

A volumic shell €, ,, initially in €., or QCP is extracted
from §2,, and then considered with the double layer TS surface
Disp- The TS model [4] written with the a,-formulation, re-
quires a free (unknown) discontinuity a4, , of the tangential
component a; , = (n x a,) X n of a, through the TS, i.e.,
=ag;, O =nXaq:, (8)

[at7p][‘ts,p [n X at7p]rts.p

with a fixed zero value along the TS border 01y, ;,, which ne-
glects the magnetic flux entering there. To explicitly express this
discontinuity, one defines [4]

ap|rjw = Qcp + Qd,p, a'p|r;‘p =0cp ©))

with a. , the continuous component of a,. (9) also applies on
I';s,p for the tangential components @; , G, and @q ¢, p.

The BCs and ICs associated with the TS, of impedance BC
type [4], are then defined via @+, and aq ¢, as

(10a)
(10b)

[nes X hylp,. = —0pBp0i(2@cp + @a,tp)

Nis X hp|rjw + Ny X hp|r;yp = _(Mpﬁp)_l

Qd,t,p
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Bp =, tanh(ypd,/2),
6 —

p =

Tp = (1 +j)/6p7

2/(woppy) (11)

where d,, is the local TS thickness (possibly non-constant), ¢, is
the skin depth in the TS, w = 27 f with f the frequency, j is the
imaginary unit and 9; = jw. For 8, = d,,, one has 8, ~ d,,/2.
In statics, (10a) is zero and (10b) is —2(p,d,) " @d,t p-

C. Thin Shell Correction

Once obtained, the TS solution, renamed solution ¢, is cor-
rected by another solution p that overcomes the TS assump-
tions. The SPM offers the tools to perform such a model re-
finement, thanks to simultaneous SSs and VSs. Indeed, SSs re-
lated to ICs (5a) and (5d) can compensate the TS discontinuities
[n X hyl, (10a)and [n-by], ~via[n X ag], (8)tosup-
press the TS representation, in parallel to VSs (7a) and (7b) in
the added volumic shell that account for the associated y,, and
oy, different from these of problem ¢ that characterized the am-
bient region (1 = po and oy = 0).

III. FE WEAK FORMULATIONS

A. Canonical b-Conform Weak Formulations

The weak a,-formulation of the canonical problem p is ob-
tained from the weak form of the Ampere equation (la), i.e.,

[6]-[9]

(1, 'curl ay, curl a')
a’)Q +(nxh,,.a') .
+< [nxh,], .a >p:0, Va' eF) ()

Q, + (hs,pv curl aI)QP - (js,p7 aI)QP

—(opdiap, L Hnxh,d),

12)

where FPI(QP) is a curl-conform function space defined on €,
gauged in Qgp, and containing the basis functions for a as well
as for the test function a’ (at the discrete level, this space is de-
fined by edge FEs; the gauge is based on the tree-co-tree tech-
nique); (-, -)q and (-, -)r, respectively, denote a volume integral
in €2 and a surface integral on I' of the product of their vector
field arguments. The surface integral term on I'j, ;, accounts for
natural BCs of type (3a), usually zero. The term on the surface
I’y , with essential BCs on n - b, is usually omitted because it
does not locally contribute to (12). It can be used for post-pro-
cessing a solution, a part of whichn x h,, |1"b,p having to act fur-
ther as a SS [5]-[9].

At the discrete level, the characteristics of the required
meshes for each problem p in the SPM totally differ. For
the TS problem, the mesh describes the details of the source
and is simplified near the TS regions, whereas the correction
problem mesh focuses on the actual volumic thin region, finely
discretized in a homogeneous medium. The required sources
for the correction problem have to be transferred from the TS
mesh to the correction mesh. A rigorous expression of the
sources is crucial for the efficiency of the method.

B. Thin Shell Model

The TS model is defined in (12) via a free discontinuity Q4 p

along the TS and a, j, in the exterior region adjacent to ' p>@s
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well as IC (10a) and a BC forn;, x h |r+

(10a) and (10b). The explicit dlscontmulty is to be used as a test
function in (12), with contributions in the volume integrals on
2, (limited to the FE layer on the positive side of the TS) and
in the surface integral term on v, = I'y, p, i.€.,

<—[n X hp]rm p,al>rtw = <_[nts X hp]r“ @, f,p>r

/
+ <—'n.ts X hp|rj;,p7ad’t7p>r

obtained by adding

ts,p

13)

ts.p

which is reduced to ((ppd,) ™~ in statics.

1 /
Qdtp, a'd,t,p>1“f,s »

C. Projections of Solutions Between Meshes

Some parts of a previous solution a, serve as sources in a
subdomain €2, , C €2, of the current problem p. At the discrete
level, this means that this source quantity a, has to be expressed
in the mesh of problem p, while initially given in the mesh of
problem g. This can be done via a projection method [11] of its
curl limited to € ,, i.e.,

Va' € F,}(Qs,p)

(14)
where Fp1 (Qs,p) is a gauged curl-conform function space for the
p-projected source a,—,, (the projection of a, on mesh p) and the
test function a’.

/ _ /
(curla,_,, curla )stp—(curlaq, curla’), .

D. TS Correction—VSs in the Actual Volumic Shell and SSs
for Suppressing the TS Representation

Changes from p, and o, to 1, and o), that occur in the vo-
lumic shell, are taken into account in (12) via the volume in-
tegrals (h ,, curla’)QP and (4, ,.a’), . The VS h, , is given
by (7a), with b, = curla,. To avoid aﬁy cancellation error on
the reaction field b, for high 1, the robust procedure devel-
oped in [9] has to be applied, with an intermediate change to
an infinite y,,. The VS j, , is given by (7b), generally reduced
t0Js, = Upeq = o0,(—0:ay — gradv,). Potential v, is un-
known in QC o but its determination via an electric problem
[10] prior to problem p is not needed: relation (2b) is then j,, =
op(e, +ey) = op(—0ia, — gradv, — dra, — gradv,), with the
freedom to fix v, and v, to zero and let a,, to react alone to a,.

At the discrete level, the primal source quantity a, is pro-
jected in the mesh p via (14), with Q ;, limited to the volumic
shell.

Simultaneously to the VSs, SSs have to suppress the TS dis-
continuities, with ICs (5a) and (5d) to be defined as

(15a)
(15b)

[n x hp]Fis’p =—[nx h‘l]Fts

[n x ap]ri =-—nXay ,,q|rt

respectively, in weak and strong senses, i.e., via a surface inte-
gral and in Fpl(Qp). IC (15b) strongly fixes @qtp = —@qtq.
IC (15a) is weakly expressed via the last integral in (12), with
Y¥p = I'isp = T'is 4. The so involved trace [n x hq]r can be
naturally expressed via the other (volume) integrals in (12) ie.,

<_ [ x hp]ris,p’al>n5,p N —<—['n. 8 hg]r“»?’al>rts.q

= (uq_lcurla,q,curl(;r,')Q _o - (16)

Fig. 1. Field lines for the magnetostatic TS model (b, top left) and the cor-
rection solution (b, bottom left) (d = 5 mun, plate length 120 mm, relative
permeability i, = 100) and the total solution (b + bs, bottom right), with
the different meshes used. Projection of TS solution (@, in the volumic shell,
elevation of @,4,; norm along the TS surface, fop right).

The surface integral in (16) can also directly use (10a) at step
q. At the discrete level, the volume integral in (16) is limited
to the layers of FEs on both sides of I'; ;,, because it involves
only the associated traces n x a’|r, . The source a,, including
its discontinuity a4 4, initially in mesh g, has to be projected in
mesh p via (14), with €} ,, limited to the FE layers, which thus
decreases the computational effort of the projection process.
This also gives the SS for (15b).

IV. APPLICATION EXAMPLES

The test problem consists of a plate located above an inductor
(2-D model, Fig. 1). It is first considered via a TS FE magne-
tostatic model, with a lighter mesh (Fig. 1, fop leff). Then an
SPM correction replaces the TS FEs with classical volumic FEs
covering the plates and their neighborhood, with an adequate re-
fined mesh, that does not include the inductor anymore (Fig. 1,
bottom left). The projections of portions of TS solutions for the
VS and SS are also illustrated (Fig. 1, top right). For each set
of parameters, the SPM solution is compared with the classical
solution calculated on a single mesh (Fig. 1, bottom right). The
inaccuracies of the TS model, that increase with the plate thick-
ness, particularly near the plate ends, are perfectly corrected
whatever their order of magnitude (Fig. 2). The accuracy of the
correction is directly linked to the volumic mesh of the plate
and its neighboring. The correction process is then extended in
magnetodynamics (see Fig. 3), leading to accurate corrections
of magnetic flux and eddy current densities. Each correction is a
reaction field that can influence the source solutions. Iterations
between problems can thus be required [7], with a fast conver-
gence due to the local nature of the reaction field. In the consid-
ered examples, the source problems do not need to be corrected
because they only contain coils without any magnetic or con-
ducting regions that would give their own reaction fields. The
sum of the SPM solutions is thus equivalent to the complete
solution, with an accuracy governed by the SPM meshes with
particular refinements.

The corrections, usually of a few percents in the exterior
region, can reach several tens of percents in the shells. For
magnetic shells, the TS longitudinal magnetic flux is usually of
poor quality near the shell ends (see Fig. 4), which is then per-
fectly corrected by the SPM correction. In magnetodynamics, a
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Fig. 2. Highlighted regions with a relative correction higher than 1% (in the
plates and the vicinity of their ends) for d =1.25, 2.5, 5, 10, 20, and 40 mm
(from left to right, top to bottom) (plate length 120 mm, ., = 100).
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Fig. 3. Field lines (left) and eddy current density (right) for the magneto-dy-
namic TS model (b1, j,, top) and the correction solution (b, 3, bottom) (d =

5 mm, plate length 120 mm, g, = 1,6 = 5.9107 Q~'m~*!, f = 300 Hz).
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Fig. 4. Relative correction of the longitudinal magnetic flux along the plate for
different plate thicknesses (plate length 120 mm, p,. = 100).

problem with a mainly longitudinal flux suffers from the same
flux inaccuracies, whereas these will be lower with a transversal
flux. The TS error on the eddy current density and the ensuing
Joule power density depends on several parameters, as shown
in Fig. 5. The inaccuracies on the Joule losses can reach 50%
in the end regions for some critical parameters: e.g., 45% with
the 3rd set, with 6 = 2.3 mm, or 30% with the 2nd set, with
6 = 3.8 mm, with d = 5 mm in both cases.

The correction scheme has been successfully applied in 3-D,
for a particular configuration of TEAM problem 21 (coil and
plate, Fig. 4), which opens it to further detailed studies.

V. CONCLUSION

The proposed correction scheme of TS models via a SPM
leads to accurate field and current distributions in critical re-
gions, the edges of plates, and so of the ensuing forces and
Joule losses distributions. Even significant corrections can be
obtained at a low computational cost thanks to the use of dif-
ferent adapted meshes, with simplifications in both TS and cor-
rection problems. The TS correction can constitute a particular
step of the SPM developed in [6]-[9], which is particularly in-
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Fig. 5. Relative correction of the Joule power density along the plate, with
effects of d, ¢, o, and f.

Chefegeg

Fig. 6. TEAM problem 21 (1/4th of the geometry, magnetostatics): highlighted
regions with a relative correction higher than 1% (in the plates and their neigh-
boring) for {d = 10 mm, 4, = 100}, {d = 15mm,p, = 100}, {d =
10 mm, g, = 10}, {d = 15 mm, p,. = 10} (from left to righ).

teresting in parametric analyses on geometrical and material pa-
rameters.
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