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Summary

Schur-optimality is a very general class of optimality criteria that includes, as
special cases, A- D- and E-optimality and Cheng (1978) Type 1 optimality.
In this paper, Schur-optimal two-level factorial designs under a second-order
model are derived for 3 and 5 factors for all numbers of runs where the model
is estimable. In addition, orthogonal arrays of strength 4 (resolution V) with e
added runs are shown to be E-optimal under a second-order model for e ≤ 10
and m = 4 factors and for e ≤ 15 and m ≥ 5 factors. Corresponding results
for third-order models are also given.
Some key words: Defining contrasts; Fractional factorial; Main effect; Ma-
jorization; Optimum design; Regular design; Two-factor interaction.

1 Introduction

There are various known optimality results for two-level factorial designs in
cases where an orthogonal design is not possible. For first-order models, con-
sisting of main effects and a mean, an orthogonal design exists for n ≡ 0 mod 4
runs by using columns from a Hadamard matrix or Plackett & Burman (1946)
design. Cheng (1980) showed that adding any extra two-level run is opti-
mal for first-order models under the Cheng (1978) Type 1 optimality criteria.
Jacroux, Wong & Masaro (1983) showed that adding two specific extra runs
is also Type 1 optimal. The case of n ≡ 3 mod 4 is more problematic and
different Type 1 optimality criteria, such as A-, D- and E-optimality, tend to
have different optimal designs.

For second-order models, consisting of main effects, two-factor interactions
and a mean, orthogonality is achieved using orthogonal arrays of strength 4
(Rao, 1947), or regular designs of resolution V or more (Finney, 1945; Box
& Hunter, 1961a,b). Type 1 optimality for one extra run and two specific
runs is respectively shown by Cheng (1980) and Chadjiconstantinidis, Cheng
& Moyssiadis (1989). Butler & Ramos (2007) provide optimal additions and
deletions to orthogonal arrays of strength 4 under the very general Schur-
optimality criteria (Marshall & Olkin, 1979; Giovagnoli & Wynn, 1981).
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Mukerjee (1995) derives E-optimality results under various order models
for multi-level orthogonal arrays with additional runs; see also Dey & Mukerjee
(1999). In this paper, the results are extended in the case of two-level factorial
designs. It is shown that two-level orthogonal arrays of strength 4 with e
additional runs are E-optimal under a second-order model for e ≤ 10 and
m = 4 factors and for e ≤ 15 and m ≥ 5 factors. This compares with the
previously known result of e ≤ 5. In addition, Schur-optimal designs under a
second-order model are derived for 3 and 5 factors for all possible numbers of
runs. Third-order models are also considered briefly in the final section.

2 Background

Optimal designs will be derived for two-level factorial designs in m factors
under the second-order model

y = µ+
m
∑

i=1

αixi +
m−1
∑

i1=1

m
∑

i2=i1+1

βi1i2xi1xi2 + ε

for observations y, mean µ, factorial main effects αi, factor levels xi = ±1,
two-factor interactions βi1i2 , and independent errors ε ∼ N(0, σ2).

The model for n runs may also be expressed in matrix form as

Y = Zβ + ε, ε ∼ N(0, σ2In),

where Z is the n×t design, and t = m(m+1)/2+1 is the number of parameters
in the model. For two-level designs, there are a total of 2m possible factorial
combinations or runs with levels ±1 in each of the m factors. Each run i has
a design vector zi of length t, and number of replicates ri. The information
matrix Z ′Z for these designs is given by

Z ′Z =
2m
∑

i=1

riziz
′
i (1)

with
∑2m

i=1 ri = n. Note that for a full 2m factorial,

Z ′Z =
2m
∑

i=1

ziz
′
i = 2mIt.

Designs will be compared on the basis of the eigenvalues λ1 ≥ ... ≥ λt of
the information matrix Z ′Z. The optimality criteria considered will be E-
optimality and Schur-optimality. The E-optimality criterion simply maximises
min λi = λmin = λt. Equivalently, E-optimality minimises the maximum
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eigenvalue of the variance matrix σ2(Z ′Z)−1 of the least squares parameter
estimates.

Schur-optimality is a very general class of criteria that includes A-, D- and
E-optimality and Cheng (1978) Type 1-optimality as special cases. Schur-
optimal designs minimise all Schur-convex functions of the Z ′Z-matrix eigen-
values, including

t
∑

i=1

f(λi) (2)

for any convex function f . Note that A-optimality has f(λ) = 1/λ and D-
optimality has f(λ) = −log λ. For more information on the theory and appli-
cations of Schur-optimality, see Marshall & Olkin (1979) Giovagnoli & Wynn
(1981), Shah & Sinha (1989), Bailey, Monod & Morgan (1995), Bagchi &
Bagchi (2001) and Butler & Ramos (2007).

A Schur-optimal design is required to majorise every other design. A design
with Z ′Z-matrix eigenvalues λ∗

1 ≥ ... ≥ λ∗
t is said to majorise, or be Schur-

better, than a design with Z ′Z-matrix eigenvalues λ1 ≥ ... ≥ λt if

λ∗
1 + ...+ λ∗

t = λ1 + ...+ λt (3)

and

λ∗
k + ...+ λ∗

t ≥ λk + ...+ λt (4)

for k = 2, ..., t. Observe that, as (3) fixes the sum of the eigenvalues, a design
satisfies (4) for k = k′ if and only if it satisfies

λ∗
1 + ...+ λ∗

k ≤ λ1 + ...+ λk (5)

for k = k′ − 1. Both majorization conditions (4) and (5) will be used in
the proofs that follow. The other condition (3) holds for all two-level designs
as trace(Z ′Z) always equals nt, as a result of every diagonal element of Z ′Z
equalling n.

Schur-optimal designs can trivially be found for m = 2 factors and n =
4r + e runs. In this case, the design vectors zi of length 4 are orthogonal to
each other. Hence, from (1), the eigenvalues of Z ′Z are 4ri with corresponding
eigenvectors zi. Thus, it follows that any design with r + 1 replicates of e of
the runs and r replicates of the other runs is Schur-optimal.

3 Three Factors

The following theorem provides Schur-optimal two-level designs for 3 factors
for all numbers of runs where the model is estimable, i.e. n ≥ t = 7.
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THEOREM 1. For 3 factors and n = 8r+e runs (1 ≤ e ≤ 7), r replicates of
the full 23 factorial design with any e additional distinct runs is Schur-optimal.

Proof. Note that Z ′Z is a 7 × 7 matrix. Let the designs in the theorem
have eigenvalues λ∗

1 ≥ ...λ∗
7. The information matrix of these designs is Z ′Z =

8rI7 + Z ′
0Z0, where Z0 is the design matrix of the additional runs. Hence,

λ∗
i = 8r + µi, where µi ≥ 0 are the eigenvalues of Z ′

0Z0, and so each λ∗
i ≥ 8r.

Similarly, Z ′Z = 8(r+1)I7−Z ′
1Z1, where Z1 is the design matrix of the runs not

replicated r+1 times, and hence λ∗
i ≤ 8(r+1). Thus, 8(r+1) ≥ λ∗

1 ≥ λ∗
7 ≥ 8r.

For each possible two-level design, define the set S = {1 ≤ i ≤ 8 : ri > r}
and let a (1 ≤ a ≤ 7) be the design-dependent number of elements in S. For
a ≤ 6, let u1, ..., ua+1 be orthogonal eigenvectors associated with the a + 1
biggest eigenvalues of Z ′Z. Then there is a unit vector v that is a linear
combination of u1, ..., ua+1 that is orthogonal to each of the a vectors zi (i ∈ S).
Now

v′Z ′Zv = v′

(

8
∑

i=1

riziz
′
i

)

v = v′

(

∑

i∈Sc

riziz
′
i

)

v

≤ v′

(

r
∑

i∈Sc

ziz
′
i

)

v = v′

(

r
8

∑

i=1

ziz
′
i

)

v = 8rv′v

= 8r.

As v is a linear combination of u1, ..., ua+1 and is a unit vector, if λa+1 > 8r,
then v′Z ′Zv > 8r. Hence, λa+1 ≤ 8r ≤ λ∗

7 for a ≤ 6. Consequently, the
majorization condition (4) is satisfied for k = a+ 1, ..., 7 and a ≤ 6.

Similarly, for a ≥ 2, let ua−1, ..., u7 be orthogonal eigenvectors associated
with the 9− a smallest eigenvalues of Z ′Z. Then there is a unit vector v that
is a linear combination of ua−1, ..., u7 that is orthogonal to each of the 8 − a
vectors zi (i ∈ Sc). Thus,

v′Z ′Zv = v′

(

8
∑

i=1

riziz
′
i

)

v = v′

(

∑

i∈S

riziz
′
i

)

v

≥ v′

(

(r + 1)
∑

i∈S

ziz
′
i

)

v = v′

(

(r + 1)
8

∑

i=1

ziz
′
i

)

v = 8(r + 1)v′v

= 8(r + 1).

As v is a linear combination of ua−1, ..., u7 and is a unit vector, if λa−1 <
8(r + 1), then v′Z ′Zv < 8(r + 1). Hence, λa−1 ≥ 8(r + 1) ≥ λ∗

1 for a ≥ 2.
Therefore, the majorization condition (5) is satisfied for k = 1, ..., a − 1 and
a ≥ 2. This implies that the majorization condition (4) holds for k = 2, ...a.

4



Acc
ep

te
d m

an
usc

rip
t 

On combining this with the last sentence of the previous paragraph, the ma-
jorization condition (4) holds for k = 2, ..., 7, and so the designs in the theorem
are Schur-optimal.

4 Four Factors

THEOREM 2. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 15), there is an
E-optimal design that contains r replicates of the full 24 factorial design.

Proof. A design containing r replicates of a 24 factorial design has λmin ≥
16r, as Z ′Z = 16rI11 + Z ′

0Z0 where Z0 is the design matrix of the additional
runs. It will be shown that for any other design λmin ≤ 16r if e ≤ 14.

Suppose that this is not the case, so λmin > 16r for a design with min ri =
r − a and a ≥ 1. In this scenario, the set S = {1 ≤ i ≤ 8 : ri > r} will
be shown to contain at least 11 elements. If it does not, then there exists a
unit vector v of length t = 11 that is orthogonal to all the vectors zi (i ∈ S).
Consequently,

v′Z ′Zv = v′

(

16
∑

i=1

riziz
′
i

)

v = v′

(

∑

i∈Sc

riziz
′
i

)

v

≤ v′

(

∑

i∈Sc

rziz
′
i

)

v = v′

(

16
∑

i=1

rziz
′
i

)

v = 16r.

This contradicts the assumption that λmin > 16r. Hence, S must contain 11
or more runs.

We now define the Hamming distance between two runs to be the number
of main effects for which the two runs differ. For instance, the run with main
effects (+,+,−,−) is at distance 2 to (+,−,+,−) as factors 2 and 3 differ. It
is easily shown using the confounding between runs ideas in Butler (2006) that
z′izj = 3 if runs i and j are at distance 1 or 4, and z′izj = −1 if i and j are at
distance 2 or 3. Thus, for each run j, the set S3(j) = {1 ≤ i ≤ 16 : z′izj = 3}
contains 5 elements, and the set S1(j) = {1 ≤ i ≤ 16 : z′izj = −1} contains 10
elements. The only other possibility is i = j when z′izj = 11.

Suppose, without loss of generality, that run 1 has the minimum number
of replicates r − a. Then

z′1Z
′Zz1 = z′1

(

16
∑

i=1

riziz
′
i

)

z1

= z′1



(r − a)z1z1 +
∑

i∈S3(1)

riziz
′
i +

∑

i∈S1(1)

riziz
′
i



 z1

5
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= 121(r − a) + 9
∑

i∈S3(1)

ri +
∑

i∈S1(1)

ri.

Now

(r − a) +
∑

i∈S3(1)

ri +
∑

i∈S1(1)

ri =
16
∑

i=1

ri = 16r + e.

Therefore

z′1Z
′Zz1 = 9(16r + e) + 112(r − a)− 8

∑

i∈S1(1)

ri.

There are 10 runs in S1(1). At least six of these must have ri > r as S contains
11 elements, and i = 1 6∈ S. The other four runs must have ri ≥ r− a. Hence

∑

i∈S1(1)

ri ≥ 6(r + 1) + 4(r − a) = 10r + 6− 4a.

Consequently,

z′1Z
′Zz1 ≤ 9(16r + e) + 112(r − a)− 8(10r + 6− 4a)

= 176r + 9e− 48− 80a (6)

< 16rz′1z1

for 1 ≤ e ≤ 14 and a ≥ 1. This implies that Z ′Z must have λmin < 16r, and
a contradiction is obtained for 1 ≤ e ≤ 14.

For e = 15, it follows from (6) that

λmin ≤ z′1Z
′Zz1

z′1z1
≤ 176r + 9e− 48− 80a

11

≤ 16r +
7

11
.

This compares with λmin = 16r + 5 for a design with r + 1 replicates of a 24

design with one run z deleted, as Z ′Z = 16(r+1)I11− zz′. Thus, for e = 15, a
design that does not contain r replicates of a 24 factorial cannot be E-optimal.

THEOREM 3. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 10), r repli-
cates of the 24 factorial design with any e additional runs is E-optimal and
λmin = 16r.

6
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Proof. From the proof of Theorem 2, the only designs that could have
λmin > 16r would contain r replicates of a 24 factorial design. Such a design
would have information matrix

Z ′Z = 16rI11 + Z ′
0Z0

where Z0 is the e× 11 design matrix of the e additional runs. The eigenvalues
of Z ′Z are λi = 16r + µi, where µi are the eigenvalues of Z ′

0Z0. However,
Z0 is of rank at most e and so Z ′

0Z0 has at least one zero eigenvalue. Conse-
quently, λmin cannot be greater than 16r, and the designs in the theorem are
E-optimal.

THEOREM 4. For 4 factors and n = 16r + e runs (11 ≤ e ≤ 15), r
replicates of a 24 factorial design with an E-optimal design for 4 factors and
e runs is E-optimal.

Proof. This result follows from Theorems 2 and 3 and the fact that with
e ≥ 11, Z ′

0Z0 can be non-singular. The E-optimal design for e = 11 runs is
proved in Butler & Ramos (2007).

Theorems 3 and 4 together cover all cases 1 ≤ e ≤ 15. Note that the
additional runs in Theorem 3 could be added using the distance-based methods
in the aforementioned paper, Butler & Ramos (2007).

5 Five or More Factors

In this section, we require orthogonal arrays of strength 4. By definition, a
two-level design is an orthogonal array of strength s ≥ 2 if, for each subset of s
factors, each of the 2s factorial combinations occurs equally often. Obviously,
n must equal 2sq for some integer q.

For an orthogonal array of strength 4, main effects, two-factor interactions
and the mean are all orthogonal to each other. Consequently, Z ′Z = 16qIt. If
the design is regular, i.e. it can be defined in terms of defining contrasts, then
it has resolution V or more.

With m = 5 factors, orthogonal arrays of strength 4 can easily be formed
for 16q runs for any positive integer q by combining w ≤ q replicates of
the half-fraction design ABCDE = + with q − w replicates of the design
ABCDE = −. For m = 6 factors, it is possible to form nonregular orthogonal
arrays of strength 4, for example when n = 80. Other nonregular orthogonal
arrays of strength 4 can be formed for n = 80 + 32r by adding r half-fraction
designs ABCDEF = ±. Thus, it follows that orthogonal arrays of strength 4
exist for m = 6 factors and 16q runs for all q ≥ 4. This means that Theorem 5

7
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below cannot be extended to e > 15 for m = 6, and may be difficult to extend
for higher values of m.

THEOREM 5. For m ≥ 5 factors and n = 16q + e runs (q an integer,
1 ≤ e ≤ 15), an orthogonal array of strength 4 for 16q runs with any e addi-
tional runs is E-optimal and λmin = 16q.

Proof. First consider the case of m = 5 factors. Let z1,i (i = 1, ...16) be
the design vectors and r1,i be the corresponding number of replicates for the
runs in a 25−1 design with defining contrast ABCDE = +. Similarly, let z2,i
(i = 1, ...16) be the design vectors and r2,i be the corresponding number of
replicates for the runs in a 25−1 design with defining contrast ABCDE = −.
Then

Z ′Z =
2

∑

j=1

16
∑

i=1

rj,izj,iz
′
j,i

and

16
∑

i=1

zj,iz
′
j,i = 16I16

for j = 1, 2. Let N(S) be the number of elements in any set S. Then

n =
2

∑

j=1

16
∑

i=1

rj,i =
2

∑

j=1

∑

p≥1

pN(i : rj,i = p) =
2

∑

j=1

∑

p≥1

N(i : rj,i ≥ p)

=

q+1
∑

p=1

(N(i : r1,i ≥ p) +N(i : r2,i ≥ q + 2− p)) +
2

∑

j=1

∑

p≥q+2

N(i : rj,i ≥ p).

Hence,

q+1
∑

p=1

(N(i : r1,i ≥ p) +N(i : r2,i ≥ q + 2− p)) ≤ n < 16(q + 1).

Therefore, as there are q + 1 terms in the above sum, there exists a p0 (1 ≤
p0 ≤ q + 1) such that

N(i : r1,i ≥ p0) +N(i : r2,i ≥ q + 2− p0) < 16.

Consequently, there is a unit vector v of length t = 16 that is orthogonal to
all the vectors

z1,i (i : r1,i ≥ p0) z2,i (i : r2,i ≥ q + 2− p0).

8
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Thus,

v′Z ′Zv = v′

(

16
∑

i=1

r1,iz1,iz
′
1,i +

16
∑

i=1

r2,iz2,iz
′
2,i

)

v

= v′





∑

i:r1,i<p0

r1,iz1,iz
′
1,i +

∑

i:r2,i<q+2−p0

r2,iz2,iz
′
2,i



 v

≤ v′





∑

i:r1,i<p0

(p0 − 1)z1,iz
′
1,i +

∑

i:r2,i<q+2−p0

(q + 1− p0)z2,iz
′
2,i



 v

= v′

(

16
∑

i=1

(p0 − 1)z1,iz
′
1,i +

16
∑

i=1

(q + 1− p0)z2,iz
′
2,i

)

v

= 16(p0 − 1)v′I16v + 16(q + 1− p0)v
′I16v

= 16qv′v

= 16q.

As v is of unit length, this implies that λmin ≤ 16q for any design. The designs
stated in the theorem have λmin ≥ 16q as they contain an orthogonal array of
strength 4 for 16q runs. Consequently, they are E-optimal for m = 5 factors.

For m > 5 factors, partition the design matrix Z = (Z1, Z2) where Z1

is an n × 16 design matrix containing the mean, 5 main effects and 10 two-
factor interactions of a five-factor design, and Z2 is the design matrix for all
remaining effects. Then

Z ′Z =

(

Z ′
1Z1 Z ′

1Z2

Z ′
2Z1 Z ′

2Z2

)

.

The lowest eigenvalue of Z ′Z cannot be greater than the lowest eigenvalue of
the principal submatrix Z ′

1Z1, and hence λmin ≤ 16q. The designs in the the-
orem again have λmin ≥ 16q as they contain an orthogonal array of strength
4 for 16q runs, and so they are E-optimal.

THEOREM 6. For 5 factors and n = 16q + e runs (1 ≤ e ≤ 15), an
orthogonal array of strength 4 for 16q runs with any e additional distinct runs
from the same half-fraction design ABCDE = ± is Schur-optimal.

Proof. First note that the information matrix may be expressed as

Z ′Z =
2

∑

j=1

16
∑

i=1

rj,izj,iz
′
j,i =

2
∑

j=1

∑

p≥1

∑

i:rj,i≥p

zj,iz
′
j,i

9
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=

q+1
∑

p=1





∑

i:r1,i≥p

z1,iz
′
1,i +

∑

i:r2,i≥q+2−p

z2,iz
′
2,i



+
2

∑

j=1

∑

p≥q+2

∑

i:rj,i≥p

zj,iz
′
j,i.

From the proof of Theorem 5,

q+1
∑

p=1

(N(i : r1,i ≥ p) +N(i : r2,i ≥ q + 2− p)) ≤ n.

Define, for 1 ≤ p ≤ q + 1,

hp = max (0, 16−N(i : r1,i ≥ p)−N(i : r2,i ≥ q + 2− p)) .

Then

q+1
∑

p=1

hp ≥
q+1
∑

p=1

(16−N(i : r1,i ≥ p)−N(i : r2,i ≥ q + 2− p))

= 16(q + 1)−
q+1
∑

p=1

(N(i : r1,i ≥ p) +N(i : r2,i ≥ q + 2− p))

≥ 16(q + 1)− n

= 16− e.

Now, from the definition of hp, there are hp ≥ 0 orthogonal vectors vp,i (i =
1, ..., hp) that are orthogonal to all the vectors

z1,i (i : r1,i ≥ p) z2,i (i : r2,i ≥ q + 2− p)

for 1 ≤ p ≤ q+1. The vectors vp,i (p = 1, ..., q+1; i = 1, ..., hp) form a subspace
of dimension a ≤

∑q+1
p=1 hp. Suppose that u1, ..., ua form an orthonormal basis

for the subspace and let U1 = (u1, ..., ua). Then, P = U1U
′
1 is the t × t

projection matrix of rank a spanned by the vectors vp,i (p = 1, ..., q + 1; i =
1, ..., hp).

The projection matrix P may be expressed for each p ≥ 1 as

P = Q(1)
p +R(1)

p

where Q
(1)
p and R

(1)
p are projection matrices with Q

(1)
p spanned by the subset

of vectors vp′,i (p′ ≤ p; i = 1, ..., hp). Thus, R
(1)
p is the projection matrix

spanned by the subspace of vp′,i (p
′ > p; i = 1, ..., hp) that is orthogonal to

Q
(1)
p . Alternatively,

P = Q(2)
p +R(2)

p

10
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where Q
(2)
p and R

(2)
p are projection matrices with Q

(2)
p spanned by the different

subset of vectors vp′,i (p
′ ≥ p; i = 1, ..., hp).

Now consider

Z ′ZP =

q+1
∑

p=1





∑

i:r1,i≥p

z1,iz
′
1,iP +

∑

i:r2,i≥q+2−p

z2,iz
′
2,iP



+
2

∑

j=1

∑

p≥q+2

∑

i:rj,i≥p

zj,iz
′
j,iP.

Then

trace(Z ′ZP ) =

q+1
∑

p=1





∑

i:r1,i≥p

z′1,iPz1,i +
∑

i:r2,i≥q+2−p

z′2,iPz2,i



+
2

∑

j=1

∑

p≥q+2

∑

i:rj,i≥p

z′j,iPzj,i.

From their definition, all the vectors vp,i (p = 1, ..., q+1; i = 1, ..., hp) spanning
P are orthogonal to zj,i (i : rj,i ≥ q + 2). Hence

2
∑

j=1

∑

p≥q+2

∑

i:rj,i≥p

z′j,iPzj,i = 0.

Now, for j = 1 and each 1 ≤ p ≤ q + 1,

∑

i:r1,i≥p

z′1,iPz1,i =
∑

i:r1,i≥p

z′1,iQ
(1)
p z1,i +

∑

i:r1,i≥p

z′1,iR
(1)
p z1,i.

Also from their definition, the vectors vp′,i (p
′ ≤ p; i = 1, ..., hp) spanning Q

(1)
p

are all orthogonal to the vectors z1,i (i : r1,i ≥ p). Hence, the first term in the
above sum disappears and

∑

i:r1,i≥p

z′1,iPz1,i =
∑

i:r1,i≥p

z′1,iR
(1)
p z1,i =

∑

i:r1,i≥p

trace(R(1)
p z1,iz

′
1,i)

≤
16
∑

i=1

trace(R(1)
p z1,iz

′
1,i) = 16trace(R(1)

p ).

Following a similar procedure, it can be shown for j = 2 and each 1 ≤ p ≤ q+1
that

∑

i:r2,i≥q+2−p

z′2,iPz2,i ≤ 16trace(R(2)
p ).

Thus

trace(Z ′ZP ) ≤ 16

q+1
∑

p=1

(

trace(R(1)
p ) + trace(R(2)

p )
)

.
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Note that trace(R
(1)
p ) is the dimension of the subspace added by the vectors

vp′,i (p
′ > p) after allowing for vp′,i (p

′ ≤ p). This is obviously less than or
equal to the dimension added by the same vectors vp′,i (p

′ > p) only allowing

for vp,i. The latter equals trace(Q
(2)
p )− hp. Hence

trace(Z ′ZP ) ≤ 16

q+1
∑

p=1

(

trace(Q(2)
p ) + trace(R(2)

p )− hp

)

= 16

q+1
∑

p=1

(trace(P )− hp)

= 16(q + 1)a− 16

q+1
∑

p=1

hp.

Now define the t × t orthogonal matrix U = (U1, U2) where the t × a matrix
U1 is defined as before so that P = U1U

′
1. We will use the fact that the matrix

U ′Z ′ZU has the same eigenvalues as Z ′Z. The sum of the first a diagonal
elements of U ′Z ′ZU is

trace(U ′
1Z

′ZU1) = trace(Z ′ZP ) ≤ 16(q + 1)a− 16

q+1
∑

p=1

hp.

It is well known that the diagonal elements of an information matrix majorise
the matrix’s eigenvalues (see Bagchi & Bagchi, 2001). Thus, for any design
the sum of the a smallest eigenvalues is less than or equal to the sum of the a
smallest diagonal elements, and so is at most 16qa as a ≤

∑q+1
p=1 hp. Hence, the

average of the a smallest eigenvalues is less than or equal to 16q. Similarly, the
sum of the largest 16− a eigenvalues for any design is greater than or equal to

trace(Z ′Z)− trace(U ′
1Z

′ZU1) ≥ 16(16q + e)−

(

16(q + 1)a− 16

q+1
∑

p=1

hp

)

= 16(q + 1)(16− a) + 16(

q+1
∑

p=1

hp + e− 16)

≥ 16(q + 1)(16− a)

as
∑q+1

p=1 hp ≥ 16 − e. Thus, the average of the largest 16 − a eigenvalues is
greater than or equal to 16(q + 1).

The designs stated in the theorem have all eigenvalues λ∗
i ≥ 16q as Z ′Z =

16qI16 + Z ′
0Z0 where Z0 is the design matrix of the extra runs. Similarly, by

considering deletions to an orthogonal array for 16(q+1) runs, λ∗
i ≤ 16(q+1).

As the average of the lowest a eigenvalues of any other design is less than or

12
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equal to 16q, majorization condition (4) holds for k = 17− a, ..., 16. Similarly,
as the average of the largest 16 − a eigenvalues is greater then or equal to
16(q+1), majorization condition (5) holds for k = 1, ..., 16−a. On combining
these, the designs in the theorem are proved to be Schur-optimal.

6 Third-Order Model

The results obtained can be extended to two-level factorial designs under a
third-order model

y = µ+
m
∑

i=1

αixi +
m−1
∑

i1=1

m
∑

i2=i1+1

βi1i2xi1xi2 +
m−2
∑

i1=1

m−1
∑

i2=i1+1

m
∑

i3=i2+1

γi1i2i3xi1xi2xi3 + ε

where γi1i2i3 are three-factor interactions. For m = 3 factors, the problem is
trivial in the same way as for m = 2 factors under a second-order model. The
following results can be proved in almost exactly the same way as Theorems
1, 5 and 6 respectively.

THEOREM 7. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 15), r
replicates of the full 24 factorial design with any e additional distinct runs is
Schur-optimal under a third-order model.

THEOREM 8. For m ≥ 7 factors and n = 64q + e runs (q an integer,
1 ≤ e ≤ 63), an orthogonal array of strength 6 for 64q runs with any e addi-
tional runs is E-optimal under a third-order model and λmin = 64q.

THEOREM 9. For 7 factors and n = 64q + e runs (1 ≤ e ≤ 63), an
orthogonal array of strength 6 for 64q runs with any e additional distinct runs
from the same half-fraction design ABCDEFG = ± is Schur-optimal under
a third-order model.

In Theorem 7, the model contains all possible effects except the four-factor
interaction, and so is analogous to Theorem 1 where the model contains all
possible effects except the three-factor interaction. Theorems 8 and 9 use the
fact that a 27−1 design ABCDEFG = ± is saturated and orthogonal under a
third-order model for 64 runs in the same way that a 25−1 design ABCDE = ±
is saturated and orthogonal under a second-order model for 16 runs.
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