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Schur-optimality is a very general class of optimality criteria that includes, as special cases, A-D-and E-optimality and Cheng (1978) Type 1 optimality. In this paper, Schur-optimal two-level factorial designs under a second-order model are derived for 3 and 5 factors for all numbers of runs where the model is estimable. In addition, orthogonal arrays of strength 4 (resolution V) with e added runs are shown to be E-optimal under a second-order model for e ≤ 10 and m = 4 factors and for e ≤ 15 and m ≥ 5 factors. Corresponding results for third-order models are also given.

Introduction

There are various known optimality results for two-level factorial designs in cases where an orthogonal design is not possible. For first-order models, consisting of main effects and a mean, an orthogonal design exists for n ≡ 0 mod 4 runs by using columns from a Hadamard matrix or [START_REF] Plackett | The design of optimum factorial experiments[END_REF] design. [START_REF] Cheng | Optimality of some weighing and 2 n fractional factorial designs[END_REF] showed that adding any extra two-level run is optimal for first-order models under the [START_REF] Cheng | Optimality of certain asymmetrical experimental designs[END_REF] Type 1 optimality criteria. [START_REF] Jacroux | On the optimality of chemical balance weighing designs[END_REF] showed that adding two specific extra runs is also Type 1 optimal. The case of n ≡ 3 mod 4 is more problematic and different Type 1 optimality criteria, such as A-, D-and E-optimality, tend to have different optimal designs.

For second-order models, consisting of main effects, two-factor interactions and a mean, orthogonality is achieved using orthogonal arrays of strength 4 [START_REF] Rao | Factorial experiments derivable from combinatorial arrangements of arrays[END_REF], or regular designs of resolution V or more [START_REF] Finney | Fractional replication of factorial arrangements[END_REF]Box & Hunter, 1961a,b). Type 1 optimality for one extra run and two specific runs is respectively shown by [START_REF] Cheng | Optimality of some weighing and 2 n fractional factorial designs[END_REF] and [START_REF] Chadjiconstantinidis | Construction of optimal fractional factorial resolution V designs with N ≡ 2 mod 16 observations[END_REF]. [START_REF] Butler | Optimal additions to and deletions from two-level orthogonal arrays[END_REF] provide optimal additions and deletions to orthogonal arrays of strength 4 under the very general Schuroptimality criteria [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF][START_REF] Giovagnoli | Optimum continuous block designs[END_REF].

A c c e p t e d m

a n u s c r i p t [START_REF] Mukerjee | On E-optimal fractions of symmetric and asymmetric factorials[END_REF] derives E-optimality results under various order models for multi-level orthogonal arrays with additional runs; see also [START_REF] Dey | Fractional Factorial Plans[END_REF]. In this paper, the results are extended in the case of two-level factorial designs. It is shown that two-level orthogonal arrays of strength 4 with e additional runs are E-optimal under a second-order model for e ≤ 10 and m = 4 factors and for e ≤ 15 and m ≥ 5 factors. This compares with the previously known result of e ≤ 5. In addition, Schur-optimal designs under a second-order model are derived for 3 and 5 factors for all possible numbers of runs. Third-order models are also considered briefly in the final section.

Background

Optimal designs will be derived for two-level factorial designs in m factors under the second-order model

y = µ + m i=1 α i x i + m-1 i 1 =1 m i 2 =i 1 +1 β i 1 i 2 x i 1 x i 2 +
for observations y, mean µ, factorial main effects α i , factor levels x i = ±1, two-factor interactions β i 1 i 2 , and independent errors ∼ N (0, σ 2 ).

The model for n runs may also be expressed in matrix form as

Y = Zβ + , ∼ N (0, σ 2 I n ),
where Z is the n×t design, and t = m(m+1)/2+1 is the number of parameters in the model. For two-level designs, there are a total of 2 m possible factorial combinations or runs with levels ±1 in each of the m factors. Each run i has a design vector z i of length t, and number of replicates r i . The information matrix Z Z for these designs is given by

Z Z = 2 m i=1 r i z i z i (1)
with 2 m i=1 r i = n. Note that for a full 2 m factorial,

Z Z = 2 m i=1 z i z i = 2 m I t .
Designs will be compared on the basis of the eigenvalues λ 1 ≥ ... ≥ λ t of the information matrix Z Z. The optimality criteria considered will be Eoptimality and Schur-optimality. The E-optimality criterion simply maximises min λ i = λ min = λ t . Equivalently, E-optimality minimises the maximum
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eigenvalue of the variance matrix σ 2 (Z Z) -1 of the least squares parameter estimates. Schur-optimality is a very general class of criteria that includes A-, D-and E-optimality and Cheng (1978) Type 1-optimality as special cases. Schuroptimal designs minimise all Schur-convex functions of the Z Z-matrix eigenvalues, including

t i=1 f (λ i ) (2)
for any convex function f . Note that A-optimality has f (λ) = 1/λ and Doptimality has f (λ) = -log λ. For more information on the theory and applications of Schur-optimality, see [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF] [START_REF] Giovagnoli | Optimum continuous block designs[END_REF], [START_REF] Shah | Theory of Optimal Designs[END_REF], [START_REF] Bailey | Construction and optimality of affine-resolvable designs[END_REF], [START_REF] Bagchi | Optimality of partial geometric designs[END_REF] and [START_REF] Butler | Optimal additions to and deletions from two-level orthogonal arrays[END_REF].

A Schur-optimal design is required to majorise every other design. A design with Z Z-matrix eigenvalues λ * 1 ≥ ... ≥ λ * t is said to majorise, or be Schurbetter, than a design with Z Z-matrix eigenvalues λ

1 ≥ ... ≥ λ t if λ * 1 + ... + λ * t = λ 1 + ... + λ t (3) 
and

λ * k + ... + λ * t ≥ λ k + ... + λ t (4) 
for k = 2, ..., t. Observe that, as (3) fixes the sum of the eigenvalues, a design satisfies (4) for k = k if and only if it satisfies

λ * 1 + ... + λ * k ≤ λ 1 + ... + λ k (5) 
for k = k -1. Both majorization conditions (4) and (5) will be used in the proofs that follow. The other condition (3) holds for all two-level designs as trace(Z Z) always equals nt, as a result of every diagonal element of Z Z equalling n. Schur-optimal designs can trivially be found for m = 2 factors and n = 4r + e runs. In this case, the design vectors z i of length 4 are orthogonal to each other. Hence, from (1), the eigenvalues of Z Z are 4r i with corresponding eigenvectors z i . Thus, it follows that any design with r + 1 replicates of e of the runs and r replicates of the other runs is Schur-optimal.

Three Factors

The following theorem provides Schur-optimal two-level designs for 3 factors for all numbers of runs where the model is estimable, i.e. n ≥ t = 7. Proof. Note that Z Z is a 7 × 7 matrix. Let the designs in the theorem have eigenvalues λ * 1 ≥ ...λ * 7 . The information matrix of these designs is Z Z = 8rI 7 + Z 0 Z 0 , where Z 0 is the design matrix of the additional runs. Hence, λ * i = 8r + µ i , where µ i ≥ 0 are the eigenvalues of Z 0 Z 0 , and so each λ * i ≥ 8r. Similarly, Z Z = 8(r+1)I 7 -Z 1 Z 1 , where Z 1 is the design matrix of the runs not replicated r +1 times, and hence λ * i ≤ 8(r +1). Thus, 8(r +1) ≥ λ * 1 ≥ λ * 7 ≥ 8r. For each possible two-level design, define the set S = {1 ≤ i ≤ 8 : r i > r} and let a (1 ≤ a ≤ 7) be the design-dependent number of elements in S. For a ≤ 6, let u 1 , ..., u a+1 be orthogonal eigenvectors associated with the a + 1 biggest eigenvalues of Z Z. Then there is a unit vector v that is a linear combination of u 1 , ..., u a+1 that is orthogonal to each of the a vectors z i (i ∈ S). Now

v Z Zv = v 8 i=1 r i z i z i v = v i∈S c r i z i z i v ≤ v r i∈S c z i z i v = v r 8 i=1 z i z i v = 8rv v = 8r.
As v is a linear combination of u 1 , ..., u a+1 and is a unit vector, if λ a+1 > 8r, then v Z Zv > 8r. Hence, λ a+1 ≤ 8r ≤ λ * 7 for a ≤ 6. Consequently, the majorization condition (4) is satisfied for k = a + 1, ..., 7 and a ≤ 6.

Similarly, for a ≥ 2, let u a-1 , ..., u 7 be orthogonal eigenvectors associated with the 9 -a smallest eigenvalues of Z Z. Then there is a unit vector v that is a linear combination of u a-1 , ..., u 7 that is orthogonal to each of the 8 -a vectors z i (i ∈ S c ). Thus,

v Z Zv = v 8 i=1 r i z i z i v = v i∈S r i z i z i v ≥ v (r + 1) i∈S z i z i v = v (r + 1) 8 i=1 z i z i v = 8(r + 1)v v = 8(r + 1).
As v is a linear combination of u a-1 , ..., u 7 and is a unit vector, if λ a-1 < 8(r + 1), then v Z Zv < 8(r + 1). Hence, λ a-1 ≥ 8(r + 1) ≥ λ * 1 for a ≥ 2. Therefore, the majorization condition ( 5) is satisfied for k = 1, ..., a -1 and a ≥ 2. This implies that the majorization condition (4) holds for k = 2, ...a.
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On combining this with the last sentence of the previous paragraph, the majorization condition (4) holds for k = 2, ..., 7, and so the designs in the theorem are Schur-optimal.

4 Four Factors THEOREM 2. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 15), there is an E-optimal design that contains r replicates of the full 2 4 factorial design.

Proof. A design containing r replicates of a 2 4 factorial design has λ min ≥ 16r, as Z Z = 16rI 11 + Z 0 Z 0 where Z 0 is the design matrix of the additional runs. It will be shown that for any other design λ min ≤ 16r if e ≤ 14.

Suppose that this is not the case, so λ min > 16r for a design with min r i = r -a and a ≥ 1. In this scenario, the set S = {1 ≤ i ≤ 8 : r i > r} will be shown to contain at least 11 elements. If it does not, then there exists a unit vector v of length t = 11 that is orthogonal to all the vectors z i (i ∈ S). Consequently,

v Z Zv = v 16 i=1 r i z i z i v = v i∈S c r i z i z i v ≤ v i∈S c rz i z i v = v 16 i=1 rz i z i v = 16r.
This contradicts the assumption that λ min > 16r. Hence, S must contain 11 or more runs.

We now define the Hamming distance between two runs to be the number of main effects for which the two runs differ. For instance, the run with main effects (+, +, -, -) is at distance 2 to (+, -, +, -) as factors 2 and 3 differ. It is easily shown using the confounding between runs ideas in [START_REF] Butler | Optimal blocking of two-level factorial designs[END_REF] that z i z j = 3 if runs i and j are at distance 1 or 4, and z i z j = -1 if i and j are at distance 2 or 3. Thus, for each run j, the set S 3 (j) = {1 ≤ i ≤ 16 : z i z j = 3} contains 5 elements, and the set S 1 (j) = {1 ≤ i ≤ 16 : z i z j = -1} contains 10 elements. The only other possibility is i = j when z i z j = 11.

Suppose, without loss of generality, that run 1 has the minimum number of replicates r -a. Then 

z 1 Z Zz 1 = z 1 16 i=1 r i z i z i z 1 = z 1   (r -a)z 1 z 1 + i∈S 3 (1) r i z i z i + i∈S 1 (1) r i z i z i   z 1
r i + i∈S 1 (1) r i . Now (r -a) + i∈S 3 (1) r i + i∈S 1 (1) r i = 16 i=1 r i = 16r + e.
Therefore

z 1 Z Zz 1 = 9(16r + e) + 112(r -a) -8 i∈S 1 (1) r i .
There are 10 runs in S 1 (1). At least six of these must have r i > r as S contains 11 elements, and i = 1 ∈ S. The other four runs must have r i ≥ r -a. Hence

i∈S 1 (1)
r i ≥ 6(r + 1) + 4(r -a) = 10r + 6 -4a.

Consequently,

z 1 Z Zz 1 ≤ 9(16r + e) + 112(r -a) -8(10r + 6 -4a) = 176r + 9e -48 -80a (6) < 16rz 1 z 1
for 1 ≤ e ≤ 14 and a ≥ 1. This implies that Z Z must have λ min < 16r, and a contradiction is obtained for 1 ≤ e ≤ 14.

For e = 15, it follows from (6) that

λ min ≤ z 1 Z Zz 1 z 1 z 1 ≤ 176r + 9e -48 -80a 11 
≤ 16r + 7 11 .
This compares with λ min = 16r + 5 for a design with r + 1 replicates of a 2 4 design with one run z deleted, as Z Z = 16(r + 1)I 11 -zz . Thus, for e = 15, a design that does not contain r replicates of a 2 4 factorial cannot be E-optimal.

THEOREM 3. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 10), r replicates of the 2 4 factorial design with any e additional runs is E-optimal and λ min = 16r.

A c c e p t e d m a n u s c r i p t

Proof. From the proof of Theorem 2, the only designs that could have λ min > 16r would contain r replicates of a 2 4 factorial design. Such a design would have information matrix

Z Z = 16rI 11 + Z 0 Z 0
where Z 0 is the e × 11 design matrix of the e additional runs. The eigenvalues of Z Z are λ i = 16r + µ i , where µ i are the eigenvalues of Z 0 Z 0 . However, Z 0 is of rank at most e and so Z 0 Z 0 has at least one zero eigenvalue. Consequently, λ min cannot be greater than 16r, and the designs in the theorem are E-optimal.

THEOREM 4. For 4 factors and n = 16r + e runs (11 ≤ e ≤ 15), r replicates of a 2 4 factorial design with an E-optimal design for 4 factors and e runs is E-optimal.

Proof. This result follows from Theorems 2 and 3 and the fact that with e ≥ 11, Z 0 Z 0 can be non-singular. The E-optimal design for e = 11 runs is proved in [START_REF] Butler | Optimal additions to and deletions from two-level orthogonal arrays[END_REF].

Theorems 3 and 4 together cover all cases 1 ≤ e ≤ 15. Note that the additional runs in Theorem 3 could be added using the distance-based methods in the aforementioned paper, [START_REF] Butler | Optimal additions to and deletions from two-level orthogonal arrays[END_REF].

Five or More Factors

In this section, we require orthogonal arrays of strength 4. By definition, a two-level design is an orthogonal array of strength s ≥ 2 if, for each subset of s factors, each of the 2 s factorial combinations occurs equally often. Obviously, n must equal 2 s q for some integer q.

For an orthogonal array of strength 4, main effects, two-factor interactions and the mean are all orthogonal to each other. Consequently, Z Z = 16qI t . If the design is regular, i.e. it can be defined in terms of defining contrasts, then it has resolution V or more.

With m = 5 factors, orthogonal arrays of strength 4 can easily be formed for 16q runs for any positive integer q by combining w ≤ q replicates of the half-fraction design ABCDE = + with q -w replicates of the design ABCDE = -. For m = 6 factors, it is possible to form nonregular orthogonal arrays of strength 4, for example when n = 80. Other nonregular orthogonal arrays of strength 4 can be formed for n = 80 + 32r by adding r half-fraction designs ABCDEF = ±. Thus, it follows that orthogonal arrays of strength 4 exist for m = 6 factors and 16q runs for all q ≥ 4. This means that Theorem 5
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below cannot be extended to e > 15 for m = 6, and may be difficult to extend for higher values of m.

THEOREM 5. For m ≥ 5 factors and n = 16q + e runs (q an integer, 1 ≤ e ≤ 15), an orthogonal array of strength 4 for 16q runs with any e additional runs is E-optimal and λ min = 16q.

Proof. First consider the case of m = 5 factors. Let z 1,i (i = 1, ...16) be the design vectors and r 1,i be the corresponding number of replicates for the runs in a 2 5-1 design with defining contrast ABCDE = +. Similarly, let z 2,i (i = 1, ...16) be the design vectors and r 2,i be the corresponding number of replicates for the runs in a 2 5-1 design with defining contrast ABCDE = -.

Then Z Z = 2 j=1 16 i=1 r j,i z j,i z j,i
and 16 i=1 z j,i z j,i = 16I 16 for j = 1, 2. Let N (S) be the number of elements in any set S. Then

n = 2 j=1 16 i=1 r j,i = 2 j=1 p≥1 pN (i : r j,i = p) = 2 j=1 p≥1 N (i : r j,i ≥ p) = q+1 p=1 (N (i : r 1,i ≥ p) + N (i : r 2,i ≥ q + 2 -p)) + 2 j=1 p≥q+2 N (i : r j,i ≥ p).
Hence, q+1 p=1 (N (i : r 1,i ≥ p) + N (i : r 2,i ≥ q + 2 -p)) ≤ n < 16(q + 1). Therefore, as there are q + 1 terms in the above sum, there exists a p 0 (1 ≤ p 0 ≤ q + 1) such that

N (i : r 1,i ≥ p 0 ) + N (i : r 2,i ≥ q + 2 -p 0 ) < 16.
Consequently, there is a unit vector v of length t = 16 that is orthogonal to all the vectors

z 1,i (i : r 1,i ≥ p 0 ) z 2,i (i : r 2,i ≥ q + 2 -p 0 ).
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Thus,

v Z Zv = v 16 i=1 r 1,i z 1,i z 1,i + 16 i=1 r 2,i z 2,i z 2,i v = v   i:r 1,i <p 0 r 1,i z 1,i z 1,i + i:r 2,i <q+2-p 0 r 2,i z 2,i z 2,i   v ≤ v   i:r 1,i <p 0 (p 0 -1)z 1,i z 1,i + i:r 2,i <q+2-p 0 (q + 1 -p 0 )z 2,i z 2,i   v = v 16 i=1 (p 0 -1)z 1,i z 1,i + 16 i=1 (q + 1 -p 0 )z 2,i z 2,i v = 16(p 0 -1)v I 16 v + 16(q + 1 -p 0 )v I 16 v = 16qv v = 16q.
As v is of unit length, this implies that λ min ≤ 16q for any design. The designs stated in the theorem have λ min ≥ 16q as they contain an orthogonal array of strength 4 for 16q runs. Consequently, they are E-optimal for m = 5 factors.

For m > 5 factors, partition the design matrix Z = (Z 1 , Z 2 ) where Z 1 is an n × 16 design matrix containing the mean, 5 main effects and 10 twofactor interactions of a five-factor design, and Z 2 is the design matrix for all remaining effects. Then

Z Z = Z 1 Z 1 Z 1 Z 2 Z 2 Z 1 Z 2 Z 2 .
The lowest eigenvalue of Z Z cannot be greater than the lowest eigenvalue of the principal submatrix Z 1 Z 1 , and hence λ min ≤ 16q. The designs in the theorem again have λ min ≥ 16q as they contain an orthogonal array of strength 4 for 16q runs, and so they are E-optimal. THEOREM 6. For 5 factors and n = 16q + e runs (1 ≤ e ≤ 15), an orthogonal array of strength 4 for 16q runs with any e additional distinct runs from the same half-fraction design ABCDE = ± is Schur-optimal.

Proof. First note that the information matrix may be expressed as 

Z Z = 2 j=1 16 i=1 r j,i z j,i z j,i = 2 j=1 p≥1 i:r j,i ≥p z j,i z j,i
i:r 1,i ≥p z 1,i z 1,i + i:r 2,i ≥q+2-p z 2,i z 2,i   + 2 j=1 p≥q+2 i:r j,i ≥p z j,i z j,i .
From the proof of Theorem 5,

q+1 p=1 (N (i : r 1,i ≥ p) + N (i : r 2,i ≥ q + 2 -p)) ≤ n.
Define, for 1 ≤ p ≤ q + 1,

h p = max (0, 16 -N (i : r 1,i ≥ p) -N (i : r 2,i ≥ q + 2 -p)) .
Then

q+1 p=1 h p ≥ q+1 p=1 (16 -N (i : r 1,i ≥ p) -N (i : r 2,i ≥ q + 2 -p)) = 16(q + 1) - q+1 p=1 (N (i : r 1,i ≥ p) + N (i : r 2,i ≥ q + 2 -p)) ≥ 16(q + 1) -n = 16 -e.
Now, from the definition of h p , there are h p ≥ 0 orthogonal vectors v p,i (i = 1, ..., h p ) that are orthogonal to all the vectors

z 1,i (i : r 1,i ≥ p) z 2,i (i : r 2,i ≥ q + 2 -p)
for 1 ≤ p ≤ q+1. The vectors v p,i (p = 1, ..., q+1; i = 1, ..., h p ) form a subspace of dimension a ≤ q+1 p=1 h p . Suppose that u 1 , ..., u a form an orthonormal basis for the subspace and let U 1 = (u 1 , ..., u a ). Then, P = U 1 U 1 is the t × t projection matrix of rank a spanned by the vectors v p,i (p = 1, ..., q + 1; i = 1, ..., h p ).

The projection matrix P may be expressed for each p ≥ 1 as

P = Q (1) p + R (1)
p where Q

(1)

p and R

(1)

p are projection matrices with Q

(1) p spanned by the subset of vectors v p ,i (p ≤ p; i = 1, ..., h p ). Thus, R

(1) p is the projection matrix spanned by the subspace of v p ,i (p > p; i = 1, ..., h p ) that is orthogonal to Q

(1) p . Alternatively, From their definition, all the vectors v p,i (p = 1, ..., q + 1; i = 1, ..., h p ) spanning P are orthogonal to z j,i (i : r j,i ≥ q + 2). Hence 2 j=1 p≥q+2 i:r j,i ≥p z j,i P z j,i = 0. Now, for j = 1 and each 1 ≤ p ≤ q + 1,

P = Q (2) p + R (2)
i:r 1,i ≥p z 1,i P z 1,i = i:r 1,i ≥p z 1,i Q (1) p z 1,i + i:r 1,i ≥p z 1,i R (1) p z 1,i .
Also from their definition, the vectors v p ,i (p ≤ p; i = 1, ..., h p ) spanning Q

(1) p are all orthogonal to the vectors z 1,i (i : r 1,i ≥ p). Hence, the first term in the above sum disappears and

i:r 1,i ≥p z 1,i P z 1,i = i:r 1,i ≥p z 1,i R (1) p z 1,i = i:r 1,i ≥p trace(R (1) p z 1,i z 1,i ) ≤ 16 i=1 trace(R (1) p z 1,i z 1,i ) = 16trace(R (1) p ).
Following a similar procedure, it can be shown for j = 2 and each 1 ≤ p ≤ q +1 that i:r 2,i ≥q+2-p Now define the t × t orthogonal matrix U = (U 1 , U 2 ) where the t × a matrix U 1 is defined as before so that P = U 1 U 1 . We will use the fact that the matrix U Z ZU has the same eigenvalues as Z Z. The sum of the first a diagonal elements of

z 2,i P z 2,i ≤ 16trace(R (2) p ).
U Z ZU is trace(U 1 Z ZU 1 ) = trace(Z ZP ) ≤ 16(q + 1)a -16 q+1 p=1 h p .
It is well known that the diagonal elements of an information matrix majorise the matrix's eigenvalues (see [START_REF] Bagchi | Optimality of partial geometric designs[END_REF]. Thus, for any design the sum of the a smallest eigenvalues is less than or equal to the sum of the a smallest diagonal elements, and so is at most 16qa as a ≤ q+1 p=1 h p . Hence, the average of the a smallest eigenvalues is less than or equal to 16q. Similarly, the sum of the largest 16 -a eigenvalues for any design is greater than or equal to trace(Z Z) -trace(U 1 Z ZU 1 ) ≥ 16(16q + e) -16(q + 1)a -16 q+1 p=1 h p = 16(q + 1)(16 -a) + 16( q+1 p=1 h p + e -16) ≥ 16(q + 1)(16 -a) as q+1 p=1 h p ≥ 16 -e. Thus, the average of the largest 16 -a eigenvalues is greater than or equal to 16(q + 1).

The designs stated in the theorem have all eigenvalues λ * i ≥ 16q as Z Z = 16qI 16 + Z 0 Z 0 where Z 0 is the design matrix of the extra runs. Similarly, by considering deletions to an orthogonal array for 16(q + 1) runs, λ * i ≤ 16(q + 1). As the average of the lowest a eigenvalues of any other design is less than or
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equal to 16q, majorization condition (4) holds for k = 17 -a, ..., 16. Similarly, as the average of the largest 16 -a eigenvalues is greater then or equal to 16(q + 1), majorization condition (5) holds for k = 1, ..., 16 -a. On combining these, the designs in the theorem are proved to be Schur-optimal.

6 Third-Order Model

The results obtained can be extended to two-level factorial designs under a third-order model

y = µ + m i=1 α i x i + m-1 i 1 =1 m i 2 =i 1 +1 β i 1 i 2 x i 1 x i 2 + m-2 i 1 =1 m-1 i 2 =i 1 +1 m i 3 =i 2 +1 γ i 1 i 2 i 3 x i 1 x i 2 x i 3 +
where γ i 1 i 2 i 3 are three-factor interactions. For m = 3 factors, the problem is trivial in the same way as for m = 2 factors under a second-order model. The following results can be proved in almost exactly the same way as Theorems 1, 5 and 6 respectively.

THEOREM 7. For 4 factors and n = 16r + e runs (1 ≤ e ≤ 15), r replicates of the full 2 4 factorial design with any e additional distinct runs is Schur-optimal under a third-order model. THEOREM 8. For m ≥ 7 factors and n = 64q + e runs (q an integer, 1 ≤ e ≤ 63), an orthogonal array of strength 6 for 64q runs with any e additional runs is E-optimal under a third-order model and λ min = 64q. THEOREM 9. For 7 factors and n = 64q + e runs (1 ≤ e ≤ 63), an orthogonal array of strength 6 for 64q runs with any e additional distinct runs from the same half-fraction design ABCDEF G = ± is Schur-optimal under a third-order model.

In Theorem 7, the model contains all possible effects except the four-factor interaction, and so is analogous to Theorem 1 where the model contains all possible effects except the three-factor interaction. Theorems 8 and 9 use the fact that a 2 7-1 design ABCDEF G = ± is saturated and orthogonal under a third-order model for 64 runs in the same way that a 2 5-1 design ABCDE = ± is saturated and orthogonal under a second-order model for 16 runs.

  For 3 factors and n = 8r+e runs (1 ≤ e ≤ 7), r replicates of the full 2 3 factorial design with any e additional distinct runs is Schur-optimal.

p

  spanned by the different subset of vectors v p ,i (p ≥ p; i = 1, ..., h p ):r j,i ≥p z j,i P z j,i .

  the dimension of the subspace added by the vectors v p ,i (p > p) after allowing for v p ,i (p ≤ p). This is obviously less than or equal to the dimension added by the same vectors v p ,i (p > p) only allowing for v p,i . The latter equals trace(Q
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