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Introduction

The almost sure central limit theorem (ASCLT) has become an intensively studied subject in recent research. In our paper, we are concerned with the ASCLT in its two-dimensional version. A general outline of the investigations concerning the ASCLT in such a form may be described as follows. Suppose that X 1 ; X 2 ; ::: is a sequence of r.v.'s, f 1 ; f 2 ; :::; f k ; ::: and g 1 ; g 2 ; :::; g k ; ::: are some real-valued measurable functions, de…ned on R; R 2 ; :::; R k ; :::, respectively. We seek conditions under which, for some nondegenerate d.f. H, de…ned on R 2 , 1 D N N X n=1 d n I ff n (X 1 ; X 2 ; :::; X n ) x; g n (X 1 ; X 2 ; :::; X n ) yg In our investigations, we will restrict ourselves to the situation, when (1) is satis…ed with: d n = 1=n, D N log N , f n (X 1 ; :::; X n ) := a n (M n b n ), g n (X 1 ; :::; X n ) := S n = n , where: M n := max(X 1 ; :::; X n ), S n := X 1 + ::: + X n , n := p V ar (S n ), and a n > 0, b n are certain normalizing constants. The purpose of our paper is to prove that if: X 1 ; X 2 ; ::: is a standardized stationary Gaussian sequence, the covariance function r (t) := Cov (X 1 ; X 1+t ) satis…es r(t) = L (t) =t , t = 1; 2; :::,

where > 0 and L ( ) is a positive, slowly varying function at in…nity, and if moreover, the numerical sequence fu n g ful…lls the relation

lim n!1 n (1 (u n )) = for some , 0 < 1, (3) 

A c c e p t e d m a n u s c r i p t

where is the standard normal d.f., then

lim N !1 1 log N N X n=1 1 n I fM n u n ; S n = n yg = e (y) a.s. for any y 2 R. (4)
As a direct conclusion, we will also show that if, for n 3: 2) is de…ned only for positive integers, the slowly varying functions L ( ) are in general de…ned on the real line or on the R + semi-line.

a n := (2 log n) 1=2 , b n := (2 log n) 1=2 1 2 (2 log n) 1=2 (log log n + log 4 ) , (5) then for all x; y 2 R lim N !1 1 log N N X n=1 1 n I fa n (M n b n ) x; S n = n yg = exp e x (y) a.s.. (6) It should be mentioned that, although r (t) = L (t) =t in (
The earlier given notations -M n , S n , n , r (t), -will be intensively used throughout the paper. For our convenience, we will also introduce the following one M m;n := max(X m+1 ; :::

; X n ). Furthermore, f (n) g (n) and f (n) g (n) will stand for f (n) = O (g (n)) and f (n) =g (n) ! 1, as n ! 1, respectively.

Main result

Our main result is the following almost sure central limit theorem in the joint version for the maxima and sums of some standardized stationary Gaussian sequences.

Theorem 1 . Let X 1 ; X 2 ; ::: be a standardized stationary Gaussian sequence. Assume that the covariance function r(t) := Cov(X 1 ; X 1+t ) satis…es (2) for some > 0. Then: (i) If the numerical sequence fu n g ful…lls (3), then (4) holds, (ii) If fa n g, fb n g are such as in (5), then (6) holds.

Auxiliary results

In this section, we state and prove some lemmas, which will be needed for the proof of our main result. Here, we present the …rst one.

Lemma 1 . Let X 1 ; X 2 ; ::: be a standardized stationary Gaussian sequence. Assume that the covariance function r(t) := Cov (X 1 ; X 1+t ) satis…es assumption (2) with some > 0. Suppose moreover that the sequence fu n g ful…lls (3), and that m < n. Then for any y 2 R and some > 0

E jI fM n u n ; S n = n yg I fM m;n u n ; S n = n ygj 1=n + m=n. (7)
Proof. Assume …rst that (2) holds with some 0 < < 1. Let 1 i n. We have

0 < Cov (X i ; S n = n ) < 2 n n 1 X t=0 r(t) = 2 n + 2 n n 1 X t=1 L (t) t for some 0 < < 1. (8) 

A c c e p t e d m a n u s c r i p t

As 0 < < 1, then, by the two times application of Karamata's theorem, we get (see also [START_REF] Mielniczuk | Some remarks on the almost sure central limit theorem for dependent sequences[END_REF], p. 394

) n C ( ) L (n) 1=2 n 1 =2 , where C ( ) = f2= (1 ) (2 )g 1=2 . (9)
Due to (8), ( 9), we have for some 0 < < 1 that

Cov (X i ; S n = n ) 1 L (n) 1=2 n 1 =2 n 1 X t=1 L (t) t L (n) n 1 L (n) 1=2 n 1 =2 = L (n) 1=2 n =2 : Since L (n) is a slowly varying function at in…nity, then L (n) 1=2 n for arbitrary > 0. Consequently Cov (X i ; S n = n ) n n =2
for any > 0 and some 0 < < 1: Therefore

0 < sup 1 i n Cov (X i ; S n = n ) 1=n for some 0 < < 1=2. ( 10 
)
Since lim n!1 1=n = 0, there exist numbers , n 0 , such that

0 < sup 1 i n Cov (X i ; S n = n ) < < =(1 ) < 1 for any n > n 0 . (11) 
In turn, by assumption (2), we have lim

t!1 r (t) = lim t!1
L (t) =t = 0. Thus, there exist numbers , n 1 , such that

0 < sup t>n1 r (t) = < =(2 ) < 1. (12) 
Relations ( 10)-( 12) will be intensively used in the next stages of our proof.

Let y be an arbitrary real number and m < n. We have

E jI fM n u n ; S n = n yg I fM m;n u n ; S n = n ygj = P fM m;n u n ; S n = n yg P fM n u n ; S n = n yg .
Suppose moreover that Y n is a random variable, which has the same distribution as S n = n , but is independent of (X 1 ; :::; X n ). We can write that

E jI fM n u n ; S n = n yg I fM m;n u n ; S n = n ygj jP fM n u n ; S n = n yg P fM n u n g P fY n ygj + jP fM m;n u n ; S n = n yg P fM m;n u n g P fY n ygj + (P fM m;n u n g P fM n u n g) =: A 1 + A 2 + A 3 . ( 13 
)
Since (X 1 ; :::; X n ; S n = n ), (X 1 ; :::; X n ; Y n ) are standard normal random vectors and ( 11), ( 12) hold, then, by Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], the fact that Y n is independent of (X 1 ; :::; X n ) and relation (10), we obtain

A 1 + A 2 n X i=1 Cov (X i ; S n = n ) exp u 2 n 2 (1 + ) n 1 n exp u 2 n 2 (1 + ) (14) 

A c c e p t e d m a n u s c r i p t

for some 0 < < 1=2, where is such as in (11).

As fu n g satis…es (3), then, by (4.3.4(i)), (4.3.4(ii)) in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF],

exp u 2 n 2 (1 + ) L (log n) 1 2(1+ ) n 1 1+
for some L, not depending on n. (15) From ( 14) and ( 15), we have

A 1 + A 2 n 1 n (log n) 1 2(1+ ) n 1 1+ = (log n) 1 2(1+ ) n + 1 1+ 1 . ( 16 
)
As, by ( 11), < = (1 ), we have + 1 1+ 1 > 0. Thus, by ( 16),

A 1 + A 2 1=n for some > 0. ( 17 
)
It remains only to estimate the term A 3 in (13). By going through the …rst lines in the proof of Lemma 2.4 from [START_REF] Csaki | Almost sure limit theorems for the maximum of stationary Gaussian sequences[END_REF], we see that

A 3 jP fM n u n g n (u n )j + P fM m;n u n g n m (u n ) + n m (u n ) n (u n ) =: B 1 + B 2 + B 3 . ( 18 
)
Our goal now is to give the bounds for B 1 -B 3 in (18). Let be such as in (12). By Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], relation ( 15) and as-

sumption (2), B 1 + B 2 n exp u 2 n 1 + n 1 P t=1 r(t) (log n) 1 1+ n 2 1+ 1 n 1 P t=1 L (t) t (log n) 1 1+ L (n) n 1 n 2 1+ 1 = (log n) 1 1+ L (n) n 2 1+ + 2
. As, by ( 12), < = (2 ), we have

2 1+ + 2 > 0. Since (log n) 1 1+ L (n)
n for arbitrary > 0, we obtain

B 1 + B 2 1=n for some > 0. (19) 
Moreover, the bound B 3 m=n (20)

follows from the fact that x n m x n m=n, if 0 x 1. By ( 18)-( 20)

A 3 1=n + m=n for some > 0. (21) 
Relations ( 13), ( 17), ( 21) yield (7), provided (2) holds with some 0 < < 1. Assume now that (2) holds with some 1. Since r( ) is positive, we

get n = s n + 2 n 1 P t=1 (n t)r (t) n 1=2
. This and the fact that

1 imply 0 < Cov (X i ; S n = n ) < 2 n 1=2 + 2 n 1=2 n 1 P t=1 L (t) t L (n) log n n 1=2 : As L (n) log n n

A c c e p t e d m a n u s c r i p t

for any > 0, we obtain that (10), (11) hold also in the case, when (2) is satis…ed for some 1. Let A 1 -A 3 be de…ned as A 1 -A 3 in ( 13), but for the case, when (2) holds with some 1. By using Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF] and reasoning as in ( 14)-( 17), we get A 1 + A 2 1=n for some > 0. Let moreover, A 3 , B 1 -B 3 be de…ned as A 3 , B 1 -B 3 in ( 13), ( 18), but for the case, when (2) holds with some 1. Since lim [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], we have

)) 0 < sup t 1 r (t) = < 1. By Theorem 4.2.1 in 1983 
B 1 +B 2 n exp u 2 n 1 + n 1 P t=1 r(t) (log n) 1 1+ n 2 1+ 1 n 1 P t=1 L (t) t (log n) 1 1+ +1 L (n) n 2 1+ 1 . As (log n) 1 1+ +1 L (n)
n for any > 0, we obtain that B 1 + B 2 1=n for some > 0. As moreover, B 3 m=n,

we get A 3 B 1 + B 2 + B 3 1=n + m=n for some > 0. Consequently A 1 + A 2 + A 3
1=n + m=n for some > 0, which yields (7) in the case, when (2) holds with some 1. This completes the whole proof of Lemma 1. We also need to prove the following statement.

Lemma 2 . Suppose that X 1 ; X 2 ; ::: is a standardized stationary Gaussian sequence, the sequence fu n g ful…lls condition (3), and m < n. We have: (a) If the covariance function r(t) := Cov (X 1 ; X 1+t ) satis…es assumption (2) with some 0 < < 1, then for any y 2 R and some > 0 jCov (I fM m u m ; S m = m yg ; I fM m;n u n ; S n = n yg)j

1 n + m (n + 2m) 1 L (n + 2m) L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 + L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 , ( 22 
)
(b) If the covariance function r(t) := Cov (X 1 ; X 1+t ) satis…es assumption (2) with some > 1, then for any y 2 R and some > 0

jCov (I fM m u m ; S m = m yg ; I fM m;n u n ; S n = n yg)j 1 n + m 1=2 n 1=2 , (23) 
(c) If the covariance function r(t) := Cov (X 1 ; X 1+t ) satis…es assumption (2) with = 1, then for any y 2 R and some > 0

jCov (I fM m u m ; S m = m yg ; I fM m;n u n ; S n = n yg)j 1 n + m 1=2 L (n + 2m) L (m + 1) n 1=2 L (m) 1=2 L (n) 1=2 + m 1=2 L (m) 1=2 n 1=2 L (n) 1=2 , (24) 
where L (n

) := 1 + 2 n 1 X t=1 r(t).
Proof of Lemma 2(a). We assume that (2) holds with some 0 < < 1. Let i m + 1. By assumption (2) and relation (9), we have

A c c e p t e d m

a n u s c r i p t

0 < Cov (X i ; S m = m ) 1 m i 1 X t=i m L (t) t 1 C ( ) L (m) 1=2 m 1 =2 i 1 X t=i m L (t) t .
Since L (t) t for arbitrary > 0, we can write that

Cov (X i ; S m = m ) 1 L (m) 1=2 m 1 =2 i 1 X t=i m t =4 t 1 L (m) 1=2 m 1 =2 m X t=1 1 t 3 =4 = 1 L (m) 1=2 m =4 m 1 3 =4 m X t=1 1 t 3 =4 1 L (m) 1=2 m =4 m X t=1 1 t 1 3 =4 t 3 =4 log m L (m) 1=2 m =4 m m =4 for any > 0.
Hence, we get that 0 < sup i m+1

Cov (X i ; S m = m ) 1=m for some 0 < < 1=4.

Consequently, there exist numbers , m 0 , such that

0 < sup i m+1 Cov (X i ; S m = m ) < < =(2 ) < 1 for all m > m 0 . ( 25 
)
We will use (25) later in our proof. Let: y be an arbitrary real number, m < n. We know that: ( X 1 ; :::; X m ; S m = m ; X m+1 ; :::; X n ; S n = n ) a standard Gaussian vector, and (since r ( ) is positive) that: Cov ( X i ; X j ) > 0, Cov ( X i ; S j = j ) > 0, Cov ( S i = i ; S j = j ) > 0 for all i, j. Therefore, by Theorem in Pitt (1991), X 1 ; :::; X m ; S m = m ; X m+1 ; :::; X n ; S n = n are the associated r.v.'s. Hence, due to Theorem 2 in [START_REF] Newman | Asymptotic independence and limit theorems for positively and negatively dependent random variables[END_REF],

0 Cov (I fM m u m ; S m = m yg ; I fM m;n u n ; S n = n yg) m P i=1 n P j=m+1 (P f X i > u m ; X j > u n g P f X i > u m g P f X j > u n g) + m P i=1 (P f X i > u m ; S n = n > yg P f X i > u m g P f S n = n > yg) + n P i=m+1 (P f X i > u n ; S m = m > yg P f X i > u n g P f S m = m > yg) + (P f S m = m > y; S n = n > yg P f S m = m > yg P f S n = n > yg) =: D 1 + D 2 + D 3 + D 4 . ( 26 
)
Our task now is to estimate all the components D 1 -D 4 in (26).

Let X n denote an i.i.d. standard normal sequence. Obviously, we have

D 1 = m P i=1 n P j=m+1 P fX i u m ; X j u n g P X i u m ; X j u n .
As the random vectors (X i ; X j ), X i ; X j are standard normal and ( 12) holds, we can apply Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]. This and (15

) yield D 1 m exp u 2 m + u 2 n 2 (1 + ) n 1 P t=1 r (t) m (log n) 1 1+ m 1 1+ n 1 1+ n 1 P t=1 L (t) t m (log n) 1 1+ L (n) n 1 m 1 1+ n 1 1+

A c c e p t e d m a n u s c r i p t

= m 1 1 1+ (log n) 1 1+ L (n) n 1 1 1+ n 2 1+ + 2 (log n) 1 1+ L (n) n 2 1+ + 2 n n 2 1+ + 2
for any > 0:

Since, by ( 12), < = (2 ), then 2 1+ + 2 > 0 and

D 1 1=n for some > 0. ( 27 
)
In order to estimate the component D 2 in ( 26), let us denote by Y n a standard normal random variable, which is independent of S n = n . We can write that 11). As the vectors (X i ; S n = n ), (Y n ; S n = n ) are standard normal and ( 11) holds, then, due to Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], and ( 10), ( 15),

D 2 = m P i=1 (P fX i u m ; S n = n yg P fY n u m ; S n = n yg). Let satisfy ( 
D 2 m X i=1 Cov (X i ; S n = n ) exp u 2 m 2 (1 + ) m (log m) 1 2(1+ ) n m 1 1+ 1=n (28)
for some > 0, where the last relation follows from the fact that > 1 1 1+ . We also wish to estimate D 3 in (26). Let satisfy (25). By using similar reasoning to that, which led us to the …rst derivation in (28), we obtain Thus, by ( 29), (15), assumption (2) and relation (9),

D 3 exp u 2 n 2 (1 + ) n X i=m+1 Cov (X i ; S m = m ) . ( 29 
D 3 (log n) 1 2(1+ ) n 1 1+ m L (m) 1=2 m 1 =2 n 1 X t=1 L (t) t (log n) 1 2(1+ ) m =2 L (n) n 1 n 1 1+ L (m) 1=2 (log n) 1 2(1+ ) n =2 L (n) n 1 1+ + 1 = (log n) 1 2(1+ ) L (n) n 1 1+ + =2 1 n n 1 1+ + =2 1 for any > 0. Since, by (25), < = (2 ), then 1 1+ + =2 1 > 0 and D 3 1=n for some > 0. (30) 
It remains to estimate D 4 in (26). Notice that, if Cov (S m = m ; S n = n ) 1=2, then, by Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF],

D 4 Cov (S m = m ; S n = n ) 2 q 1 fCov (S m = m ; S n = n )g 2 Cov (S m = m ; S n = n ) p 3 . ( 31 
)
In turn, provided Cov (S m = m ; S n = n ) > 1=2, we can estimate D 4 in (26) as follows. Observe that, since S m = m , S n = n are associated and have bounded,

A c c e p t e d m a n u s c r i p t

continous density, then, by Lemma 2.2 in [START_REF] Bagai | Estimation of the survival function for stationary associated processes[END_REF], there exists a positive constant C 1 , neither depending on m, n nor on y, such that

D 4 C 1 fCov (S m = m ; S n = n )g 1=3 . Thus, if Cov (S m = m ; S n = n ) > 1=2, then D 4 C 1 Cov (S m = m ; S n = n ) fCov (S m = m ; S n = n )g 2=3 < C 1 2 2=3 Cov (S m = m ; S n = n ) . ( 32 
) Put C := max 1= p 3; C 1 2 2=3 . By (31), (32), D 4 C Cov (S m = m ; S n = n ). Consequently D 4 Cov (S m = m ; S n = n ) . ( 33 
)
Let us estimate the covariance on the r.h.s. of (33). We have

Cov S m m ; S n n = Cov S m m ; S n+2m S 2m n +E S m m S n n S n+2m S 2m n E S m m E S n n S n+2m S 2m n =: F 1 + F 2 + F 3 . ( 34 
)
We now estimate F 1 -F 3 in (34). By (2), ( 9) and Karamata's theorem, we obtain

F 1 1 L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 m n+2m 1 X t=m+1 L (t) t 1 L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 m (n + 2m) 1 L (n + 2m) . ( 35 
)
In order to bound F 2 in (34), notice that

F 2 E Sm m (Sn+2m Sn) S2m n
. By the Cauchy-Schwarz inequality, the stationarity of the sequence fX i g and the fact that EX i X j > 0 for all i; j, we deduce that

F 2 s E S m m 2 E (S n+2m S n ) S 2m n 2 s 2 2 2m 2 n = p 2 2m n . (36) 
This, relation ( 9) and de…nition of the slowly varying function at in…nity imply

F 2 2m n L (2m) 1=2 (2m) 1 =2 L (n) 1=2 n 1 =2 L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 . ( 37 
)
Since, in view of the stationarity of the sequence fX i g, the last component F 3 in ( 34) is equal to zero, then, by ( 33)-( 35) and (37),

D 4 m (n + 2m) 1 L (n + 2m) L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 + L (m) 1=2 m 1 =2 L (n) 1=2 n 1 =2 . ( 38 
)
Finally, due to ( 26)-( 28), ( 30) and (38), relation ( 22) is ful…lled in the case, when assumption ( 2) is satis…ed with some 0 < < 1.

A c c e p t e d m a n u s c r i p t

Proof of Lemma 2(b). Suppose that (2) holds for some > 1. We have jCov (I fM m u m ; S m = m yg ; I fM m;n u n ; S n = n yg)j =:

D 1 + D 2 + D 3 + D 4 , (39) 
where D 1 -D 4 are de…ned as D 1 -D 4 in ( 26), but for the case (2) holds for some > 1. By applying Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], it is easy to check that

D 1 + D 2 + D 3 1=n for some > 0. (40) 
Thus, it remains to estimate the component D 4 . By (33)

D 4 Cov (S m = m ; S n = n ) =: F 1 + F 2 + F 3 , (41) 
with F 1 -F 3 , de…ned as F 1 -F 3 in ( 34), but for the case (2) holds with some > 1.

As

F 1 = Cov S m m ; S n+2m S 2m n 1 m n m 1 X t=m+1 L (t) t 1 X t=n+2m L (t) t ! ,
it follows from the facts that: > 1, i i 1=2 , and from Karamata's theorem that 

F 1 (m 1=2 =n 1=2 )(L (m) =m 1 ) m 1=2 =n 1=2 . ( 42 
; S n = n yg)j =: D 1 + D 2 + D 3 + D 4 , (45) 
where D 1 -D 4 are de…ned as D 1 -D 4 in ( 26), but for the case (2) holds with = 1. By using Theorem 4.2.1 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], it is easy to verify that

D 1 + D 2 + D 3 1=n for some > 0. (46) 
Thus, it remains to estimate the component D 4 . By (33)

D 4 Cov (S m = m ; S n = n ) =: F 1 + F 2 + F 3 , (47) 
with F 1 -F 3 de…ned as F 1 -F 3 in (34), but for the case, when (2) holds with = 1. We have

F 1 = 1 m n Cov (S m ; S n+2m S 2m ) 1 m n m n+2m 1 X t=m+1 r (t) . (48) 

A c c e p t e d m a n u s c r i p t

By the same reasoning as in the excerpt of the proof of Theorem 1 in [START_REF] Mielniczuk | Some remarks on the almost sure central limit theorem for dependent sequences[END_REF] (see p. 396, lines 7-15), we obtain This and relations ( 48), ( 49) yield

2 n = n + 2 n 1 X t=1 (n t) r (t) n 1 + 2 n 1 X t=1 r (t) ! = n L (n) . ( 49 
F 1 1 m 1=2 L (m) 1=2 n 1=2 L (n) 1=2 m L (n + 2m) L (m + 1) . ( 50 
)
In turn, by ( 36 

F 2 m 1=2 L (m) 1=2 = n 1=2 L (n) 1=2 . ( 51 
)
As moreover, F 3 = 0, then, by ( 47), ( 50) and ( 51),

D 4 m 1=2 L (n + 2m) L (m + 1) n 1=2 L (m) 1=2 L (n) 1=2 + m 1=2 L (m) 1=2 n 1=2 L (n) 1=2 . ( 52 
)
Relations ( 45), ( 46), ( 52) imply (24) in the case, when (2) is satis…ed with = 1. This completes the whole proof of Lemma 2.

The following lemma will be also used in our further considerations.

Lemma 3 (for comparison -see also [START_REF] Ho | On the asymptotic joint distribution of the sum and maximum of stationary normal random variables[END_REF]). Under the assumptions of Theorem 1 on X 1 ; X 2 ; :::, and r (t), fu n g, we have lim n!1 P fM n u n ; S n = n yg = e (y) for all y 2 R and de…ned in (3).

Proof. Notice that, as X 1 ; X 2 ; ::: is a standard normal sequence, r (t), fu n g satisfy ( 2), (3), respectively, then, by Theorem 4.3.3 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF], lim n!1 P fM n u n g = e for de…ned in (3).

(53)

Let y be an arbitrary real number and let, for each n 1, Y n denote a random variable, which has the same distribution as S n = n , but is independent of (X 1 ; :::; X n ). From the estimations of A 1 , A 1 in the proof of Lemma 1, jP fM n u n ; S n = n yg P fM n u n g P fY n ygj 1=n for some > 0. As: (53) holds, 1=n ! 0, as n ! 1, and, for each n, Y n is standard normal, we get lim n!1 P fM n u n ; S n = n yg = lim n!1 P fM n u n g P fY n yg = e (y), which yields the desired result.

  a.s. ! H (x; y) (1) for all (x; y) 2 C H , where: fd n g is some sequence of weights, D N = N P n=1 d n , I stands for the indicator function, C H denotes the set of continuity points of H.

r

  (t) = 0, then (see the remark before Lemma 4.3.2 inLeadbetter et al. (

  = m L (n + 2m) L (m + 1) =2.

  ), F 2 = E Sm m n . Hence, from (49) and the fact that L ( ) is slowly varying, we get

A c c e p t e d m a n u s c r i p t 4. Proof of main result

In this section, we present the proof of Theorem 1. In our proof, we make an extensive use of the earlier proved Lemmas 1-3.

Proof of Theorem 1(i). First, we will show that for any real y ! 0, (54)

as N ! 1. By Lemma 3.1 in [START_REF] Csaki | Almost sure limit theorems for the maximum of stationary Gaussian sequences[END_REF], in order to prove (54), it su¢ ces to show that the following property occurs for some " > 0 ") . ( 55)

Put n := I fM n u n ; S n = n yg. We have This and Lemmas 1, 2 imply that: (a) if condition (2) is satis…ed with some 0 < < 1, then for some > 0

A c c e p t e d m a n u s c r i p t

Let us consider the case (a) …rst. By ( 56) and ( 58), we get

where the last relation follows from the obvious fact that P 3 + P 4 log N . Thus, it remains to estimate P 5 ,

. By using ( 62) and the same reasoning as in the excerpt of the proof of Theorem 1 in [START_REF] Mielniczuk | Some remarks on the almost sure central limit theorem for dependent sequences[END_REF] (see p. 395, lines 7-14), we obtain

(63) In addition, we can estimate P 6 in (61) as follows. Observe that, by the facts that L ( ) is slowly varying and 0 < < 1, we have

Hence P 6 log N . This and ( 61), (63) yield X

Due to (56), ( 57) and ( 64), we conclude that (55) holds for arbitrary real y and any positive ". Consequently, by the already mentioned Lemma 3.1 in [START_REF] Csaki | Almost sure limit theorems for the maximum of stationary Gaussian sequences[END_REF], condition ( 54) is satis…ed as well. This, Lemma 3 and the regularity property of logarithmic means imply the statement (i) of Theorem 1 for the case, when ( 2) is satis…ed with some 0 < < 1.

We now consider the case (b), i.e. the case, when (2) holds with some > 1.

By ( 56) and ( 59), we get

This, ( 56) and (57) imply that condition (55) holds for arbitrary real y and any positive ". Therefore (54) occurs. Hence, also in the case, when (2) is satis…ed with some > 1, the statement (i) of Theorem 1 is true. Finally, let us consider the case (c), assuming that (2) holds with = 1. It follows from ( 56) and ( 60 1 mn

Let us estimate the term P 9 in (65). By reasoning identically as in [START_REF] Mielniczuk | Some remarks on the almost sure central limit theorem for dependent sequences[END_REF], p. 397, we get X

In order to estimate P 10 in (65), observe that, as L ( ) is slowly varying,

The estimates for P 9 , P 10 , together with (65), yield P 2 log N , which, by ( 56), (57), implies that (55) holds for arbitrary real y and any " > 0. Therefore (54) occurs. Thus, (4) holds also in the case (2) is satis…ed with = 1.

Proof of Theorem 1(ii). It is easily seen that Theorem 1(ii) is a special case of the earlier proved Theorem 1(i), with: u n := x=a n + b n , := e x . Acknowledgement. I thank an anonymous Referee for valuable remarks.