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Abstract

The problem of estimation of an unknown shape parameter under the sample drawn
from the gamma distribution, where the scale parameter is also unknown, is considered.
A new estimator, called the maximum likelihood scale invariant estimator, is proposed.
It is established that both the bias and the variance of this estimator are less than that
of the usual maximum likelihood estimator. A property of the psi function is also
obtained.
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1 Introduction

Let a sample x = (21,9, ...,2,) be drawn from the gamma distribution I'(«, o) with
an unknown shape parameter a > 0 and an unknown scale parameter o > 0, whose
density function has the form

ua—le—u/a

p(U;Q,U):W, u > 0.

Consider the problem of estimation of a. One of the most popular estimators is the
well-known maximum likelihood estimator (ML-estimator) (e.g. [3, Sections 9.3, 9.4],
[4], 5], [6]). Let

p(z;a,0) = 0‘”‘“@(@[))_"(12[1 ;)" exp (-; g: ka)

be the corresponding likelihood function. The ML-estimators of o and o are determined
by the equations:

Ino+ ¥(a) = i Inz;/n,
j=1

o — f: x/(no) =0,

k=1

where ¥(a) := L InT(a) := (InT())" is the so-called Euler psi (digamma) function.
From those equations one can obtain the ML-estimators a* and ¢* of a and o,
respectively. Namely, o is the root of the equation

1 n
g(e) :=lna=¥(a)=Inz— =) Inz;

=1
while _
., T
o —.
a*
Here, z is the sample mean, i.e.
1 n
xr=— Z T
n

Observe that the function ¢ is strictly decreasing and takes values in (0,00) (e.g.
Theorem 1 of [2]). Therefore, the estimator o* is well-defined and unique.

Observe also that the estimator a* is scale invariant. Furthermore, one can easily
see that

E(a ( T — ii nxj) =VU(na) — ¥ (o) —Inn = g(a) — g(na) := g,(a).
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The question arises: why wouldn’t one take the root of the equation

> lna, 1)

Jj=1

gn(a) =Inz —

as an estimator of an unknown shape parameter o ? Such an estimator would coincide
with that based on the method of moments.

It turns out that such a choice has quite a deep reasoning. Since in our scheme o
becomes a nuisance parameter, it is natural to apply the maximum likelihood principle
to the measure defined on the o-algebra of the scale invariant sets generated by the
underlying gamma distribution. As it is known (e.g. [7, Subsection 3.2.2], [8, Section
8.3]), the density corresponding to this measure, with respect to that generated by the
standard normal distribution, is given as follows:

Tt p(tzsa,0)dt 21T (na)( 3, - )"/2(ﬁ x)*
1

=1 i=

q(r;0) = = n ,
{t”*ls(tw)dt C(n/2)(T(a))* (X )"

=1

where .
s(z) = (2m) " * exp 1 > ).
257"

Then by direct calculations one can obtain that the maximum likelihood scale invariant
estimator (IML-estimator) o € arg max q(z; ) is the root of the equation (1).

1 \\ \\ g

Figure 1: Graphs of the functions g, ¢,, ¢, g, for n=2.
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The estimator o™ is also scale invariant, well-defined and unique since the function
gn is strictly decreasing and takes values in (0,00) (see Lemma 1 in Section 3).

It is worth noting that the scale invariance of the maximum likelihood estimator
of a shape parameter, is a quite common property in the case when the scale is also
unknown. Indeed, consider the likelihood function

n

p(z;o,0)=0"]] plo ™z a,1),
j=1

where « is a shape parameter taking values in (a_, ay ). Assume that

max p(r;a,0) = max max p(z;a,0).
a€(a—,ay), 0>0 ag(a_,aq) 0>0

Let
o(x; ) € arg max p(z;a,0).

Observe that for any A > 0
P(Az;a,0) = A7"p(z; 0,0 /),
whence
o(Az;a) = Ao (z; ).

Thus,

(a*,0") € arg max p(z;a,0)=arg max p(z;a,d(z;a))
ac(a_,ay), 0>0 ac(a—,oq)

ac(a—,oq)

=arg max ((c}(x; a))" ﬁlp((&(x; ) ey, 1))

It is evident that o*(A\z) = a™(x), i.e. the estimator a* is scale invariant. Therefore, it
is reasonable to apply the method presented here also for other distributions.

The goal of this paper is to compare two estimators of a: the ML-estimator and
the IML-estimator. We show that both the bias and the variance of the IML-estimator
o™ are less than that of the ML-estimator a*.

The paper is organized as follows. In Section 2 we establish the main result while
all the auxiliary results are proved in Section 3.

2 Main result
Theorem. If a sample © = (x1,xs,...,2,) is drawn from I'(«, o) distribution, then

Ea® > Ea™ > a, Var o > Var o™". (2)



Proof. Since the functions g and g, are strictly decreasing, the inverse functions ¢g—*

and g, ! are well-defined. According to the definitions,

ot =g (T(x), o =g (T(x)),

where

1 n
T(z):=Inz— =) Inz;.
n

j=1
Denote
flu):= g7 (u) — g, ' (w),  u>0.
The function f is positive. Indeed, since
gu(g™" (W) = g(g™ " (w)) = g(ng™" (w)) = u — g(ng™'(v)) <u
and the function g, is strictly decreasing, we obtain

g (u)>g, (w), u>0.

Therefore, Ea* > Ea**.
Now let us show that for any a > 0

Ea** = Eg, ' (T(z)) > a.
Observe that the function g,! is strictly convex since from Lemma 1 in Section 3 it

follows that o2 1( ) ( 1( ))
g, (u Inlg, (v
= — > 0, u > 0.
u? (9r.(g7 (u)))?

Since ET'(x) = g,(a), by the Jensen inequality we get

Eg, (T'(x)) > g," (ET(2)) = g, (ga(a)) = o

It remains to prove the inequality for variances. From the evident equalities
o — Ea™= a*~ o™ + o™ — Ea™, o — Ea™ = o* — Ea* + Eo* — Ea™
one can obtain
Var o + (Ea* — Ea™)? = Var o™ + E(a* — a™)? + 2E(a* — ™) (o™ — Ea™).
Therefore,

Var o — Var o™ = Var (o — o™) + 2E(a” — a™)(a™ — Ea™).



In order to show the second part of (2), it is enough to establish that
E(a" — a™)(a™ — Ea™) > 0.
Denote c := Ea** and observe that

E(a” - a™)(a™ — Ea™) = B(g'(T(2)) - g, (T(x))) (9, (T(x)) — ¢)

= /Ooo(gl(u) — g7 (W) (g5 " (1) — O)priay (u)du,

where pr(, is the density of T'(x).
Let
Au) = g, (u) — ¢, u > 0.

Observe that

Au) <0, u> gy(c).

Since, as it is proved in Lemma 3 of Section 3, the function f is strictly decreasing, we
obtain

gn(c) gn(c)
[ 1@ A@pre (e > f(gale)). [ Awpre()dn
and - o
| r@A@pre (e > Fgule) [ Awpre(wdu.
gn(c) gn(c)
Therefore,

B(a" — a™)(a" = Ba?) = [ f()Apre(w)du > [(9,(e)) [ Alwpri (u)d

= f(ga(c) B0 —Ea™) =0, A

Remark 1. Since
E(a* —a)® = Var a* + (Ea* — a)?, E(a*™ —a)? = Var o™ + (Ea™ — a)?,
from the theorem it follows that

E(a* — a)® > E(a™ — )



Let us apply the Monte-Carlo simulation to confirm the results of the theorem.
Given « and o, we generate 10000 samples drawn from I'(«, o) distribution for n =
10, 20, 30, 50, 100. Next, we solve numerically two equations: ¢g(«a) = T'(z) and
gn(a) = T(x) with respect to «, and obtain 10000 values of o* and o**. Taking
their means, we estimate Ea* and Ea™ and then calculate (Ea*
a)?, Var o*, Var o**. The corresponding programs are written in C++. The results
are presented in Table 1.

_ 06)2, (EOZ** o

| a=0.125 [ a=05 |
n v* v** Var o* Var o** v* ¥ Vara® Var o™
10 0.00159  0.00126 0.00119  0.00118 | 0.00410 0.00140 0.02770 0.02760
20 0.00120  0.00097 0.00100  0.00100 | 0.00258 0.00114 0.02008 0.01941
30 0.00100 0.00084 0.00080  0.00079 | 0.00120 0.00052 0.01392 0.01347
50 0.00082  0.00072 0.00048  0.00047 | 0.00056 0.00027 0.00849 0.00821
100 0.00068  0.00064  0.000228 0.000225 || 0.00011 0.00005  0.00367 0.00361
a=1 H 22 |
n v* v Var o* Var o™* v* v Vara®* Var o™
10  0.0145 0.0042 0.1171 0.1165 0.0536.  0.0136  0.4885  0.4876
20 0.0112 0.0048 0.0865 0.0841 0.0463 0.0197 0.3744  0.3705
30  0.0078 0.0038 0.0647 0.0625 0.0320  0.0148  0.2785  0.2706
50  0.0026 0.0012 0.0371 0.0358 0.0128  0.0059  0.1672  0.1615
100 0.0006 0.0003 0.0174 0.0171 0.0029  0.0013 0.0771  0.0756
| o= ] o =16 |
n v* v Var o* Var o** v* ¥ Vara® Var o™
10 0.216 0.051 2.027 2.026 42.83 12.07 198.44  127.58
20 0.186 0.077 1.541 1.535 3.09 1.21 25.69 25.44
30 0.142 0.062 1.190 1.137 2.04 0.86 19.02 18.62
50 0.062 0.029 0.71 0.69 1.03 0.47 12.50 12.05
100  0.014 0.007 0.335 0.328 0.24 0.11 5.556 5.446
=32 | o =128 |
n v* v Var o* Var o™ v* v Varao®  Var o™
10 174.38 2.43 774.92 560.11 191.55 32.38  2102.56 2099.77
20 11.82 4.38 103.39 102.07 173.42 62.90 1619.45 1615.24
30 8.62 3.59 78.95 76.43 143.47 60.76  1288.96 1247.04
50 3.81 1.69 47.84 46.48 55.77 23.48 781.47  759.32
100 0.89 0.38 21.96 21.53 14.14 5.982 357.58  350.46
Table 1: Numerical calculations of
v* = (Ea* — a)?, v*™* = (Ea™ — )?, Vara*, Vara*.



3 Proofs of auxiliary results

Lemma 1. For any n > 1 the function g,(u) = ¥(nu) — ¥(u) —Inn, u > 0, is strictly
decreasing and strictly convex.

Proof. The integral representation

W (1) = / T w0 (3)

(e.g. [1, formula 6.4.1]) yields

/ _ / / _ t —nut —ut
gn(u)—n\IJ(nu)—\D(u)—{l_et (ne —e )dt, u >0 (4)
Denote y
h(t) := = Apy(t) i=mne ™ — e t>0
The function A is strictly increasing since
I1—(1+t)e
W(t)=—————7—>0 t>0
( ) (1 _ e_t)2 )

due to the inequality e’ > 1+ ¢, ¢ > 0. The function A, , is such that

Inn

This implies that
tn (w) tn(u)

0 0
and - .
/ h(t) A ()t < h(ta(u)) / Ao (t)dt
tn(u) tn(u)
Therefore,



since

/ A (t)dt = 0.
0

Further, by differentiation of both sides of (4) we obtain

o0

t
" _ —ut 24 —nut
G () = 4 o (te —n’te ) dt, u > 0.

Denote
Apu(t) i=te™ — nPte ™, t>0

and observe that

This implies that

and - .
[ BByt = hElw) [ Bty
En(u) En(u)
Therefore,
giw) > h(ia(w) [ Bpa(t)dt =0
0
since

A, (t)dt = 0. A

o~——23

In the next lemma a property of the psi function is established. This result will be
helpful in proving the last lemma.

Lemma 2. Let the function 6 be defined by the equality

g 0w) =g, (u), u>0.



Then

9(0(u)) > gn(u),  u>0.
Proof. First of all, observe that the function # is well-defined since both the functions
¢ and ¢/, take values in (—o0,0), are negative and strictly increasing (see Theorem 1

of [2] and Lemma 1 above).
Now we prove that

q (y/n/(n — 1)u> > g (u), u > 0. (5)

Consider the function

p(w) i= g, (w) — g (\/n/ (0= D) = ¢'(w) = ng/(n) = g' (\/n/(n = D), “w >0,

Making use of (3) one can write the representation (Binet’s formula):

g(u) = /go(t)e_“tdt, u >0,
0

where

o(t) == - = t>0.

Therefore,
,O(U) — /Sp(t) (ntenut + Z€e~w/n/(nfl)ut . teut) dt, u>0.
0

The function ¢ is strictly increasing and

: 1 :
lmp(t) =5, lim () =1
(see the proof of Theorem 1 in [2]). Denote
A, (2) == nze ™ 4 ze"V/(TDZ _ ez
=ze * <ne_("_1)z + e~ (Wn/(n=1)=1)z _ 1> , z > 0.

Then

10



Observe that there exists zy > 0 such that

Ap(z) >0, 0<z< 2z,
Ay (2) =0, z= 2,

An(z) <0, z> 2.

The standard reasoning leads to the inequalities

Z

[o () antris <o (2) [ anto
[ (G autoe < (2) [ on

20

Therefore,

since

/A(z)dz =
0
and (5) holds.

Since the function ¢’ is strictly increasing, from (5) it follows that
O(u) < \/n/(n—1)u, u > 0.

6(u) > u, u>0

On the other hand,

since
!

g.(u) — ¢ (u) = —ng'(nu) > 0, u > 0.
Denote
Auw) = g(0(u)) — gn(u),  u>0.
Since ¢'(u) > 1 and ¢'(u) < 0, we obtain
N(u) = ¢ ()8 () — gh(w) = F(O)(E(w) — 1) <0, u>0.

Hence, the function A is strictly decreasing. Now we establish that A(u) > 0 for all
sufficiently large u. Due to the representations

o) =5-(1+0(), gl =5 (1= ) (1 +o(1),  u—oo

11



(e.g. [1, formula 6.3.18]), we get

1 1
Alu) =3 (9(u)

(1 _ 1)) (1+0(1), u— .

n

Simple calculations leads to the conclusion that A(u) > 0, as u — oo, for O(u) <

\/n/(n — 1)u. Thus, A(u) > 0 for all v > 0.

In the proof of Lemma 2 it is established that u < 6(u) <

A

\/n/(n—1)u. The
numerical calculations, made with the help of Maple for n = 2, 10, 50, and presented
in Table 2, confirm those inequalities.

|

n =2

n =10

n = 50

0(u)

\/n/(n —1Du

0(u)

\/n/(n —1u

0(u)

\/n/(n— Du

0.134913918

0.141421356

0.103577225

0.105409255

0.100565420

0.101015254

0.651452797

0.707106781

0.517553390

0.527046277

0.503191582

0.505076272

1.316748502

1.414213562

1.039115016

1.054092553

1.007252736

1.010152544

4.090593081

4.242640686

3.140261683

3.162277660

3.026250755

3.030457633

6.905201515

7.071067810

5.246643827

5.270462768

5.046219652

5.050762721

13.96570362

14.14213562

10.51571989

10.54092553

10.09672350

10.10152544

70.52586082

70.71067810

52.67831719

52.70462768

50.50261897

50.50762721

141.2355025

141.4213562

105.3828081

105.4092553

101.0102207

101.0152544

Lemma 3. For any n > 1 the function f(u)

Table 2: Numerical calculations of bounds for 6(u).

decreasing.

Proof. Clearly,

f'(w) =

1

1

For any u > 0 we have

gn(g, (w) = ¢'(0(g, " (w))) < ¢' (g (w)),

7(g7 )  gh(g, ()’

9(g (W) = gnlg, (1) < g(0(g," (),

where the function 6 is defined as in Lemma 2. Since the function g is strictly decreas-
ing, from (6) it follows that

g (u) > 0(g, " (w),

while since the function ¢ is strictly increasing, we get

Thus, f'(u) <0 for all u > 0.

12

u>0

u > 0.

u > 0.

g (u) — g (u), u >0, is strictly

(6)
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