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On the existence of moments of ladder heights

A. K. Ale�keviµcien·e

Institute of Mathematics and Informatics, Akademijos 4,

Vilnius 08663, Lithuania

Abstract

Let S0, Sn =
nP
k=1

Xk, where Xk, k = 1; n are iid random variables.

Denote N� = min fn � 1 : Sn � 0g ; N+ = min fn � 1 : Sn > 0g : Nec-

essary and su¢ cient conditions are found for the existence of the moments

of ladder heigts SN� and SN+ : These conditions are taken into considera-

tion when calculating the moments of ladder heights in the cases EXk > 0

and EXk < 0:

Keywords: random walk, ladder heights, moments of ladder heights.

Let X;X1; X2; : : :be independent indentically distributed random variables

with the distribution function F (x) : Let Sn = X1+: : :+Xn; n � 1; S0 = 0:

Denote

N� = min fn � 1 : Sn � 0g ; N+ = min fn � 1 : Sn > 0g :

Then Z� := SN� is the �rst nonpositive sum in the random walk fSn; n � 1g

or, in other words, the �rst descending ladder height, and Z+ := SN+ is the

�rst positive sum or the �rst ascending ladder height.

Let EX = 0; X+ = max (0; X) ; X� = min (0; X) : In 1960, Spitzer [8]

showed that, in the case EX = 0; if E jXjk+1 <1; then E jZ�jk <1; k = 1; 2:
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For proving Spitzer used an analytic method based on generating functions

connected with �uctuations of the random walk fSn; n � 0g and Teauberian

arguments. Lai [6] generalized Spitzer�s results showing that, if E jXjk+1 <1;

then E jZ�jk < 1; for k = 1; 2; : : : Chow and Lai [2] showed by probabilistic

methods that, if E jX�jp+1 < 1; then E jZ�jp < 1 for any p > 0. Doney [4]

generalized this result. He investigated the moments of functions of ladder heigts

and proved that, if ' was a nonnegative monotonously increasing di¤erentiable

function on [0;1) such that lim
x!1

' (x) =1 and sup
x!1

' (x+K) =' (x) <1 for

any K > 0, and
xR
0

' (x) dx = �(x) ; then

1)E f� (X+)g <1) E f' (Z+)g ;

2)E (jZ�j) <1; E f' (Z+)g <1) E f� (X+)g � E (jZ�j) � E f' (Z+)g :
(1)

Hence it follows that for � > 1 E (X+)
�
< 1 ) E

�
Z��1+

�
< 1; and if

E jZ�j < 1; then EZ��1+ ) E (X+)
� � �E jZ�j � EZ��1+ : Moreover, Doney

pointed in his work [4] (see also [5]) to the unsolved problem: �nd the necessary

and su¢ cient conditions in terms of dirstribution F for EZ+ < 1 in the case

E (X+)
2
= E (X�)

2
=1: In our opinion, this problem is solved in Theorem 1

proved by us.

Further, when investigating the necessary and su¢ cient conditions, Chow

[3] proved that, if EX = 0; E jXj > 0 and p � 1, then E jZ�jp <1 if only if

1Z
0

xp+1dP
���X��� � x	 = 1Z

0

y (y ^ x) dF (y) <1:

In the works of Lai [2], A.V. Nagaev [7] and of the author [1], analytic

representations for the moments of the variables Z+ and Z� are given in terms

of some characteristics of distribution F: In the papers [2] and [7], only the case
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EX = 0 was investigated. In the author�s work [1], all the qualitatively di¤erent

cases EX = 0; EX > 0; and EX < 0 were considered.

Let us introduce our results.

Theorem 1 The following relations hold:

E
�
X+

�p
<1, E (Z+)

p
<1; p > 0; (2)

E
���X����p <1, E (jZ�j)p <1:

Proof. First note that E (Z+)
p
<1 follows from E (X+)

p
<1: Thus, let

E (X+)
p
<1: We have

EZp+ = E
�
Zp+jZ+ = S1

�
� P fZ+ = S1g+ E

�
Zp+jZ+ = S2

�
� P fZ+ = S2g+

+ : : :+ E
�
Zp+jZ+ = Sn

�
� P fZ+ = Sng+ : : : (3)

Hence, since

E
�
Zp+jZ+ = Sn

�
� E

�
X+
n

�p
; n � 1; P fZ+ = Sng = P

�
N+ = n

	
;

we get

EZp+ � E
�
X+
1

�p � P �N+ = 1
	
+ E

�
X+
2

�p � P �N+ = 2
	
+ : : :+ E

�
X+
n

�p �
�P
�
N+ = n

	
+ : : : = E

�
X+

�p � P �N+ � 1
	
= E

�
X+

�p
:

Consequently, E (X+)
p
<1) EZp+ <1:

Let now EZp+ <1: We see that EZ
p
+ <1) E (X+)

p
<1: We obtain

EZp+ = E
�
Zp+jZ+ = S1

�
�P fZ+ = S1g+E

�
Zp+jZ+ 6= S1

�
�P fZ+ 6= S1g : (4)
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Since EZp+ <1 and both summands on the right-hand side of relation (4) are

positive, these summands are also �nite. Consequently, E
�
Zp+jZ+ = S1

�
<1:

But E
�
Zp+jZ+ = S1

�
= E

�
X+
1

�p
: Hence we obtain that E

�
X+
1

�p
<1:

In the proof of the second relation in (2) one should write the sign "-" instead

of "+".

The result of Doney (1) now can be generalized as follows.

Theorem 2 Let ' be a non-negative monotonically increasing function on (0;1).

Then

E
�
'
�
X+

��
< 1, E (' (Z+)) <1;

E
�
'
���X����� < 1, E (' (jZ�j)) <1:

For ' (x) = xp; p > 0; Theorem 2 yields the statements of Theorem 1.

Proof. The proof of Theorem 2 is analogous to that of Theorem 1, because

we can draw conclusions from the equalities

E (' (Z+)) = E (' (Z+) j' (Z+) = ' (S1)) � P fZ+ = S1g+

+E (' (Z+) j' (Z+) = ' (S2)) � P fZ+ = S2g+ : : :

E (' (Z+)) = E (' (Z+) j' (Z+) = ' (S1)) � P fZ+ = S1g+

+E (' (Z+) j' (Z+) 6= ' (S1)) � P fZ+ 6= S1g

analogous as that from equalities (3) and (4) ; respectively.

We have mentioned above that in [1], analytical expressions of moments of

the variables Z+ and Z� are given through the characteristics of distribution F

in the cases EX > 0 and EX < 0:The �rst three moments of these variables
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are calculated there in recurrent way. (Using the same algorithm, it is possible

to calculate moments of a higher order in a recurrent way).

However, in [1] the requirements as to the existence of the moments of distri-

bution F are overstated. In view of the statement of Theorem 1, the conditions

of Theorems 1-3 in [1] could be weakened. Let us reformulate these theorems

under the new weakened conditions.

Theorem 3 Let EX > 0 and E jX�j <1: Then

EZ� = e
�A

1X
n=1

0+Z
�1

xdFn (x) ; A =

1X
n=1

1

n
P fSn � 0g :

In addition, if E jX�j2 <1; then

EZ2� = e
�A

1X
n=1

1

n

0+Z
�1

x2dFn (x)� e�A
0@ 1X
n=1

1

n

0+Z
�1

xdFn (x)

1A2

;

and if E jX�j3 <1, then

EZ3� = e�A

24 1X
n=1

1

n

0+Z
�1

x3dFn (x)� 3
1X
n=1

1

n

0+Z
�1

x2dFn (x) �
1X
n=1

1

n

0Z
�1

xdFn (x)+

+

0@ 1X
n=1

1

n

0+Z
�1

xdFn (x)

1A3
375 :

The rows on the right-hand sides of the given equalities converge.

Theorem 4 Let E jXj <1 and EX > 0: Then

EZ+ = EXe
A:
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Moreover, if EX2 <1; then

EZ2+ = EX
2eA + 2EXeA

1X
n=1

1

n

0+Z
�1

xdFn (x) ;

and if E jXj3 <1, then

EZ3+ = EX3eA + 3EX2eA
1X
n=1

1

n

0+Z
�1

xdFn (x) + 3EXe
A

0@ 1X
n=1

1

n

0+Z
�1

xdFn (x)

1A2

+

+3EXeA
1X
n=1

1

n

0+Z
�1

x2dFn (x) :

The rows appearing in the given relations converge.

Analogous theorems can be presented for the case EX < 0 (analogue of

Theorem 3 in [1]).

The proof of these theorems remains the same as in [1] except those sites

regarding the existence of moments of the variables Z+ and Z�: In these sites

one ought to make use of Theorem 1.
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