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Abstract

This note shows the equivalence of the dummy variable approach and the skip-

ping approach for the treatment of missing observations in state space models. The

equivalence holds when the coefficient of the dummy variable is considered as a

diffuse rather than a fixed effect. The equivalence concerns both likelihood infer-

ence and smoothed inferences.
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1 Introduction

A well known result is that estimating a missing observation by skipping the Kalman

filter updating step is equivalent to introducing a dummy variable (additive outlier) in

the measurement equation, filling the missing value arbitrarily. This result (in different

frameworks) appears in a number of papers: Sargan and Drettakis (1974), Bruce and

Martin (1989), Ljung (1993). A detailed discussion can be found in Fuller (1996, section

8.7). However, if the additive outlier is treated as a fixed effect, with zero covariance

matrix, the likelihood is defined differently and a correction has to be computed in the

second case, see Gómez et al. (1999). The correction factor is related to the determinan-

tal term of the likelihood and depends in a simple fashion from quantities computed

under the model for the complete observations, requiring a single run of the Kalman

filter and smoothing filter.

To our knowledge, a proof the equivalence of the skipping approach and the dummy

approach for the definition of the likelihood and for smoothing is not available. This

note aims at bridging the gap, providing a simple proof that when the additive outlier

is treated as diffuse, with arbitrarily large covariance matrix, the correction to the like-

lihood takes place automatically. This is convenient, as no extra programming effort is

necessary once a programme handling diffuse initial conditions and regression effects

has been implemented.

The equivalence is also carried forward to smoothed inferences, concerning the esti-

mation of the states and the disturbances. The derivation of analytical expressions for

the influence of an observation on these quantities, made in De Jong (1996), is greatly

simplified in the dummy variable setup as they depend in a simple fashion on the

output of the Kalman filter and smoother run on intervention variables.

The plan of the paper is the following: section 2 introduces the dummy variable

approach for stationary state space models with no regression effects, under fixed and

diffuse conditions, and derives the prediction error decomposition form of the like-
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lihood under the latter. In section 3 we present the alternative strategy of handling

missing observations, known as the skipping approach, and prove that the likelihood

for this model is equivalent to the dummy variable one. In section 4 the equivalence

is extended to smoothed estimates of the states and the disturbances, and measures of

influence of an observations are given, which depends in a simple way on the output

of the Kalman filter and smoothing filter run on the intervention variable.

2 The Dummy Variable Approach

Let yt denote a vector stationary time series with N elements; the state space model is

yt = Ztαt + Gtεt, t = 1, 2, . . . , T, (1)

αt+1 = T tαt + H tεt, t = 1, 2, . . . , T, (2)

with α1 ∼ N(a1, σ
2P 1), where a1 and σ2P 1 denote the unconditional mean and co-

variance matrix of αt, and εt ∼ NID(0, σ2I). The system matrices, Zt,Gt,T t, H t, are

functionally related to a vector of hyperparameters, θ.

The Kalman filter (KF) is a well-known recursive algorithm for computing the mini-

mum mean square estimator of αt and its mean square error (MSE) matrix conditional

on Y t−1 = {y1,y2, . . . , yt−1}. Defining

at = E(αt|Y t−1), MSE(at) = σ2P t = E[(αt − at)(αt − at)
′|Y t−1],

the filter consists of the following recursions:

νt = yt −Ztat, F t = ZtP tZ
′
t + GtG

′
t

qt = qt−1 + ν ′tF
−1
t νt, Kt = (T tP tZ

′
t + H tG

′
t)F

−1
t

at+1 = T tat + Ktνt, P t+1 = T tP tL
′
t + H tJ

′
t

(3)

with Lt = T t −KtZt and J t = H t −KtGt; νt = yt − E(yt|Y t−1) are the filter inno-

vations, with MSE matrix σ2F t. The filter is started off with a1 = 0, P 1 = H0H
′
0 and
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q0 = 0. The log-likelihood for the model is, apart from a constant term,

L(y1, . . . , yT ; θ) = −1

2

[
NT ln σ2 +

T∑

t=1

ln |F t|+ σ−2qT

]
(4)

where qT =
∑T

t=1 ν ′tF
−1
t νt.

Suppose that an intervention is included at t = i so that the measurement equation

becomes

yt = Ztαt + I t(i)δ + Gtεt, (5)

where I t(i) is an indicator variable taking value 1 for t = i and 0 elsewhere. For its

statistical treatment, the KF (3) at t = i is augmented by the following recursions:

V +
t = It(i)I −ZtA

+
t

A+

t+1 = T tA
+
t + KtV

+
t = KiIt(i) + LtA

+
t

S+
t = S+

t−1 + V
′
+
t F−1

t V +
t ,

s+
t = s+

t−1 + V
′
+
t F−1

t νt,

(6)

for t = i, . . . , T with starting conditions: A+

i = 0 S+

i−1 = 0 and s+

i−1 = 0. This amounts

to apply the KF to the intervention signature It(i)I .

When δ is treated as a fixed effect, the log-likelihood can be written as (Rosenberg,

1973)

−1

2

[
NT ln σ2 +

T∑

t=1

ln |F t|+ σ−2(qT − 2s
′
+

T δ + δ′S+

T δ)

]
.

The MLE of δ is thus δ̂ = S+−1
T s+

T and the concentrated likelihood is

−1

2

[
NT ln σ2 +

T∑

t=1

ln |F t|+ σ−2(qT − s
′
+

T S+−1
T s+

T )

]
.

There is however a conceptual difficulty with the fixed effects model, as was clearly

pointed out by Bell (1989, p. 408), in that ”the use of an indicator variable lets the mean

at a given point be anything while still assuming that the observation is normal with

the same variance and covariances as other observations, whereas omitting observa-

tions makes no assumption at all about it”.
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In the sequel, δ is treated as a diffuse effect, that is [Cov(δ)]−1 converges to zero in

the Euclidean norm (see De Jong, 1991), e.g. δ ∼ N(0, κI), κ →∞; this is equivalent to

making no assumption on the covariance of the i-th observation.

De Jong (1991) has shown that δ can be concentrated out of the likelihood function,

so that δ̂ = S+−1
T s+

T and MSE(δ̂) = σ2S+−1
T . The diffuse log-likelihood function is

LDV (y1, . . . , yT ; θ) = −1
2
[N(T − 1) ln σ2 +

∑T
t=1 ln |F t|+

ln |S+

T |+ σ−2(qT − s
′
+

T S+−1
T s+

T )].
(7)

This function is the likelihood for a rank T − 1 transformation of the observations,

which makes the data invariant to δ.

The following theorem is a restatement of theorem 2 in De Jong and Penzer (1998).

Theorem 1. The estimate of δ and the diffuse LF can be written as

δ̂ = M−1
i ui, MSE(δ̂) = σ2M−1

i , (8)

LDV = −1

2
[N(T − 1) ln σ2 +

T∑

t=1

ln |F t|+ ln |M i|+ σ−2(qT − u′iM
−1
i ui)] (9)

where ui and M i are the output at t = i of the smoothing filter:

ut = F−1
t νt −K ′

trt M t = F−1
t + K ′

tN tKt

rt−1 = Z ′
tF

−1
t νt + L′

trt N t−1 = Z ′
tF

−1
t Zt + L′

tN tLt

(10)

started with rT = 0 and NT = 0.

Proof. We begin by noting that V +

i = I and V +
t = −ZtLt,i+1Ki for t = i + 1, . . . , T

with Lt,i+1 = Lt−1 · · ·Li+1 and Li+1,i+1 = I . Hence:

s+

T =
∑T

t=i V
′
+
t F−1

t νt

= F−1
i νi −K ′

i

∑T
t=i+1 L′

t,i+1Z
′
tF

−1
t νt

= F−1
i νi −K ′

iri

= ui

4
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S+

T =
∑T

t=i V
′
+
t F−1

t V +
t

= F−1
i + K ′

i

(∑T
t=i+1 L′

t,i+1Z
′
tF

−1
t ZtLt,i+1

)
Ki

= F−1
i + K ′

iN iKi

= M i

Replacing into the expressions for δ̂ and (7) yields the result.

Using a different argument, De Jong and Penzer (1998) show that

yt − E(yt|y1, . . . , yt−1, yt+1, . . . , yT ) = M−1
t ut.

The next theorem provides an alternative expression for the likelihood function,

based on the one-step-ahead prediction error decomposition. This will prove useful in

the comparison with that arising from the skipping approach.

Theorem 2. For model (5), let F̂ t = MSE(νt|Y t−1), and ν̂t = E(νt|Y t−1), where F̂ t =

F t + V +
t S+−1

t−1 V
′
+
t and ν̂t = νt − V +

t S+−1
t−1 st−1. Then,

LDV = −1
2

[
N(T − 1) ln σ2 +

i−1∑
t=1

ln |F t|+
T∑

t=i+1
ln |F̂ t|+

σ−2

(
qi−1 +

T∑
t=i+1

ν̂ ′tF̂
−1

t ν̂t

)]
.

(11)

Proof. To show that the determinantal part of the LF is as stated we provide the fol-

lowing recursion for |ST |:

|S+

T | = |S+

T−1 + V
′
+

T F−1
T V +

T |
= |S+

T−1||I + S+−1
T−1V

′
+

T F−1
T V +

T |
= |S+

T−1||I + F−1
T V +

T S+−1
T−1V

′
+

T |
= |S+

T−1||F T |−1|F̂ T |
Iterating this result for t = T −1, T −2, . . . , i+1 and recalling that S+

i = F−1
i produces:

ln |S+

T | =
T∑

t=i+1

ln |F̂ t| −
T∑

t=i

ln |F t|.

5
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Moreover,

qT − s
′
+

T S+−1
T s+

T = qT−1 − s
′
+

T−1S
+−1
T−1s

+

T−1 + ν̂ ′T F̂
−1

T ν̂T

which, applied recursively, yields

qT − s′T S+−1
T sT = qi − s

′
+

i S+−1
i s+

i +
T∑

t=i+1

ν̂ ′tF̂
−1

t ν̂t.

Now, as qi = qi−1 + ν ′iF
−1
i νi and s

′
+

i S+−1
i s+

i = ν ′iF
−1
i νi, result (11) follows directly.

3 The Skipping Approach

When the i-th observation is missing, the KF is forced to skip the updating step at time

t = i, so that

a(m)

i+1 = T iai, P (m)

i+1 = T iP iT
′
i + H iH

′
i, (12)

and q(m)

i = qi−1.

From time i + 1 on the KF (3) is run with νt,at, qt,Kt,P t+1,Lt, J t replaced by

ν(m)

t ,a(m)

t , q(m)

t ,K(m)

t ,P (m)

t+1,L
(m)

t ,J (m)

t . See Harvey et al. (1998).

The log-likelihood function L(m) = L(y1, . . . , yi−1,yi+1, . . . , yT ; θ) is:

L(m) = −1
2
[ N(T − 1) ln σ2 +

∑i−1
t=1 ln |F t|+ ∑T

t=i+1 ln |F (m)

t |+
σ−2

(
i−1∑
t=1

ν ′tF
−1
t νt +

T∑
t=i+1

ν
′
(m)

t F (m)−1
t ν(m)

t

)
] .

(13)

Theorem 3. L(m) = LDV

Proof. The KF resulting from the skipping approach is related to the full sample KF (3)

by the following equations:

ν(m)

t = νt − V +
t S+−1

t−1 s+

t−1, F (m)

t = F t + V +
t S+−1

t−1 V
′
+
t ,

K(m)

t = Kt −A+

t+1S
+−1
t V

′
+
t F−1

t ,

a(m)

t+1 = at+1 −A+

t+1S
+−1
t s+

t , P (m)

t+1 = P t+1 + A+

t+1S
+−1
t A

′
+

t+1,

(14)

6
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where A+
t = Lt,i+1Ki. These relations hold for t = i + 1: from (12),

a(m)

i+1 = ai+1 −Kiνi = ai+1 −A+

i+1S
+−1
i s+

i

and

P (m)

i+1 = P i+1 + KiF iK
′
i = P i+1 + A+

i+1S
+−1
i A

′
+

i+1.

Hence

ν(m)

i+1 = Zi+1a
(m)

i+1 = νi+1 −Zi+1A
+

i+1S
+−1
i s+

i = νi+1 − V +

i+1S
+−1
i s+

i

and

F (m)

i+1 = Zi+1P
(m)

i+1Z
′
i+1 + Gi+1G

′
i+1 = F i+1 + V +

i+1S
+−1
i V

′
+

i+1.

The formula for the gain matrix is obtained noticing that

F (m)−1

i+1 = F−1
i+1 − F−1

i+1V
+

i+1S
+−1
i+1 V

′
+

i+1F
−1
i+1

whence
K(m)

i+1 = (T i+1P
(m)

i+1Z
′
i+1 + H i+1G

′
i+1)F

(m)−1

i+1

= (Ki+1F i+1 − T i+1KiF iV
′
(m)

i+1)F
(m)

i+1

= Ki+1 −A+

i+2S
+−1
i+1 V

′
+

i+1F
−1
i+1

In conclusion, ν(m)

t = ν̂t and F (m)

t = F̂ t.

When δ is treated as a fixed effect, the correction that has to be applied to the de-

terminantal part of the likelihood is −.5 ln |M i|, which is available from a run of the

smoothing filter (10).

4 Influence and deletion diagnostics

In this section we use the previous results in a different perspective. Assuming that

the full sample is available we aim at computing measures of influence on smoothed

7
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inferences. De Jong (1989) proved that the smoothed estimate of the state at t, ãt =

E(αt|Y T ), and its MSE matrix, σ2P̃ t = E[(αt − ãt)(αt − ãt)
′|Y T )], are

ãt = at + P trt−1, P̃ t = P t − P tN t−1P t,

where rt−1 and N t−1 are given in the second line of (10).

Now, let ã(m)

t = E(αt|Y (i)

T ), where Y (i)

T = (y1, . . . , yi−1,yi+1, . . . , yT ) is the informa-

tion at T excluding yi. Moreover, let P̃
(m)

t = E[(αt − ã(i)

t )(αt − ã(m)

t )′|Y (m)

T )].

Theorem 4.
ãt = ã(m)

t + (A+
t + P tR

+

t−1)M
−1
i ui,

P̃ t = P̃
(m)

t − (A+
t + P tR

+

t−1)M
−1
i (A+

t + P tR
+

t−1)
′,

where

R+

t−1 = Z ′
tF

−1
t V +

t + L′
tR

+
t , (15)

with A+
t = 0 for t < i + 1. Also, for t < i, V +

t = 0 and R+

t−1 = L′
tR

+
t = L′

i,tR
+

i−1.

Proof. The orthogonal set {ν1, . . . , νT} is a linear transformation of the set

{ν1, . . . , νi−1,ν
(m)

i+1, . . . , ν
(m)

T , ui}.

This set is orthogonal too, since ui and ν(m)

t depend only on {νj, j ≥ i}, and

Cov(ν(m)

t ,ui) = Cov(νt − V +
t S+−1

t−1 s+

t−1,
T∑

i

V
′
+
t F−1

t νt) = 0, ∀t > i.

Thus, applying a standard result in uncorrelated linear projection:

ãt = ã(m)

t + σ−2Cov(αt − a(m)

t ,ui)M
−1
i ui

= ã(m)

t + σ−2Cov(αt − at + A+
t S+−1

t−1 s+

t−1,ui)M
−1
i ui

= ã(m)

t +
(
P t

∑T
j=i L

′
t,jZ

′
jF

−1
j V +

j + A+
t

)
M−1

i ui

The formula for the MSE matrix is derived similarly from

MSE(αt|Y T ) = MSE(αt|Y (i)

T )− Cov(αt,ui)M
−1
i Cov(αt, ui)

′.

8
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Hence,

ãt − ã(m)

t = (A+
t + P tR

+

t−1)M
−1
i ui (16)

provides the measure of influence of the i-th observation on the state estimate at time t.

The quantities on the right hand side are readily available from the augmented Kalman

filter for model (5); σ−2Cov(αt,ui) = A+
t + P tR

+

t−1 is the leverage of yi on ãt (De Jong,

1996).

We now show that

R+

i−1 = Z ′
iM i − T ′

iN iKi. (17)

R+

i−1 = Z ′
iF

−1
i + L′

iZ
′
i+1F

−1
i+1V

+

i+1 + · · ·+ L′
T,iZ

′
T F−1

T V +

T

= Z ′
iF

−1
i − (L′

iZ
′
i+1F

−1
i+1Zi+1Ki + · · ·+ L′

T,iZ
′
T F−1

T ZT LT,i+1Ki)

= Z ′
iF

−1
i −L′

iN
′
iKi

= Z ′
iF

−1
i − T ′

iN iKi + Z ′
iK

′
iN iKi

= Z ′
iM i − T ′

iN iKi

which proves (17). Therefore, we recover the result derived in De Jong (1996), ãi −
ã(m)

i = P i(Z
′
iM i − T ′

iN iKi).

Let et = E(εt|Y T ) denote the smoothed disturbance. Koopman (1993) shows that

et = GtF
−1
t νt + J ′

trt.

We are now interested in assessing the influence of the i-th observation on the smoothed

estimate of the disturbance εt.

For this purpose, we denote e(m)

t = E(εt|Y (m)

T ), and, taking the expectation of both

sides of (1) alternatively with respect to Y T and Y (i)

T ,

yt = Ztãt + Gtet,

yt = Ztã
(m)

t + Gte
(m)

t ,

9
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we write
Zt(ãt − ã(m)

t ) = −Gt(et − e(m)

t ), t 6= i,

yi − E(yi|Y (i)

T )) = Zi(ãi − ã(m)

i ) + Gi(ei − e(m)

i ).
(18)

Moreover, from the transition equation (2)

ãt+1 − ã(m)

t+1 = T t(ãt − ã(m)

t ) + H t(et − e(m)

t ). (19)

Theorem 5. Defining

E+
t = G′

tF
−1
t V +

t + J ′
tR

+
t (20)

the scaled smoothed disturbances of the transition equation are given by

H t(et − e(m)

t ) = H tE
+
t M−1

i ui. (21)

Moreover,

H i(ei − e(m)

i ) = H i(G
′
iM i −H ′

iN iKi)M
−1
i ui.

Proof.

H t(et − e(m)

t ) = (ãt+1 − ã(m)

t+1)− T t(ãt − ã(m)

t )

= [(A+

t+1 + P t+1R
+
t )− T t(A

+
t + P tR

+

t−1)]M
−1
i ui

= [KtV
+
t + (T tP tLt + H tJ

′
t)R

+
t − T tP t(Z

′
tF

−1
t V +

t + L′
tR

+
t )]M−1

i ui

= [KtV
+
t + H tJ

′
tR

+
t − T tP tZ

′
tF

−1
t V +

t ]M−1
i ui

= H t(G
′
tF

−1
t V +

t + J ′
tR

+
t )M−1

i ui.

Note that, for t < i, E+
t = J ′

tR
+
t . Also, H0(e0 − e(m)

0 ) = H0H
′
0R

+

0 M−1
i ui.

In order to prove the last statement, we first note that

R+

i = Z ′
i+1F

−1
i+1V

+

i+1 + Li+1Z
′
i+2F

−1
i+2V

+

i+2 + · · ·+
L′

T,i+1Z
′
T F−1

T V +

T

= −(Z ′
i+1F

−1
i+1Zi+1Ki + Li+1Z

′
i+2F

−1
i+2Zi+2Li+1Ki + · · ·+

L′
T,i+1Z

′
T F−1

T ZT LT,i+1Ki)

= −N ′
iKi

10
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which gives

E+

i = G′
iF

−1
i V +

i + J ′
iR

+

i

= G′
iF

−1
i + H ′

iR
+

i −G′
iK

′
iR

+

i

= G′
iM i −H ′

iN iKi

Theorem 6. For t 6= i the scaled smoothed measurement disturbance is given as fol-

lows:

Gt(et − e(m)

t ) = GtE
+
t M−1

i ui (22)

Proof. From (18)

Gt(et − e(m)

t ) = −Zt(ãt − ã(m)

t )

= −Zt(A
+
t + P tR

+

t−1)M
−1
i ui

= [−ZtA
+
t −ZtP t(Z

′
tF

−1
t V +

t + L′
tR

+
t )]M−1

i ui

= [V +
t − (F t −GtG

′
t)F

−1
t V +

t −ZtP tL
′
tR

+
t ]M−1

i ui

= Gt(G
′
tF

−1
t V +

t + J ′
tR

+
t )M−1

i ui

= GtE
+
t M−1

i ui.

In the derivation we used the easily established relation: ZtP tL
′
t = −GtJ

′
t.

Theorem 7. The influence of yi on the smoothed disturbance:

et − e(m)

t = E+
t M−1

i ui. (23)

Proof. The proof is immediate, as the matrix [G′
tH

′
t]
′ has full column rank.

In conclusion, the computation of the influence for εt and αt via the forward recur-

sion (19), depend on quantities readily available from a run of the smoothing filter on

the dummy variable. E+
t provides a measure of leverage of yi on et.
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5 Conclusions

The paper has showed the equivalence between the skipping approach and the dummy

variable (additive outlier) approach for both likelihood and smoothed inferences, and

use the latter for deriving suitable algorithms for computing deletion diagnostics. The

extension to the class of nonstationary state space models is available from the author.
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Goméz V., Maravall A., and Peña, D. (1999). Missing Observations in ARIMA Mod-

els: Skipping Approach versus Additive Outlier Approach, Journal of Economet-

rics, 88, 341-363.

12



Acc
ep

te
d m

an
usc

rip
t 

Fuller W. A. (1996). Introduction to Statistical Time Serie. Wiley Series in Probability

and Statistics, New York, John Wiley and Sons.

Ljung, G.M. (1993). On Outlier Detection in Time Series, Journal of the Royal Statistical

Society, Series B, 55, 559-567.

Koopman, S.J. (1993). Disturbance Smoother for State Space Models, Biometrika, 80,

117-126.

Rosenberg, B. (1973). Random coefficient models: the analysis of a cross-section of

time series by stochastically convergent parameter regression, Annals of Economic

and Social Measurement, 2, 399-428.

Sargan, J.D., and Drettakis, E.G. (1974). Missing Data in an Autoregressive Model,

International Economic Review, 15, 39-58.

13


	Introduction
	The Dummy Variable Approach
	The Skipping Approach
	Influence and deletion diagnostics
	Conclusions

