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Large deviations probabilities for a symmetry test
statistic based on delta-sequence density estimation

Noureddine Berrahou

L.S.T.A., Université de Paris 6. 175, rue du Chevaleret, 8ème étage, bâtiment A,

75013 PARIS FRANCE.

Abstract

The goal of this paper is to provide large deviations limit theorems for statistics, based on the

delta-sequence density estimation and designed to symmetry testing of distribution. A general result

is stated for any regular delta-sequence and a discussion of hypotheses for the most usual methods

is given. The estimation is based upon sequences of independent and identically distributed random

variables.

Keywords: Symmetry testing; Large deviations; rate functions; delta-sequence; Bahadur exact slope.

1 Introduction

LetX be an open symmetric interval of the real lineR. A sequence{δm(x, u)} of bounded

measurable functions onX × X is a delta-sequence onX if, for eachx ∈ X and eachC∞

functionϕwith support inX , we havelimm→∞
∫
X δm(x, u)ϕ(u)du = ϕ(x). LetX1, X2, · · · ,

Xn be a sequence of i.i.d real random variable defined on a probability space (Ω, F , P ) and

taking values in a setX ⊆ R. Denote byF the distribution function ofX and byf its

probability density function with respect to the Lebesgue measure overX . Define the delta-

sequence estimator off associated to the sequence{δm(x, u)} by

fn(x) =
1

n

n∑
i=1

δm(x,Xi),

wherem = mn is a sequence of positive real numbers that tends to infinity withn.

In this paper, we study the large deviations problem pertaining with the symmetry testing

statistics based on the delta-sequence method density estimation. More precisely, we are

concerned by the test of the following null hypothesisH : “f(x) = f(−x),∀x ∈ X\]−ξ, ξ[”
against the alternativeA : “There existsx ∈ X\] − ξ, ξ[ such thatf(x) 6= f(−x)” on the

basis of the observationX1, X2, · · · , Xn. For this purpose, we use the statistic

Vn,ξ = sup
x∈X\]−ξ,ξ[

|fn(x)− fn(−x)|,

which is naturally significant if greater than some positive threshold. Throughout the paper,

we examine the following probabilitiesPx,n(λ) = P (|fn(x) − fn(−x)| > λ), Pn,ξ(λ) =

E-mail address:berrahou@ccr.jussieu.fr
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P (Vn,ξ > λ), that we show to tend to zero at exponential rate forλ > 0. A general result

pertaining with any regular delta-sequence is stated and a discussion of hypotheses for the

most usual methods is given. The results we state allows to obtain the Bahadur exact slope

associated to the statisticVn,ξ and then to compare the test based onVn,ξ with any other test

provided to have its Bahadur slope. This work follows the result by Osmoukhina (2001) and

treating the kernel method. Note that wheneverx = 0, we have|fn(x) − fn(−x)| = 0 and

therefore,Px,n(λ) = 0 for any λ > 0. The symmetry has then to be considered outside

a small ball around0. This problem has not been considered in Osmoukhina (2001) and

has lead to a wrong statement in pages367 − 368 whereα(t, x, n) cannot be equal too(1)

uniformly overR.

2 Resutls

Throughout the paper, assume thatf is a bounded symmetric function and set afterwards

some hypotheses upon the densityf and the delta-sequence(δmn).

(H1) For anyx in X
∫
X δm(x, u)du = 1.

(H2) For anyt > 0 and for anyx in X , the limit

L(t, x) := lim
n→∞

Ln(t, x) := lim
n→∞

mn

∫
X

[
exp

{
t

mn

δmn(x, u)

}
− 1

]
f(u)du, (1)

exists.

(H3) There exists a functionI such that, for anyt > 0 and for anyx in X , L(t, x) may

be split up as followsL(t, x) = f(x)I(t). Moreover,J(t) := I(t) + I(−t) is a twice

differentiable function with invertible derivative denoted byψ.

(H4) For anyt > 0 and for anyx in X − {0},

lim
n→∞

mn

∫
X

[
exp

{
t

mn

δmn(x, u)

}
− 1

][
exp

{
−t
mn

δmn(−x, u)
}
− 1

]
f(u)du=0. (2)

The inverse function is defined over the domainD = (0, t1), wheret1 = supt{ψ(t)}, by

ψ−1(t) = inf{s : ψ(s) ≥ t},

Remark 1.For several estimation methods covered by the delta-sequence method, the func-

tion L(t, x) can be factorized under the formL(t, x) = f(x)I(t). Examples of such a fac-

torization are given in Berrahou (2003). So the conditions(H2)-(H3) are satisfied for all the

estimation methods discussed in this work.

Properties of the functionJ

It is easily seen that, when the functionLn(t, x) is twice differentiable with respect tot,

we have for anyt ∈ R and anyx ∈ X ∂2

∂t2
Ln(t, x) ≥ 0. Therefore, the second derivativeI

′′
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is nonnegative for anyt ∈ R andI is a convex function. Therefore,J is strictly convex. The

symmetry and convexity ofJ imply thatJ
′
:≡ ψ is an odd increasing function andψ(0) = 0.

The pointwice large deviations result is given in the following theorem.

Theorem 2.1 Assume that the conditions(H1)-(H4) are satisfied. Ifmn →∞ andmn/n→0

asn→∞, then for anyx in X − {0} and anyλ > 0,

lim
n→∞

mn

n
logPx,n(λ) = −Γx(λ),

where

Γx(λ)=sup
t>0
{tλ− f(x)J(t)}=

{
λψ−1

(
λ

f(x)

)
− f(x)J

(
ψ−1

(
λ

f(x)

))
if 0 < λ ≤ f(x)t1,

∞ elsewhere.

In the order to state the uniform large deviations result, let us introduce some notations.

Define

gξ(λ) = inf
x∈X\]−ξ,ξ[

Γ(λ).

Assume from now on thatMξ := supx∈X\]−ξ,ξ[ f(x)<∞. Set, foru ∈ (0, Mξ] andλ > 0,

hλ(u) = λψ−1(λ
u
)− uJ(ψ−1(λ

u
)). It is proved in Lemma 3.1 below that for any fixedλ > 0,

hλ,± is a nonincreasing function. Therefore, since(0, f(x)t1] ⊂ (0,Mξt1], it follows that

gξ(λ) =

{
λψ−1( λ

Mξ
)−MξJ(ψ−1( λ

Mξ
)) if 0 < λ ≤Mξt1,

∞ elsewhere.

Moreover, asλ → 0 wheneverψ is differentiable, we havegξ(λ) = λ2

2Mξψ
′ (0)

(1 + o(1)).

Note that the rate functiongξ is continuous if and only ifψ is continuous. From now on, we

assume thatψ is a continuous function. The rate functiongξ is increasing with respect toξ.

The uniform large deviations result given in Theorem 2.2 is stated under the following

additional conditions.

(B1) Convergences (1) and (2) are uniform with respect tox in X\]− ξ, ξ[.

(B2) There exists a sequence(Hn)n≥1 of positive real numbers that tends to infinity withn

and there exists a sequence of positive functionsgn, such that,

(i) for anyε > 0, there existsn0 > 0 such that for anyn ≥ n0, sup|x|>Hn
|δmn(x, u)| ≤

gn(u) + ε,

(ii) for anyζ > 0, limn→∞
mn

n
E(gn(X1)) exp(ζn/mn) = 0.

(B3) There exists a partitionξ = a0 < a1 < · · · < adn = Hn of [ξ, Hn], such that,

(i) for any ε > 0, there existsηn > 0 such that, for any1 ≤ j ≤ dn and for any

z ∈ X , sup{(x,u)∈(aj−1,aj)2: |x−u|≤ηn} | δmn(±x, z)− δmn(±u, z) |≤ ε,

(ii) limn→∞mn log(Hn/ηn)/n = 0.

3
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We give now the uniform version of our results and point out that the rate function de-

pends on the underlying density function via only its supremum overX\[−ξ, ξ].

Theorem 2.2 Assume that the conditions(H1)-(H4), (B1)-(B3) are satisfied. Ifmn → ∞
andmn/n→ 0 asn→∞, then for anyλ > 0,

lim
n→∞

mn

n
logPn,ξ(λ) = −gξ(λ).

Discussion of the conditions

.Kernel method.For (x, u) ∈ R2, set

δm(x, u) = mK(m(x− u)),

whereK is a positive bounded function such that
∫∞
−∞K(x)dx = 1 andlimx→∞ |x|K(x) =

0. Parzen (1962) showed that{δm} constitutes a delta-sequence.

In Lemma 2.1, sufficient conditions that allow hypotheses(H4), (B1)-(B3) to be satisfied

are given. In the first place we gather together these conditions.

(A1) K is a lipschitz function.

(A2) There exists a sequence(Hn) of positive real numbers converging to infinity, such that,

P (|X| > Hn) ≤ εn and forζ > 0, limn→∞
εnm2

n exp{ζn/ mn}
n

= 0.

(A3) limn→∞mn log(Hnm
2
n)/n = 0.

Lemme 2.1 Suppose that the conditions(A1)-(A3) are satisfied, and thatf is a uniformly

continuous function. Ifmn → ∞ as n → ∞, Then the conditions(H4), (B1)-(B3) are

satisfied.

. Trigonometric basis method.Let X be the interval[−π, π] and{ek, k ∈ ZZ} be the

trigonometric basis defined byek(x) = (1/
√

2π)eikx. Consider the sequence of functions

δm(x, u) =
m∑

j=−m

ej(x)ej(u).

Walter (1965) stated that the sequence(δm(x, u)) is a delta-sequence.

Lemme 2.2 Assume that
∑

k∈ZZ |
∫
f(u)e−ikudu| < ∞. If limn→∞

mn

n
log(mn) = 0 and

mn →∞ asn→∞. Then the conditions(H4), (B1)-(B2) are satisfied.

. Fejér kernel method.Consider the Fejér kernel defined, for anyu ∈ [−π, π], by

Fm(u) =
sin2((m+ 1)u/2)

2π(m+ 1) sin2(u/2)
.

Winter (1975) showed that the sequence of functionδm(x, u) = Fm(x − u) constitutes a

delta-sequence.
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Lemme 2.3 Assume that the conditions(A2)-(A3) are satisfied,f is a continuous function

andmn is even. Ifmn →∞ asn→∞, then the conditions(H4), (B1)-(B3) are satisfied.

Applications

Large deviations results are useful and efficient tools to study the asymptotic efficiency

of tests. This question has been widely investigated; we refer to Bahadur (1971) and the

book of Nikitin (1995) for an account of results on this subject. In testing the hypothesis

H, the rejection region associated to the test statisticVn,ξ is given by{Vn,ξ ≥ c} wherec is

some positive real number. The power function of this test isPf (Vn,ξ ≥ λ), here,Pf denotes

the distribution of observations whenf is the underlying density. For anyλ ∈ R, define

Gn(λ) = Pf (Vn,ξ ≤ λ). TheP - value relative to the test statisticVn,ξ isLn = 1−Gn(Vn,ξ).

The following corollary gives the asymptotic behavior of theP -value associated to the

statistic(Vn,ξ).

Corollary 2.3 Assume thatfn is a uniformly consistent estimator off . Under conditions of

Theorem 2.2, for anyf that is not symmetric about zero forx ∈ X\] − ξ, ξ[, we have with

Pf -probability one,

lim
n→∞

mn

n
logLn = −gξ( sup

x∈X\]−ξ,ξ[
|f(x)− f(−x)|).

Remark 2.From Corollary 2.3 above, we deduce that the Bahadur exact slope relative to the

statistic(Vn,ξ) is 2gξ(supx∈X\]−ξ,ξ[ |f(x)− f(−x)|).

3 Proofs

Lemma 3.1 For fixedλ > 0, hλ in nonincreasing function on(0,∞).

Proof It is easily seen thath
′

λ(u) = −J(ψ−1(λ
u
)), whereh

′

λ is the first derivative ofhλ. Set

l(x) = −J(x) and observe as stated above (properties ofJ) thatl
′
(x) = −ψ(x) ≤ 0 for any

x > 0. Therefore,l is a nonincresing function. Moreover, it is easily seen thatl(0) = 0. We

achieve the proof by the fact thatψ−1(λ
u
) > 0 sinceλ/u > 0.

Proof of Theorem 2.1Observe, for anyx ∈ X − {0} and for anyλ > 0, that

max{P (fn(x)− fn(−x) > λ) , P (fn(−x)− fn(x) > λ)} ≤ P (|fn(x)− fn(−x)| > λ)

≤ 2 max{P (fn(x)− fn(−x) > λ) , P (fn(−x)− fn(x) > λ)}.

As the proofs use the same arguments, we will give here only the details concerning

P (fn(x)− fn(−x) > λ). SetYn,j(x) = 1
mn

(δmn(x, u)− δmn(−x, u)) . It is easily seen that

P (fn(x)− fn(−x) > λ) = P

(
n∑
j=1

Yn,j(x) >
n

mn

λ

)
.

5
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Defineϕxn(t) to be the moment generating function of
∑n

j=1 Yn,j(x) and observe that

ϕxn(t) = [ψxn(t)]
n , where

ψxn(t) = IE (exp{tYn,1(x)})=1 +

∫
X

(
exp

{
t

mn

(
δmn(x, u)− δmn(−x, u)

)}
− 1

)
f(u)du

:= 1 +
1

mn

Rn(t, x).

Observe, further, that

Rn(t, x) =mn

∫
X

[
exp

{
t

mn

δmn(x, u)

}
−1

]
f(u)du+mn

∫
X

[
exp

{
−t
mn

δmn(−x, u)
}
− 1

]
f(u)du

+mn

∫
X

[
exp

{
t

mn

δmn(x, u)

}
− 1

] [
exp

{
−t
mn

δmn(−x, u)
}
− 1

]
f(u)du.

Using the conditions(H2), (H4), we obtain thatRn(t, x)/mn → 0 asn → ∞. Taylor series

expansion oflog(1 + u) aboutu = 0, yieldslogϕxn(t) = n
mn

(
Rn(t, x) +O

(
1
mn

))
. Hence,

lim
n→∞

mn

n
logϕxn(t) = f(x)(I(t) + I(−t)).

The remainder of the proof essentially uses arguments of the proof of the theorem in

Plachky and Steinebach (1975). Namely, Chebycheff inequality is applied for deriving the

upper bound and an exponential change of measure is used to derive the lower bound.

Proof of Theorem 2.2 For anyx ∈ X\] − ξ, ξ[, we haveP (Vn,ξ > λ) ≥ P (| fn(x) −
fn(−x) |> λ). Using Theorem 2.1, we obtain for anyx ∈ X−]− ξ, ξ[

lim inf
n→∞

mn

n
logPn,ξ(λ) ≥ lim inf

n→∞

mn

n
logP x

n (λ) ≥ −Γx(λ).

Thus,

lim inf
n→∞

mn

n
logPn,ξ(λ) ≥ −gξ(λ). (3)

LetHn be a positive real number tending to infinity withn. Observe that

Pn,ξ(λ) ≤ P ( sup
ξ≤x≤Hn

| fn(x)− fn(−x) |> λ) + P ( sup
x>Hn

| fn(x)− fn(−x) |> λ).

For anyj = 1, · · · , dn, consider the following partition of the interval(aj−1, aj), u0,j−1, u1,j−1,

· · · , ul,j−1, such thata0 = u0,0 = ξ, adn = Hn, ul,j−1 = u0,j = aj andui,j−1 − ui−1,j−1 =

µ((aj−1, aj))/l, whereµ is the Lebesgue measure. Clearly,

sup
ξ≤x≤Hn

| fn(x)− fn(−x) |= max{ max
1≤j≤dn

{ sup
aj−1<x<aj

| fn(x)− fn(−x) |};

max
0≤j≤dn

|fn(aj)− fn(−aj)|}. (4)

For anyj = 1, · · · , dn, we have

sup
aj−1<x<aj

| fn(x)− fn(−x) |= max

{
sup

u0,j−1<x≤u1,j−1

| fn(x)− fn(u1,j−1) |;

sup
ul−1,j−1≤x<ul,j−1

| fn(x)− fn(−x) |;

max
2≤i≤l−1

{ sup
ui−1,j−1<x≤ui,j−1

| fn(x)− fn(−x) |}
}
.
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Observe, for anyi = 1, · · · , l − 1, that

sup
ui−1,j−1<x≤ui,j−1

| fn(x)− fn(−x) | ≤ sup
ui−1,j−1<x<ui,j−1

| fn(x)− fn(ui,j−1) |

+ sup
ui−1,j−1<x<ui,j−1

| fn(−ui,j−1)− fn(−x) |

+ | fn(ui,j−1)− fn(−ui,j−1) |,

and

sup
ul−1,j−1≤x<ul,j−1

| fn(x)− fn(−x) | ≤ sup
ul−1,j−1<x<ul,j−1

| fn(x)− fn(ul−1,j−1) |

+ sup
ul−1,j−1<x<ul,j−1

| fn(−ul−1,j−1)− fn(−x) |

+ | fn(ul−1,j−1)− fn(−ul−1,j−1) | .

Using the condition(B3), we obtain, for anyε ≥ 0, that there existslj−1 ≥ µ((aj−1, aj))/ηn,

such that, for anyi = 1, · · · , lj−1 − 1, supui−1,j−1<x<ui,j−1
| fn(ui,j−1) − fn(x) |≤ ε and

supui−1,j−1<x<ui,j−1
| fn(−ui,j−1)− fn(−x) |≤ ε. Thus,

sup
aj−1<x<aj

| fn(x)− fn(−x) |≤ max
1≤i≤lj−1−1

{| fn(ui,j−1)− fn(−ui,j−1) | +2ε}. (5)

By combining (4) and (5), we obtain

sup
ξ≤x≤Hn

| fn(x)− fn(x) |≤ max
1≤j≤dn, 0≤i≤lj−1

{| fn(ui,j−1)− fn(ui,j−1) | +2ε}.

Therefore, we have

P ( sup
ξ≤x≤Hn

| fn(x)− fn(x) |> λ) ≤
dn∑
j=1

lj−1∑
i=0

P (| fn(ui,j−1)− fn(−ui,j−1) | λ− 2ε).

Thus,

logP ( sup
ξ≤x≤Hn

| fn(x)− fn(−x) |> λ) ≤

log(
dn∑
j=1

lj−1) + sup
x∈X\]−ξ,ξ[

{logP (| fn(x)− fn(−x) | λ− 2ε)} . (6)

On the other hand, we havesupx>Hn
| fn(x) − fn(−x) |≤ 2 sup|x|>Hn

|fn(x)|. From the

condition(B2) and using Markov’s inequality, we obtain

P (2 sup
|x|>Hn

| fn(x) |> λ) ≤ P (
n∑
i=1

gn(Xi) > n(
λ

2
− ε)) ≤ E(gn(X1))

λ
2
− ε

. (7)

Notice that

Pn,ξ(λ) ≤ P ( sup
ξ≤x≤Hn

| fn(x)− fn(−x) |> λ) + P ( sup
x>Hn

| fn(x)− fn(−x) |> λ).

7
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Since,log(1 + u) ≤ u for u ≥ 0, it follows that

logPn,ξ(λ)≤ logP ( sup
ξ≤x≤Hn

| fn(x)− fn(−x) |> λ)+
P (supx>Hn

| fn(x)− fn(−x) | λ)

P (supξ≤x≤Hn
| fn(x)− fn(−x) | λ)

.

From (3) and (7), we obtain that

logPn(λ)≤ logP ( sup
ξ≤x≤Hn

| fn(x)−fn(−x) |> λ)+
E(gn(X1))

λ
2
− ε

exp{ n

mn

(gξ(λ)+o(1))}. (8)

Substituting the expression in the right hand side of (6) to the first term in the right hand

side of (8), multiplying afterwards bymn

n
in both sides of (8) and using then hypotheses

(B2)-(B3), we obtain

lim sup
n→∞

1

nan
logPn(λ) ≤ sup

x∈X\]−ξ,ξ[
(−Γx(λ− 2ε)) ≤ −gξ(λ− 2ε).

Sinceg is continuous, we achieve the proof by makingε go to zero.

Proof of Lemma 2.3Taking the proof of the Corollary 2.2 in Berrahou (2003). If we suppose

thatf is bounded and the uniformly continuous instead of only continuous, we obtain that the

functionLn(t, x) converges uniformly tof(x)I(t) with respect tox, which implies that the

convergence (1) is uniform with respect tox. We suppose now that the kernelK is bounded

by a positive real numberA. Using Taylor series expansion of the exponential function and

the fact thatK is bounded, it follows that, for allα > 0,

sup
|u|≥α

mn [exp {tK(mnu)} − 1] ≤ h(t) sup
|u|≥α

mnK(mnu),

whereh(t) = (1/A) [exp {tA} − 1]. Set

I0 =: mn

∫
[exp{tK(mn(x− u))} − 1] [exp{tK(mn(−x− u))} − 1] f(u)du ≤ I1 + I2,

where

I1 := mn sup
|x−u|>α

[exp{tK(mn(x− u))} − 1]

∫
|x−u|>α

[exp{tK(mn(−x− u))} − 1] f(u)du,

and

I2 := mn sup
|x−u|≤α

[exp{tK(mn(−x− u))} − 1]

∫
|x−u|≤α

[exp{tK(mn(x− u))} − 1] f(u)du.

Observe thatI1 ≤ Ah(t)2mn sup|u|>αK(mnu) andI2 ≤ Ah(t)2mn sup|u|≤αK(mn(−2x −
u)). The termI1 is smaller thanAεh(t)2 and the termI2 is bounded byAεh(t)2. These facts

imply that the condition(H4) is satisfied. Notice now that, ifα < 2ξ andx ∈ X\]− ξ, ξ[,

I2 ≤ Ah(t)2mn sup
|u|≤α

K(mn(−2x− u)) ≤ Ah(t)2mn sup
|u|>2ξ−α

K(mnu).

8
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Therefore, the termI2 is bounded byAεh(t)2 independently ofx. This implies that the

convergence (2) is uniform with respect tox onX\] − ξ, ξ[. Using the condition(A1), we

obtain, for anyε ≥ 0, that there exists a sequenceηn = ε/Lm2
n, such that, for anyz ∈ X ,

sup
|x−u|≤ηn

| δmn(x, z)− δmn(u, z) |≤ ε.

Here,L is the lipschitz coefficient. Thus, the condition(B3)(i) is satisfied. Moreover, using

the fact thatlim|x|→∞ |x|K(x) = 0, we obtain

sup
|x|>Hn

|δmn(x, u)| ≤ mnK̄1I{|u|>Hn/2} + sup
|v|>mn

Hn
2

2|v|
Hn

K(v)1I{|u|≤Hn/2} ≤ mnK̄1I{|X1|>Hn/2}+ε,

whereK̄ = supx∈RK(x). Consequently, making use of the conditions(A2)-(A3), we con-

clude that the conditions(B2), (B3)(ii) are satisfied.

Proof of Lemma 2.4 It is shown in Louani (2003) that the convergence (1) is uniform with

respectx. Using Taylor expansion of the exponential function and Fubini’s Theorem, it

follows that

Tn := (2mn+1)

∫ π

−π

(
exp

{
t
∑mn

k=−mn
eik(x−u)

2π(2mn + 1)

}
−1

)(
exp

{
−t
∑mn

k=−mn
e−ik(x+u)

2π(2mn + 1)

}
−1

)
f(u)du,

=
∞∑

p=1,l=1

∑
−mn≤k1,··· ,kl≤mn

∑
−mn≤s1,··· ,sp≤mn

(−1)ptl+pei(k1+···+kl)xe−i(s1+···+sp)x

(2π)l+p(2mn + 1)l+p−1l!p!

×
∫ π

−π
e−i(k1+···+kl)ue−i(s1+···+sp)uf(u)du.

It is easily seen that,

Tn =
∞∑

p=1,l=1

lmn∑
r1=−lmn

pmn∑
r2=−pmn

(−1)ptp+lAl,mn,r1Ap,mn,r2e
i(r1−r2)x

(2π)p+l(2mn + 1)l+p−1l!p!

∫ π

−π
e−i(r1+r2)uf(u)du,

=
∞∑

p=1,l=1

lmn∑
r1=−lmn

pmn∑
r2=−pmn

(−1)ptp+lAl,mn,r1Ap,mn,r2Cr1+r1(f)ei(r1−r2)x

(2π)p+l−1(2mn + 1)l+p−1l!p!
,

whereCr(f) = 1
2π

∫ π
−π e

−iruf(u)du, and

Ad,mn,r = |{(k1, · · · , kd) ∈ {−mn, · · · ,mn}d : k1 + · · ·+ kd = r}|,
=

∑
0≤j≤ r+dmn

2mn+1

(−1)jCj
dC

r+dmn−j(2mn+1)
r+dmn−j(2mn+1)+d−1,

(see, Louani (2003) for details ). Set now

ζmn(x, t, p, l) :=
∑
r1∈ZZ

∑
r2∈ZZ

(−1)ptp+lAp,mn,r2

(2π)p+l−1(2mn + 1)pl!p!
1I[|r2|/p,∞[(mn)θmn(x, l, r1, r2)e

−2ir2x,

whereθmn(x, l, r1, r2) :=
Al,mn,r1

(2mn+1)l−1 1I[|r1|/p,∞[(mn)Cr1+r2(f)ei(r1+r2)x. It is easily seen that

Ad,mn,r ≤
(2d)d(2mn+1)d−1

d!
. Thus,

|ζmn(x, t, p, l)| ≤ tp+l(2p)p(2l)l

(p!)2l!(l − 1)!(2π)p+l−1

∑
r∈ZZ

Cr(f).
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Using the d’Alembert’s rule, it follows that
∑∞

l=1
(2lt)l

l!(l−1)!(2π)l−1 <∞ and
∑∞

p=1
(2pt)p

(p!)2(2π)p <∞.

Since
∑

r∈ZZ |cr(f)| < ∞, then we have
∑∞

p=1

∑∞
l=1 |ζmn| < ∞. Furthermore, observe that

|θmn(x, l, r1, r2)| ≤ (2l)l

d!
|Cr1+r2(f)|. Since

∑
r∈ZZ |cr(f)| <∞, then we have∑lmn

r1=−lmn
θmn(x, l, r1, r2) <∞. Observe now that

θmn(x, l, r1, r2)
n→∞−→ Cr1+r2(f)ei(r1+r2)x

(l − 1)!

∑
0≤j≤ l

2

(−1)jCj
l

(
l − 2j

2

)l−1

.

By the dominated convergence Theorem, it follows that

lmn∑
r1=−lmn

θmn(x, l, r1, r2)
n→∞−→ f(x)

(l − 1)!

∑
0≤j≤ l

2

(−1)jCj
l

(
l − 2j

2

)l−1

:= θ(x, l).

Set nowζ
′
mn

(x, p, l) := 1
(2mn+1)p

∑
r1∈ZZ

∑
r2∈ZZAp,mn,r21I|r2|/p,∞[(mn)θmn(x, l, r1, r2)e

−2ir2x,

andζ
′′
mn

(x, p, l) := 1
(2mn+1)p

∑
r2∈ZZAp,mn,r21I|r2|/p,∞[(mn)θ(x, l)e

−2ir2x. Obviously,

|ζ ′mn
(x, p, l)− ζ ′′mn

(x, p, l)| ≤ (2p)p

(p−1)!
ε. It is easily seen thatζ

′′
mn

(x, p, l) =
(
Dn(−2x)
2mn+1

)p
θ(x, l),

whereDn(x) =
∑mn

r=−mn
eirx. It is well-known that if0 < |x| ≤ π, then|Dn(x)| ≤ π

2|x| ,

therefore

|ζ ′′mn
(x, p, l)| ≤

(
π

4|x|(2mn + 1)

)p
|θ(x, l)|.

Thus,ζ
′′
mn

(x, p, l) converges to zero for anyx ∈ X − {0}. Again, by the dominated conver-

gence Theorem, we have

lim
n→∞

∞∑
p=1,l=1

ζmn(x, t, p, l) =
∞∑

p=1,l=1

(−1)ptp+l

(2π)p+l−1l!p!
lim
n→∞

ζ
′

mn
(x, p, l),

=
∞∑

p=1,l=1

(−1)ptp+l

(2π)p+l−1l!p!
lim
n→∞

ζ
′′

mn
(x, p, l) = 0.

Hence, the condition(H4) is satisfied. Suppose now thatξ ≤ |x| ≤ π, it follows that

|Dn(x)| ≤ π
2ξ

. It is easily seen that

|ζ ′′mn
(x, p, l)| ≤

(
π

4ξ(2mn + 1)

)p
M

(l − 1)!

∑
0≤j≤ l

2

(−1)jCj
l

(
l − 2j

2

)l−1

,

whereM = supx∈X f(x). Therefore,ζ
′′
mn

(x, p, l) converges uniformly to zero with respect

to x onX\] − ξ, ξ[. This implies that the convergence (2) is uniform with respect tox on

X\] − ξ, ξ[. Since the elements of the basis(ek) are of bounded support, we conclude that

the condition(B2) is satisfied. Observe now that

|δm(x, z)− δm(u, z)| = 1

2π

mn∑
k=−mn

|eikx − eiku| ≤ 1

π

mn∑
k=−mn

|k(x− u)| ≤ 6m2
n

π
|x− u|.

The condition(B3) is then satisfied,
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Proof of Lemma 2.5Suppose thatmn = 2qn. It is shown in (Berrahou (2003) Corollary

2.4) that

lim
n→∞

In(t) =
∞∑
p=1

tp

(2π)p−1p!(2p− 1)!

∑
0≤j≤p

(−1)jCj
2p (p− j)2p−1 ,

whereIn(t) := 2qn
∫ π
−π

(
exp

{
t

2qn
F2qn(u)

}
− 1
)
du. Using the continuity off which is

actually a uniform continuity on the compact set[−π, π], we obtain, for anyε > 0, that

there existsδ > 0 such that for anyx ∈ [−π, π] and for any|u| ≤ δ, |f(x+ u)− f(x)| ≤ ε.

It is well-known that, ifu ∈ [−π, π], F2qn(u) ≤ (2qn + 1)/4. Then, we obtain

2qn

∫
|u|≤δ

[
exp

{
t

2qn
F2qn(u)

}
− 1

]
du ≤ H(t)

∫
|u|≤δ

F2qn(u)du,

whereH(t) = (4/5) [exp{5t/4} − 1]. Observe now that for anyδ > 0,

|Ln(t, x)− f(x)In(t)| ≤ 2qn

∫ π

−π

[
exp

{
t

2qn
F2qn(u)

}
− 1

]
|f(x+ u)− f(x)| du,

≤ 2qn

∫
|u|≤δ

[
exp

{
t

2qn
F2qn(u)

}
− 1

]
|f(x+ u)− f(x)| du,

+ 2M

(
2qn

∫
|u|≥δ

[
exp

{
t

2qn
F2qn(u)

}
− 1

]
du

)
,

whereM := supx f(x). The first term in the last inequality may be made smaller than

(4/5){exp(5t/4) − 1}ε and the second term is bounded by(8/5){exp(5t/4) − 1}Mε, which

implies that the convergence (1) is uniform with respect tox. Set

I0 := mn

∫ [
exp{ t

mn

F2qn(x− u)} − 1

][
exp{ t

mn

F2qn(−x− u)} − 1

]
f(u)du ≤ I1 + I2,

where

I1 := mn sup
|x−u|>α

[
exp{ t

mn

F2qn(x− u)} − 1

]∫
|x−u|>α

[
exp{ t

mn

F2qn(−x− u)} − 1

]
f(u)du,

and

I2 := mn sup
|x−u|≤α

[
exp{ t

mn

F2qn(−x− u)} − 1

]∫
|x−u|≤α

[
exp{ t

mn

F2qn(x− u)} − 1

]
f(u)du.

Observe thatI1 ≤ (5/4)H(t)2 sup|u|>α F2qn(u) andI2 ≤ (5/4)H(t)2 sup|u|≤α F2qn(−2x−u).
The termI1 is smaller than(5/4)H(t)2ε and the termI2 is bounded by(5/4)H(t)2ε for any

x 6= 0. This implies that the(H4) is satisfied. Observe now that, ifα < 2ξ andx ∈
X\] − ξ, ξ[, we haveI2 ≤ (5/4)H(t)2 sup|u|≥2ξ−α F2qn(u). Then the termI2 is bounded

by (5/4)H(t)2ε and this implies that the convergence (2) is uniform with respect tox on

X−]\ξ, ξ[. It easily seen that

δ2qn(x, z) =
1

2π(2qn + 1)

(
qn∑

k=−qn

e−ik(x−z)

)2

=
1

2π(2qn + 1)

∑
−2qn≤k≤2qn

Ake
−ik(x−z),
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whereAk = |{(k1, k2) ∈ {−qn ≤ k1, k2 ≤ qn}2 : k1 + k2 = k}| ≤ 4(2qn + 1), (see Louani

(2003) for details). Thus,|δ2qn(x, z) − δ2qn(u, z)| ≤ 32qn2

π
|x − u|. The condition(B3)(i) is

then satisfied. Observe now that

sup
|x|>Hn

|δmn(x, u)| ≤ 2qn + 1

4
1I{|u|>Hn/2} + sup

|x−u|>Hn/2

F2qn(x− u)1I{|u|≤Hn/2},

≤ 2qn + 1

4
1I{|u|>Hn/2} + ε.

Consequently, making use of the conditions(A2)-(A3), we conclude that the conditions(B2),

(B3)(ii) are satisfied.

Proof of Corollary 2.3 Making use of the uniform consistency of the estimatorfn, it follows

thatVn,ξ → supx∈X\]−ξ,ξ[ |f(x) − f(−x)| in Pf−probability asn → ∞. Therefore, for an

arbitrarily fixedf such thatf(x) 6= f(−x) for anx ∈ X\]− ξ, ξ[, andε > 0, we have, forn

large enough

Pf ( sup
x∈X\]−ξ,ξ[

|f(x)− f(−x)| − ε ≤ Vn,ξ ≤ sup
x∈X\]−ξ,ξ[

|f(x)− f(−x)|+ ε) > 1− δ,

with δ > 0 arbitrarily small. SinceGn is a monotone function, then we have

1−Gn( sup
x∈X\]−ξ,ξ[

|f(x)− f(−x)|+ ε) ≤ Ln ≤ 1−Gn( sup
x∈X\]−ξ,ξ[

|f(x)− f(−x)| − ε).

Making use of Theorem 2.2, it follows that

−gξ( sup
x∈X\]−ξ,ξ[

|f(x)− f(−x)|+ ε) ≤ lim inf
n→∞

mn

n
Ln,

≤ lim sup
n→∞

mn

n
Ln≤−gξ( sup

x∈X\]−ξ,ξ[
|f(x)− f(−x)| − ε).

Sincegξ is continuous, we achieve the proof by makingε tend to zero.
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